HIGH ENERGY NEUTRON CROSS SECTION
VALIDATION AND NEUTRON FLUX SPECTRUM
USING THE HENRE SOURCE

Raymond C. Barrall
John A. Holmes
Mae Silbergeld

Stanford University
Stanford, California
Contract AF 29(601)-6780

TECHNICAL REPORT NO. AFWL-TR-68-134

March 1969

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtland Air Force Base
New Mexico

This document has been approved for public
release and sale; its distribution is unlimited.

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151
HIGH ENERGY NEUTRON CROSS SECTION VALIDATION
AND NEUTRON FLUX SPECTRUM USING THE HENRE SOURCE

Raymond C. Barrall
John A. Holmes
Mae Silbergeld

Stanford University
Stanford, California
Contract AF 29(601)-6780

TECHNICAL REPORT NO. AFWL-TR-68-134

This document has been approved for public release and sale; its distribution is unlimited.
FOREWORD

This report was prepared by Stanford University, Stanford, California, under Contract AF 29(601)-6780. The research was performed under Program Elements 6.24.05.21.4 and 6.21.18.01.1, Project 1831, Task 1831 08, and was partially funded by the Army under MIPR 20-113-RE-65-3(T).

Inclusive dates of research were November 1965 to October 1968. The report was submitted 10 December 1968 by the Air Force Weapons Laboratory Project Officer, Lt Edward O. Groeber, Jr. (WLBN). Former Project Officers were Capt James K. Morrow (WLDN) and Lt Gerald P. McCarthy (WLRB).

The authors wish to express their appreciation for the encouragement and support of Dr. John DePangher, Lockheed Research Laboratory, Palo Alto, California and Dr. Donald G. Gardner, Lawrence Radiation Laboratory, Livermore, California, and to James Barrick, Gregg Carter, Vartiter Chakalian, Jerome Czech, Matthew Greer, Esther Huang, Richard Lawson, Ron Macumber, and George Seto of Stanford University for invaluable assistance in the measurements and calculations. Finally, thanks are due Fred Haywood and the HENRE Crew for operation of the HENCR accelerator, to R. Cederlund and crew at the ICT accelerator for assisting with the irradiations, and to Rex Booth for the proton recoil telescope measurements.

This technical report has been reviewed and is approved.

EDWARD O. GROEBER, JR.
Lt, USAF
Project Officer

JAMES E. DIECKHONER
Capt, USAF
Chief, Bionuclear Branch

MILBORD D. HARRIS, JR.
Lt Col, USAF VC
Chief, Biophysics Division
ABSTRACT

(Distribution Limitation Statement No. 1)

Neutron cross sections reported by various investigators often differ far in excess of the estimates of error reported. The high neutron emission of the High Energy Neutron Reaction Experiment (HENRE) source, 10^{13} n/sec, afforded an opportunity to compare measured values of many disintegration rates in a single experiment thus eliminating some of the uncertainty necessarily associated with such measurements when based on varying standards and normalizations. From these measurements, the 14.6 MeV neutron cross sections of 24 reactions are derived. The neutron spectrum near ground level at 37 feet slant range from the HENRE source was measured by using foil data and the SAND II code. Additional measurements at the Insulated Core Transformer (ICT) accelerator at the Lawrence Radiation Laboratory, Livermore, served to confirm the HENRE results.
This page intentionally left blank.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>15</td>
</tr>
<tr>
<td>IV</td>
<td>22</td>
</tr>
<tr>
<td>V</td>
<td>30</td>
</tr>
<tr>
<td>VI</td>
<td>47</td>
</tr>
</tbody>
</table>

