ORIENTED EUTECTIC MICROSTRUCTURES IN THE SYSTEM $\text{Al}_2\text{O}_3/\text{ZrO}_2$

FREDERICK SCHMID and DENNIS J. VIECHNICKI
CERAMICS DIVISION

September 1970

This document has been approved for public release and sale; its distribution is unlimited.

ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official endorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.
Do not return it to the originator.
AMMRC TR 70-27

ORIENTED EUTECTIC MICROSTRUCTURES IN THE SYSTEM Al₂O₃/ZrO₂

Technical Report by
FREDERICK SCHMID and DENNIS J. VIECHNICKI

September 1970

D/A Project 1T062105A330
AMCMS Code 502E.11.296
Ceramic Materials Research for Army Materiel
Agency Accession Number DA OA4772

This document has been approved for public release and sale; its distribution is unlimited.

CERAMICS DIVISION
ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172
Oriented Eutectic Microstructures in the System Al₂O₃/ZrO₂

F. SCHMID, D. VIECHNICKI
Army Materials and Mechanics Research Center, Watertown, Mass, USA

Oriented eutectic microstructures have been produced in the system Al₂O₃/ZrO₂ using a Bridgman-type crystal-growing furnace. Ingots consisted of elongated columnar grains or colonies. Inside the colonies a rod-type eutectic microstructure consisting of rods of ZrO₂ surrounded by an Al₂O₃ matrix was observed. The eutectic point was re-established at 63 mol % Al₂O₃/37.0 mol % ZrO₂ and 1870 ± 5°C. Al₂O₃ is the first phase to nucleate when eutectic growth occurs.

1. Introduction
Oriented eutectic microstructures have been produced in systems which suggest potential applications in many areas of materials technology. Al/Al₃Ni eutectics are of structural interest [1]. NaF/NaCl eutectics exhibit highly anisotropic optical properties [2]. Eutectic microstructures in the system BaFe₁₂O₁₉/BaFe₂O₄ are of interest for their magnetic properties [3]. To date the bulk of the studies on eutectic solidification have been concerned with metal systems and alkali halide systems where the temperatures involved have been relatively low, i.e. below 1000°C. High melting systems such as oxides and carbides have not been extensively investigated, yet these systems may find application where strength and hardness are required at elevated temperatures. The object of this study was to investigate eutectic solidification in some high melting oxide systems and to determine whether oriented eutectic microstructures could be produced. Viechnicki and Schmid have studied eutectic solidification in the system Al₂O₃/Y₂Al₂O₁₃ [4]. The system Al₂O₃/ZrO₂ was chosen for this study because Al₂O₃ and ZrO₂ have low vapour pressures below 2000°C [5, 6] and are not easily reduced to sub-oxides [7, 8]. Studies of phase equilibria in this system indicated that this was a simple binary system with no compound formation [9-11]. Since the position of the eutectic point was not consistent in these investigations nor was it clearly defined by v. Wartenberg et al [12], its position was re-investigated.

2. Experimental
2.1. Materials
The starting materials used in this investigation were alumina* and zirconia† powders. The alumina powder contained greater than 99.99% Al₂O₃. Typical impurities listed by the producer were 0.003% Na₂O, 0.001% SiO₂, 0.001% TiO₂, 0.001% Fe₂O₃, 0.001% P₂O₅, and 0.001% Cl. The zirconia powder contained greater than 99% ZrO₂ plus HfO₂. Maximum specific impurities listed by the producer included 0.18% SiO₂, 0.22% CaO, 0.15% MgO, 0.10% Fe₂O₃, 0.16% Al₂O₃, and 0.11% TiO₂. These powders were weighed in desired proportions, mixed in a blender for 1 h in acetone, dried and calcined for more than 72 h at 1200°C. The calcined powders were then either put directly into a Bridgman furnace for solidification studies or stored in an evacuated dessicator.

