FOREIGN TECHNOLOGY DIVISION

APPRaising THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

by

G. A. Volovnik

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.
EDITED MACHINE TRANSLATION

APPRASING THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

By: G. A. Volovnik

English pages: 9

Source: Avtomatika i Vychislitel'naya Tekhnika (Automation and Computer Technology), 1968, No. 1, pp. 44-49.

This document is a Mark II machine aided translation, post-edited for technical accuracy by: Edwin P. Pentecost.
U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

<table>
<thead>
<tr>
<th>Block</th>
<th>Italic</th>
<th>Transliteration</th>
<th>Block</th>
<th>Italic</th>
<th>Transliteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аа</td>
<td>А а</td>
<td>A, a</td>
<td>Рр</td>
<td>Р р</td>
<td>R, r</td>
</tr>
<tr>
<td>Бб</td>
<td>Б б</td>
<td>B, b</td>
<td>Сс</td>
<td>С с</td>
<td>S, s</td>
</tr>
<tr>
<td>Вв</td>
<td>В в</td>
<td>V, v</td>
<td>Тт</td>
<td>Т т</td>
<td>T, t</td>
</tr>
<tr>
<td>Гг</td>
<td>Г г</td>
<td>G, g</td>
<td>Уу</td>
<td>У у</td>
<td>U, u</td>
</tr>
<tr>
<td>Дд</td>
<td>Д д</td>
<td>D, d</td>
<td>Фф</td>
<td>Ф ф</td>
<td>F, f</td>
</tr>
<tr>
<td>Ee</td>
<td>E e</td>
<td>Ye, ye; E, e*</td>
<td>Хх</td>
<td>Х х</td>
<td>Kh, kh</td>
</tr>
<tr>
<td>Жж</td>
<td>Ж ж</td>
<td>Zh, zh</td>
<td>Цц</td>
<td>Ц ц</td>
<td>Ts, ts</td>
</tr>
<tr>
<td>Зз</td>
<td>З з</td>
<td>Z, z</td>
<td>Чч</td>
<td>Ч ч</td>
<td>Ch, ch</td>
</tr>
<tr>
<td>Ии</td>
<td>И и</td>
<td>I, i</td>
<td>Шш</td>
<td>Ш ш</td>
<td>Sh, sh</td>
</tr>
<tr>
<td>Яя</td>
<td>Я я</td>
<td>Y, y</td>
<td>Шш</td>
<td>Ш ш</td>
<td>Shch, shch</td>
</tr>
<tr>
<td>Кк</td>
<td>К к</td>
<td>K, k</td>
<td>Ъъ</td>
<td>Ъъ</td>
<td>"</td>
</tr>
<tr>
<td>Лл</td>
<td>Л л</td>
<td>L, l</td>
<td>Ьь</td>
<td>Ьь</td>
<td>Ьь</td>
</tr>
<tr>
<td>Мм</td>
<td>М м</td>
<td>M, m</td>
<td>Яй</td>
<td>Я я</td>
<td>Ya, ya</td>
</tr>
<tr>
<td>Нн</td>
<td>Н н</td>
<td>N, n</td>
<td>Юю</td>
<td>Юю</td>
<td>Yu, yu</td>
</tr>
<tr>
<td>Оо</td>
<td>О о</td>
<td>O, o</td>
<td>Пп</td>
<td>P p</td>
<td></td>
</tr>
</tbody>
</table>

* Ye initially, after vowels, and after "b, p; e* elsewhere. When written as & in Russian, transliterate as & or &. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.
APPRAISING THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

G. A. Volovnik

A Markovian model has been built and a reliability function of a finite automaton has been obtained to the input of which a random sequence of input signals proceeds. The model reflects the connection of the process of functioning of a finite automaton with the process of structural changes which are caused by possible disturbances. Along with stable disturbances, the disturbances which bear an alternating character are considered.

The tendency to more fully reflect, when calculating reliability, the properties of an actual technical device leads to the necessity of studying the largest possible number of factors which determine reliability.

In this article a model of reliability of a finite automaton is proposed, considering the alternating character of failures and the disturbances of the automaton which are connected with it. Such disturbances, existing for some random time, can be self-eliminating (withdrawing). The moments of appearance of failures are also random.

Formulation of the problem. A finite automaton with the assigned structural layout is under the influence of random input signals, the
law of distribution of which is known. Further, a list is shown of N possible disturbances, characterized by the probabilities of appearance, a_i, and withdrawal b_i, $i = (1, N)$, which do not depend on the cycle number.