References 56
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typical Photopeak, 3 in. x 3 in. Foil on Top of Crystal Can</td>
</tr>
<tr>
<td>2</td>
<td>Irradiation Time Correction Factors for HENRE, Run No. 40</td>
</tr>
<tr>
<td>3</td>
<td>Sulfur Pellets on 1-Meter Arc, Run No. 17, 11/11/66 HENRE Test Site</td>
</tr>
<tr>
<td>4</td>
<td>$^{32}\text{S} (n,p)^{32}\text{P}$ on 1-Meter Arc, Run No. 17, 11/11/66 HENRE Test Site</td>
</tr>
<tr>
<td>5</td>
<td>HENRE Neutron Spectrum at 37 ft Slant Range, Run No. 17, 11/11/66</td>
</tr>
<tr>
<td>6</td>
<td>Experimental Setup for Run No. 40, HENRE, 7/10/67</td>
</tr>
<tr>
<td>7</td>
<td>Neutron Distribution Across 3 in. x 3 in. Foils on Rotating Disc, HENRE Run No. 40, 7/10/67</td>
</tr>
<tr>
<td>8</td>
<td>^{58}Co Activity from $^{58}\text{Ni}(n,p)^{58}\text{Co}$ Across Radius of Target, 7/10/67</td>
</tr>
<tr>
<td>9</td>
<td>^{57}Ni Activity from $^{58}\text{Ni}(n,2n)^{57}\text{Ni}$ Across Radius of Target, 7/10/67</td>
</tr>
<tr>
<td>10</td>
<td>Energy Dependence of the Ratio of Cross Sections or Saturated Activities of $^{58}\text{Ni}(n,p)^{58}\text{Co}/^{58}\text{Ni}(n,2n)^{57}\text{Ni}$</td>
</tr>
<tr>
<td>11</td>
<td>Energy Dependence of the Ratio of Cross Sections or Saturated Activities of $^{27}\text{Al}(n,\alpha)^{24}\text{Na}/^{58}\text{Ni}(n,2n)^{57}\text{Ni}$</td>
</tr>
<tr>
<td>12</td>
<td>Gold Foils in Polysphere, HENRE Run No. 40</td>
</tr>
<tr>
<td>13</td>
<td>Neutron Attenuation in $^{10}\text{B}_4$ Sphere as Measured by Using $^{32}\text{S}(n,p)^{32}\text{P}$</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Foils Irradiated and Reactions Studied.</td>
<td>2-3</td>
</tr>
<tr>
<td>II</td>
<td>Neutron and γ-Ray Foil Attenuations.</td>
<td>8-9</td>
</tr>
<tr>
<td>III</td>
<td>Irradiation Times, HENRE, Run No. 17, 11/11/66.</td>
<td>13-14</td>
</tr>
<tr>
<td>IV</td>
<td>Irradiation Time Correction Factors for HENRE Run No. 17.</td>
<td>17</td>
</tr>
<tr>
<td>V</td>
<td>Irradiation Times, HENRE, Run No. 40, 7/10/67.</td>
<td>18-19</td>
</tr>
<tr>
<td>VI</td>
<td>Irradiation Time Correction Factors for HENRE Run No. 40.</td>
<td>20</td>
</tr>
<tr>
<td>VII</td>
<td>Activities in Samples Irradiated at 1 Meter, HENRE, Run No. 17, 11/11/66.</td>
<td>24</td>
</tr>
<tr>
<td>VIII</td>
<td>Activities in Foils Irradiated at 37 ft, HENRE Test Site, Run No. 17, 11/11/66.</td>
<td>28</td>
</tr>
<tr>
<td>IX</td>
<td>Decay Corrected Activities in Nickel Strip Next to Target, Run No. 40, 7/10/67.</td>
<td>34</td>
</tr>
<tr>
<td>X</td>
<td>Decay Corrected Activities in Foils 1 Meter from the Target, HENRE, Run No. 40, 7/10/67.</td>
<td>39</td>
</tr>
<tr>
<td>XI</td>
<td>Measured Cross Sections at 14.6 MeV ± 0.2 MeV, HENRE Run No. 40, 7/10/67.</td>
<td>42</td>
</tr>
<tr>
<td>XII</td>
<td>Activity of Au${198}$ and Au${196}$ in Gold Foils Irradiated within a Polysphere.</td>
<td>44</td>
</tr>
<tr>
<td>XIII</td>
<td>Foils Irradiated and Reactions Studied at ICT.</td>
<td>47</td>
</tr>
<tr>
<td>XIV</td>
<td>Foil Reactions and Measured Activities at ICT.</td>
<td>50</td>
</tr>
<tr>
<td>XV</td>
<td>Relative Saturated Activity Measured for Each Foil Relative to Al${27}$(n,α)Na${24}$.</td>
<td>52</td>
</tr>
<tr>
<td>XVI</td>
<td>Proton Recoil Telescope Measurements</td>
<td>53</td>
</tr>
<tr>
<td>XVII</td>
<td>Cross Sections Measured at the ICT.</td>
<td>55</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
SECTION I
INTRODUCTION