2.2. Determination of the Eutectic Point
Various compositions in the system Al₂O₃/ZrO₂ were mixed, pressed into small pellets, and melted in a vacuum graphite resistance furnace. Pellets were observed while they were being heated. Temperature was measured with an optical pyrometer. The temperature at which the first liquid was observed was taken to be the eutectic temperature. The eutectic composition was determined from photomicrographs of the microstructures of solidified pellets by quantitative metallography. A more complete description of the furnace and technique has been given elsewhere [13].

*Gem-242 Ultra High Purity Alumina, Engineering Materials, PO Box 363, New York 8, NY, USA.
†Zircoa A-H-C, Zirconium Corporation of America, 31501 Solon Rd, Solon 39, Ohio, USA.
2.3. Direction Solidification

90 g of calcined powder were packed into a cylindrical vapour-deposited tungsten crucible* 1.3 cm in diameter by 30 cm in length. This crucible held enough loose powder to obtain an ingot 10 cm long after an initial melting at 1900° C. Melting and directional solidification studies were done in a Bridgman crystal-growing furnace illustrated schematically in fig. 1. A helium atmosphere was used throughout this investigation. Power was supplied by a 450 kHz 20 kW rf generator to a graphite susceptor 2.5 cm in diameter and 15 cm long. Melts for solidification studies were heated to 2000° C. Cooling was accomplished by radiation from the bottom of the sample. After the initial melting and prior to further solidification studies the bottom of the tungsten crucible was cut off to eliminate a reflective interface to increase the radiation cooling. When the ingot was put into the furnace, its bottom was positioned to protrude 1.3 cm below the bottom of the susceptor. Thus as the power was increased, melting occurred from the top down to within 2 cm of the bottom of the ingot.

The position of the lowest liquid-solid interface relative to the bottom of the ingot could later be measured upon sectioning the ingot. Directional solidification was then accomplished by passing the crucible down through the susceptor at a given rate. Temperatures were measured from the bottom of the ingot and from the hot zone of the furnace with an optical pyrometer. Appropriate corrections were applied to obtain the actual temperatures in the furnace [13]. The temperature gradient in the solid parallel to the growth direction at the start of directional solidification was determined by taking the difference between the temperature at the bottom of the ingot and the eutectic temperature and dividing this by the distance between the bottom of the ingot and the lowest liquid-solid interface.

2.4. Optical and X-ray Studies

Polished sections were prepared using graded silicon carbide papers, diamond paste, and chromic oxide for a final relief polish. Photomicrographs were obtained from a Bausch and Lomb metallograph with a carbon arc light source. Phases present in the solidified ingots were determined by X-ray analysis using a Norelco Diffractometer and CuKα radiation.

3. Results and Discussion

3.1. Determination of the Eutectic Point

The following compositions were heated until a liquid phase was observed: 64.5 mol % Al₂O₃/35.5 mol % ZrO₂, 54.7 mol % Al₂O₃/45.3 mol % ZrO₂, and 49.7 mol % Al₂O₃/50.3 mol % ZrO₂. Liquid was first observed as these compositions were heated at 1870 ± 5° C. This was the eutectic temperature. These solidified ingots were determined by X-ray analysis using a Norelco Diffractometer and CuKα radiation.

*San Fernando Laboratories, 10258 Norris St, Pacoima, California, USA.
enclosed in an Al₂O₃ matrix. Since these are the ends of rods, the area fraction of each phase was readily converted to a volume fraction and then to a mole fraction taking the density of monoclinic ZrO₂* to be 5.56 g cm⁻³ [14]. The volume fraction, volume₇½/volum₃½ Al₂O₃ was found to be 0.506 at the eutectic. The eutectic composition was thus found to be 63.0 mol % Al₂O₃/37.0 mol % ZrO₂. Subsequent melts of this composition had only the fine rod-type eutectic microstructure and no primary phases.

The primary Al₂O₃ in the microstructure of the 64.5 mol % Al₂O₃/35.5 mol % ZrO₂ material served to nucleate the eutectic microstructure, whereas the primary ZrO₂ in the microstructure of the 54.7 mol % Al₂O₃/45.3 mol % ZrO₂ material was surrounded by a ring of Al₂O₃. Following from the findings of Sundquist and Mondolfo [15] in metal systems, it can be said that Al₂O₃ is the first phase to nucleate and causes nucleation of ZrO₂ when growth of the eutectic occurs.