We desire the function of reliability $P(n)$ of the finite automaton for an arbitrary number of cycles n of its work and a number of other reliability characteristics, if the initial state of the automaton is known when $n = 0$. The function of reliability $P(n)$ of a finite automaton is defined as the probability of correct (for n cycles) functioning of the finite automaton under the condition that on each of the n cycles in the automaton there can exist any complex of the considered disturbances [1]. Correct functioning of the finite automaton with disturbances corresponds to the requirement of fulfillment of such transitions, which are accomplished in a completely properly operating automaton with a coinciding sequence of input signals.

In the article we also make the following assumptions:

the work of the automaton is synchronous by cycles, i.e., the input signals are sent in equal time intervals;

the probability distribution of input signals does not depend on the number of cycles;

separate disturbances are independent;

the disturbances do not take the finite automaton beyond the limits of the structural alphabet;

the moments of appearance and withdrawal of disturbances coincide with the moments of reading of cycles.

Under these assumptions, for solving the problem at hand it is possible to use an apparatus of Markov chains. Below, Markov models of the process of structural changes, caused by the appearance and
withdrawal of disturbances, and also process of correct functioning will be obtained. Then a general Markov reliability model of the finite automation will be built, combining both processes.

The processes of structural changes. For a description of the process of structural changes let us determine the phase space of the states of the finite automaton $E = \{ e \}$ by the criterion of the presence of disturbances in it. Let us carry out ordering of all the possible disturbances, allotting to them numbers from one to N. The state can be characterized by the set of numbers of disturbances which are present in the finite automaton, not distinguishing the sequence in which these disturbances appeared. If the state of the finite automaton with a defined complex of $s, s = (1, N)$ disturbances is designated by $e(i_1i_2...i_s)$ then in this designation, consequently, any transposition of indices $i_r, i_r = (1, N)$, which indicate the number of disturbances, is permissible. For a state of total good operating order the designations e_0 are used. Obviously, the total amount of states will be expressed by the number $l = 2^N$.

A change of the state thus introduced, which we will call the structural state of the finite automaton, is caused by the appearance and withdrawal of one or several disturbances in any combination. According to condition, these changes can occur in discrete instants at an interval, equal to cycle duration. In the presence of constant and independent probabilities of the appearance of a_i and withdrawal $b_i, i = (1, N)$ of disturbances, the sequence of states in time will form a uniform Markov chain. Elements $r_{ij}, i, j = (1, l)$ of the matrix of probabilities of transition R, for the obtained chain, are determined by the products of characteristics a_i and b_i, pertaining to those disturbances, with which the transition is connected of the finite automaton from structural state e_i to structural state $e_j, e \in E$.

FTD-MT-24-451-69
Considering the smallness of values a_1 and b_1, it is possible with sufficient basis to disregard the possibility of realizing in one cycle the events which are connected with two or more disturbances, as well as with the possibility of appearance and withdrawal of one disturbance in the same cycle. Under such condition matrix R is essentially simplified. As an illustration let us record the matrix of probabilities of transition, describing the process of structural changes in a finite automaton for the case $N = 3$:

$$
R = \begin{pmatrix}
 e_0 & e_1 & e_2 & e_3 & e_{12} & e_{13} & e_{23} & e_{123} \\
 e_0 & 1 - \delta_0 & a_1 & a_2 & a_3 & 0 & 0 & 0 \\
 e_1 & \delta_1 & 1 - \delta_1 & 0 & 0 & a_4 & a_5 & 0 \\
 e_2 & b_2 & 0 & 1 - \delta_2 & 0 & a_6 & a_7 & 0 \\
 e_3 & b_3 & 0 & 0 & 1 - \delta_3 & a_8 & a_9 & 0 \\
 e_{12} & 0 & b_4 & b_5 & 1 - \delta_{12} & 0 & 0 & a_{10} \\
 e_{13} & 0 & b_6 & b_7 & 0 & 1 - \delta_{13} & 0 & a_{11} \\
 e_{23} & 0 & 0 & b_8 & b_9 & 0 & 1 - \delta_{23} & a_{12} \\
 e_{123} & 0 & 0 & 0 & b_{10} & b_{11} & b_{12} & 1 - \delta_{123}
\end{pmatrix}
$$

where

$$
\delta_0 = \sum_{i=1}^{3} a_{i}; \quad \delta_1 = \sum_{i=1}^{3} a_{i} - a_{i1} + b_{i1}, \quad i = 1, 2, 3; \\
\delta_{12} = \sum_{i=1}^{3} b_{i}; \quad \delta_{13} = \sum_{i=1}^{3} b_{i} - b_{i1} + a_{i1}, \quad i, i_1, i_2 = 1, 2, 3; \quad \delta_{23} = \sum_{i=1}^{3} b_{i1}.
$$

The process of correct functioning of the finite automaton. Let us assume that a set of signals, determining the functional state of a finite automaton, includes input, internal, and output signals. Then the functioning of a finite automaton can be represented by transitions according to functional states $u \in U$, where U - finite set.