The accuracy of measurements of neutron flux and spectra by foil techniques is intimately related to the accuracy of disintegration rate measurements and neutron cross sections. As numerous radioactive standards are available, disintegration rate measurements with an absolute accuracy of several percent are attainable. However, the status of neutron cross section accuracy does not permit such general confidence. One notes numerous instances in which the lack of agreement between cross sections reported by various investigators far exceeds the limits of error reported. The high neutron emission, 10^{13} n/sec of the High Energy Neutron Reaction Experiment (HENRE) source afforded an opportunity to compare measured values of many disintegration rates in a single experiment thus eliminating some of the uncertainty necessarily associated with such measurements when based on varying standards and normalizations. The high neutron emission made it possible to place foils on a rotating disc one meter from the target with a neutron flux density which varies by no more than ±2 percent over the area of the foils. As the foils were rotating on the same radius, each foil was at the same angle during the irradiation. As a result, a consistent set of cross section data is obtained which is of considerable assistance in evaluating cross section data available in the literature. Table 1 lists the foil materials irradiated, and photon (or particle) analyzed. From these measurements, the 14.6 MeV neutron cross sections of 24 reactions are derived.
<table>
<thead>
<tr>
<th>Foil Material</th>
<th>Reaction Studied</th>
<th>Photon Energy Analyzed (MeV)</th>
<th>Photons per Disintegration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>Na23(n,γ)Na24</td>
<td>1.37.</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Na23(n,2n)Na22</td>
<td>0.511</td>
<td>1.797</td>
</tr>
<tr>
<td></td>
<td>F19(n,2n)F18</td>
<td>.511</td>
<td>1.94</td>
</tr>
<tr>
<td>Mg</td>
<td>Mg24(n,p)Na24</td>
<td>1.37</td>
<td>1.00</td>
</tr>
<tr>
<td>Al</td>
<td>Al27(n,α)Na24</td>
<td>1.37</td>
<td>1.00</td>
</tr>
<tr>
<td>S</td>
<td>S32(n,p)P32</td>
<td>β</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>S34(n,α)Si31</td>
<td>β</td>
<td>--</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>Cl35(n,α)P32</td>
<td>β</td>
<td>--</td>
</tr>
<tr>
<td>Mn</td>
<td>Mn55(n,γ)Mn56</td>
<td>0.845</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Mn55(n,2n)Mn54</td>
<td>0.835</td>
<td>1.00</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe54(n,p)Mn54</td>
<td>0.835</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Fe56(n,p)Mn56</td>
<td>0.845</td>
<td>0.99</td>
</tr>
<tr>
<td>Co</td>
<td>Co59(n,2n)Co58</td>
<td>0.815</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Co59(n,γ)Co60</td>
<td>1.33</td>
<td>1.00</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni58(n,np)+(n,d)Co57</td>
<td>.122</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Ni58(n,p)Co58</td>
<td>.810</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Ni58(n,2n)Ni57</td>
<td>1.37</td>
<td>0.86</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu63(n,α)Co60</td>
<td>1.17</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Cu63(n,γ)Cu64</td>
<td>0.511</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Cu65(n,2n)Cu64</td>
<td>0.511</td>
<td>0.38</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn64(n,p)Cu64</td>
<td>0.511</td>
<td>0.38</td>
</tr>
<tr>
<td>Zr</td>
<td>Zr90(n,2n)Zr89</td>
<td>0.915</td>
<td>1.00</td>
</tr>
<tr>
<td>In</td>
<td>In115(n,n')In115m</td>
<td>0.335</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>In115(n,2n)In114m</td>
<td>0.192</td>
<td>0.17</td>
</tr>
<tr>
<td>KI</td>
<td>I127(n,2n)I126</td>
<td>0.39</td>
<td>0.34</td>
</tr>
<tr>
<td>Au</td>
<td>Au197(n,γ)Au198</td>
<td>0.412</td>
<td>0.956</td>
</tr>
<tr>
<td></td>
<td>Au197(n,2n)Au196</td>
<td>0.356</td>
<td>1.18</td>
</tr>
</tbody>
</table>
TABLE - Continued

<table>
<thead>
<tr>
<th>Foil Material</th>
<th>Reaction Studied</th>
<th>Photon Energy Analyzed (MeV)</th>
<th>Photons per Disintegration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>Th232(n,f) Tracks</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Th232(n,f)Mo99*</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MgTh</td>
<td>Th232(n,f) Tracks</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>U(93.15% ^{235}U)</td>
<td>U^{235}(n,f)Mo99*</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>U(99.8% ^{238}U)</td>
<td>U^{238}(n,f) Tracks</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>U^{238}(n,f)Mo99*</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* The authors are indebted to R. Armani of Argonne National Laboratory for these measurements.
The neutron spectrum near ground level at 37 feet slant range from the HENRE source was measured using foil data and the SAND Code (Ref. 1 and 2).