H. v. Wartenberg et al reported a broad eutectic in the system Al₂O₃/ZrO₂ at 1920° C [12]. Suzuki et al reported the eutectic point at 50 mol % Al₂O₃/50 mol % ZrO₂ and 1890° C. Cevales reported the eutectic point at 62.0 mol % Al₂O₃/38.0 mol % ZrO₂ and 1710 ± 10° C [10]. Alper reported the eutectic point at 64.5 mol % Al₂O₃/35.5 mol % ZrO₂ and 1850° C [11]. The eutectic composition found in this investigation compares favourably with those reported by Cevales and Alper. The eutectic temperature found in this investigation compares favourably with those reported by Suzuki et al and by Alper. This may be considered good agreement considering the variety of methods used and the high temperatures involved.

3.2. Directional Solidification

Ingots were solidified at various growth rates between 1.29 cm h⁻¹ and 15.56 cm h⁻¹. A typical ingot is one solidified at 2.59 cm h⁻¹. The temperature gradient at the start of directional solidification in the solid parallel to the growth direction was determined to be 22° C cm⁻¹. The ingot was pore-free and consisted of many columnar grains or colonies ca. 0.1 mm in diameter and 4 mm in length. The colonies are evident in figs. 3 and 4. Fig. 3 is a longitudinal and fig. 4 a transverse section of the ingot.

Within each of the colonies was a fine oriented rod-type eutectic microstructure. Figs. 5 and 2 are the longitudinal and transverse sections of a colony. The continuous phase is Al₂O₃. In each ingot several colonies were very highly oriented with very straight rods as seen in fig. 6. (Polishing of this section was difficult and the pitting seen in this figure could not be eliminated.) The rods are 1 µm in diameter and more than 50 µm in length.

Impurities have been shown to cause the colony structure in metal systems [16] and it is quite probable that they are the cause of the

*X-ray diffraction studies revealed that the ZrO₂ was almost totally in the monoclinic modification. A trace of a peak was noticed at 2θ = 30.5° which may have corresponded to a cubic (111) peak. Some small fraction of the ZrO₂ may have been in the cubic modification.
Oriented Eutectic Microstructures in Al$_2$O$_3$/ZrO$_2$

colony structure in the Al$_2$O$_3$/ZrO$_2$ system, considering the relatively impure starting materials, 99.99% pure Al$_2$O$_3$ and 99%, pure ZrO$_2$. The high temperatures required for melting probably caused some contamination from the tungsten crucibles [4]. Radial temperature gradients and local temperature gradients caused by the rejection of impurities ahead of the growing liquid-solid interface further complicated controlled growth of these eutectics. Highly oriented eutectic microstructures are obtainable in the system Al$_2$O$_3$/ZrO$_2$, but it appears that cleaner starting materials and higher experimentally imposed temperature gradients may be necessary to grow these eutectics in a controlled manner.

References

17. Ibid. p. 150.

Received 6 October 1969 and accepted 2 March 1970.
ORIENTED EUTECTIC MICROSTRUCTURES IN THE SYSTEM Al₂O₃/ZrO₂

Frederick Schmid and Dennis J. Viechnicki

September 1970

Oriented eutectic microstructures have been produced in the system Al₂O₃/ZrO₂ using a Bridgman-type crystal-growing furnace. Ingots consisted of elongated columnar grains or colonies. Inside the colonies a rod-type eutectic microstructure consisting of rods of ZrO₂ surrounded by an Al₂O₃ matrix was observed. The eutectic point was re-established at 63 mol% Al₂O₃/37.0 mol% ZrO₂ and 1870 ±5°C. Al₂O₃ is the first phase to nucleate when eutectic growth occurs. (Authors)
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Al₂O₃/ZrO₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eutectics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase diagrams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microstructure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>