During a random flow of signals at the input, a change of states of a finite automaton in the multitude of functional states U bears...
a random character. To each transition of automaton from state \(u_i \) to state \(u_j \) the probability \(q_{ij} \) can be ascribed, which is established by probabilistic distribution of the input signals. The introduction of a matrix of probabilities of transition \(Q = ||q_{ij}||, \)

\[i, j = (1, k), \]

where \(k \) is the number of functional states, determines the process of functioning as a uniform Markov chain [2].

The appearance of a disturbance in a finite automaton in general changes its law of functioning. However, in realizing a favorable sequence of input signals, action of these disturbances can appear in an arbitrarily prolonged time, since in a finite automaton the same transitions will occur as in a properly working automaton. The correct functioning of a finite automaton with disturbances can be described by a matrix order \(k \), which is a modification of matrix \(Q \). We will designate this matrix through \(Q^{(112\ldots1_s)} = ||q_{ij}^{(112\ldots1_s)}||, \) if in the finite automaton a complex of disturbances of the type \((112\ldots1_s) \) was formed. (For matrix \(Q \), an equivalent designation in this plan will be \(Q^{(0)} = ||q_{ij}^{(0)}||. \)

According to the definition of correct functioning of a finite automaton with disturbances, for the formation of matrix \(Q^{(112\ldots1_s)} \) one should make those elements \(q_{ij}^{(0)} \) in matrix \(Q^{(0)} \), which correspond to the transitions not preserved in an automaton with disturbances, equal to zero. The transitions accomplished in an automaton with disturbances, like in a properly working automaton, have coinciding elements of matrices \(Q^{(112\ldots1_s)} \) and \(Q^{(0)}. \)

\[^1\text{In source [1], for a description of the functioning of a finite automaton with disturbances a stochastic matrix of order } k + 1 \text{ is used, in which state } (k + 1) \text{ is defined as a state of failure.} \]
Let us move on directly to the construction of a model of reliability of the finite automaton, considering the interaction of the process of functioning of an automaton with the process of structural changes.

A Markov model of reliability of a finite automaton. Let us introduce the full set of states of finite automaton \(M \) as the direct product of the phase space of structural states \(E \) and the set of functional states \(U \), i.e., \(M = E \times U \), the elements of which are the pairs \(m = (e, u) \), where \(e \in E \) and \(u \in U \). In conformity with the building of phase space \(E \), set \(M \) is also split into nonintersecting subsets \(M_0 = \{ e_0, U \} \) and \(M_{1_{12} \cdots I_s} = \{ e_{1_{12} \cdots I_s}, U \} \), \(s = (1, N) \).

In examining the rules of correct functioning of a finite automaton according to the states of set \(M \), which are reflected by matrices \(Q^{(0)} \) and \(Q^{(1_{12} \cdots I_s)} \), depending upon the structural state of the automaton, and qualifying the incorrect transitions in the automaton with disturbances as transitions to the state of failure \(M_{\text{failure}} \), we will be convinced that the process, described by a uniform Markov chain in phase space \(M' = M + M_{\text{failure}} \), occur. A matrix of probabilities of transition \(T \) of the obtained general Markov chain can be shown in the form of a block matrix of the order \(l + 1 \). For the case \(N = 3 \), matrix \(T \) has this form:

\[
\begin{bmatrix}
\begin{array}{cccccc}
M_0 & M_1 & M_2 & M_3 & M_{12} \\
M_0 & (1-\delta_0)Q^{(0)} & a_1Q^{(0)} & a_2Q^{(0)} & a_3Q^{(0)} & 0 \\
M_1 & b_1Q^{(1)} & (1-\delta_1)Q^{(1)} & 0 & 0 & a_1Q^{(1)} \\
M_2 & b_2Q^{(2)} & 0 & (1-\delta_2)Q^{(2)} & 0 & a_2Q^{(2)} \\
M_3 & b_3Q^{(3)} & 0 & 0 & (1-\delta_3)Q^{(3)} & 0 \\
M_{12} & 0 & b_2Q^{(12)} & b_1Q^{(12)} & 0 & (1-\delta_{12})Q^{(12)} \\
M_{13} & 0 & b_3Q^{(13)} & 0 & b_1Q^{(13)} & 0 \\
M_{23} & 0 & 0 & b_1Q^{(23)} & 0 & b_2Q^{(23)} \\
M_{123} & 0 & 0 & 0 & b_2Q^{(123)} & 0 \\
M_{\text{other}} & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\end{bmatrix}
\]
The unit-matrices D_1, D_2, \ldots, D_s are matrices-columns of the order k (k - the number of functional states of a finite automaton), the elements of which are found from the condition of stochasticity of the matrix of probabilities of transition T. The last line of matrix T is composed of null matrices-lines and element $T_{i+1, l+1} = 1$, which determines the state of failure M_{DTH} as being absorbing.

The function of reliability of a finite automaton for n cycles can be expressed as

$$P(n) = \sum_{m=0}^{N} P_m(n),$$

where $P_m(n)$ - the probability of correct (for n cycles) functioning of finite automaton under the condition that in each of the n cycles any complex of the considered disturbances can exist, and in the n-th cycle automaton is in state m.

For finding the probability distribution $P_m(n)$ for the n-th cycle, characterized by a $(1k + l)$-dimensional vector $P_m(n)$, it is necessary to solve a system of difference equations, using, for instance, the method of a discrete Laplace transform [3]. If one were to designate the image of vector $P_m(n)$ by $P_m(z)$, we will obtain

$$P_m(z) = -P_m(0)z(1 - zV)^{-1}.$$
where $P_m(0)$ - the vector of initial probability distribution of states; z - the variable of transform; V - the unit matrix; $[T - zV]^{-1}$ - the matrix, inverse to matrix $[T - zV]$.

The function of reliability of a finite automaton, according to formula (3), will be obtained by adding all the components of vector $P_m(n)$, except the last, equal to failure probability. By grouping the components of vector $P_m(n)$ in a certain way, it is possible to separate the individual components of reliability function. Thus, for example, the probability of unfailing work of a finite automaton for n cycles in the presence in it of disturbances with numbers $1_1, 1_2, \ldots, 1_s$, regardless of the order of their appearance, is equal to

$$P^{i_1, \ldots, i_s}(n) = \sum_{m \in M_i} P_m(n),$$

and the probability of unfailing work of a finite automaton for cycles in the presence in it of any s disturbances

$$P^{(s)}(n) = \sum_{i_1, \ldots, i_s} P^{i_1, \ldots, i_s}(n),$$

where summation is conducted on all sets $(1_1, 1_2, \ldots, 1_s)$, distinguished by subscripts designating the number of disturbances.

Let us note that in the case of showing the matrix of probabilities of transition T in form (2), it is assumed that a change in the logical structure can take place starting with $n = 1$, i.e., from the second cycle. In order to consider the possibility of changes in the structure from the first cycle, the matrix of probabilities of transition must be modified in the following way:
Using the properties of a discrete transform, let us find the average number of cycles of proper work of the finite automaton

\[
\eta_p = P(z)|_{z=1},
\]

where \(P(z)\) — the depiction of the function of reliability \(P(n)\).

For those of the considered (during the calculation of reliability) disturbances, which cannot be removed or which bear a stable character and do not possess the ability of self-restoration during work, one should make \(b_1 = 0\).

The author expresses his gratitude to A. N. Sklyarevich for formulating the problem and for his useful counsel during work on this article.
Bibliography

2. Tsertsvadze O. N. Stokhasticheskiye avtomaty i zadacha postroyeniya nadezhnykh avtomatov iz nenadezhnykh elementov (Stochastic automata and the problem of constructing reliable automata from unreliable elements). — Avtomatika i telemekhanika, 1968, 25, 2.

Submitted
2 June 1967
APPRAISING THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

Volovnik, G. A.

January-February 1968

FTD-MT-24-451-69

DIA Task No. T68-05-02

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

A Markovian model has been built and a reliability function of a finite automaton has been obtained to the input of which a random sequence of input signals proceeds. The model reflects the connection of the process of functioning of a finite automaton with the process of structural changes which are caused by possible disturbances. Along with stable disturbances, the disturbances which bear an alternating character are considered.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Automaton</td>
<td>ROLE</td>
<td>DT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Markov Process</td>
<td>ROLE</td>
<td>DT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>