Additional measurements at the Insulated Core Transformer (ICT) accelerator at the Lawrence Radiation Laboratory, Livermore, served to confirm the HENRE results. Table XIII lists the foils that were irradiated along with the resulting nuclear reactions studied.

The angular distribution of neutrons emitted by the HENRE source was measured by using sulfur pellets and nickel foils located on a 1-meter radius from the target. The reactions $\text{S}^{32}(n,p)\text{P}^{32}$, $\text{Ni}^{58}(n,p)\text{Co}^{58}$, and $\text{Ni}^{58}(n,2n)\text{Ni}^{57}$ were used.

HENRE Source

The HENRE source consists of a high-current deuteron beam striking a water cooled thick tritium target consisting of approximately 1000 curies of H^3 absorbed on a metal backing having a 14-inch diameter. Deuterons, 145 KeV in energy, strike the tritium and neutrons are produced by the $\text{H}^3(D,n)\text{He}^4$ reaction.

For brevity below, neutrons produced by this reaction are referred to as "D,T neutrons."
SECTION II

SPECIAL PROBLEMS ENCOUNTERED AND DESCRIPTION OF COUNTING TECHNIQUES

1. Multichannel Analyzer Calibration

A multichannel analyzer and 3 in. x 3 in. NaI(Tl) crystal was calibrated for photon energies ranging from 0.166 to 1.84 MeV, using standard point gamma ray sources from the National Bureau of Standards positioned 10 cm from the crystal.

To facilitate the analysis of the hundreds of measured photopeaks, several electronic calculator programs were written. Instead of measuring the total area under a photopeak, the peak count and two adjacent counts on either side of the peak (called P + 2) are added together, and from this count, a base is subtracted. These figures, fed into the electronic calculator, enable one to obtain the measured disintegration rate. The base is selected by a consideration of the total spectrum obtained for each foil. Figure 1 shows a typical X-Y plot for the reaction Al^{27}(n,a)Na^{24}. For this count, P + 2 is given by (319.8 + 350.1 + 363.8 + 339.9 + 281.8) counts per minute, CPM, and the base selected is the integral of the exponential determined by the first minimum over the five channels on either side of the peak (80 CPM for this example).

The P ± 2 method for photopeak analysis was compared with the photopeak area method for measuring the activity of a number of different isotopes. In all cases excellent agreement was found. Additional counts were made with varying quantities of interfering isotopes. It was found that even with very large quantities of interfering isotopes the activity of the source can be measured with a high degree of accuracy. For example, Cs^{137} was counted with and without Co^{60} as an interfering isotope. With ten times more μCurie-minutes of Co^{60} than of Cs^{137}, the
Na24
1.37 MeV

Figure 1. Typical Photopeak, 3 in. x 3 in. Foil on top of Crystal can
measured activity was only 1.29 percent lower than when Cs$_{137}$ was counted alone. Even with forty times more µCurie-minutes of Co$_{60}$ than of Cs$_{137}$, the measured activity was only 8 percent lower than when Cs$_{137}$ was counted alone. The same data were analyzed by Dr. John DePangher at Lockheed Research Laboratory, Palo Alto, California, by using a biased Gaussian program developed by Murphy (Ref. 3) with essentially identical results.

2. Foil Size

To obtain a sufficiently large number of target atoms so that statistically significant results can be obtained, it is highly desirable to optimize the area and thickness of the foils. A standard foil size of 3 in. x 3 in. was selected because of fabrication and ease of accurate positioning for counting with the 3 in. x 3 in. NaI crystal used as the detector for pulse height analysis. Because it is desirable that both the incident neutrons and the emitted γ-rays not be attenuated appreciably, calculations were made to determine the foil thickness which would attenuate 14 MeV neutrons by 2 percent and also the foil thickness which would attenuate the γ-rays by 2 percent. Table II lists these calculated values for each foil material, along with the actual foil thickness available at the time of foil preparation.

3. Area Factor, F_A

For HENRE foils measuring 3 in. x 3 in., it was necessary to obtain an area factor, F_A, which relates a 3 in. x 3 in. source to an equivalent point source.

F_A is the quantity by which each photopeak area from a 3 in. x 3 in. foil must be divided in order to equate it to the photopeak area that would have been obtained from an equivalent point source. F_A depends on the counting distance and on the photon energy, as well as the size and shape of the foil.
TABLE II

NEUTRON AND γ-RAY FOIL ATTENUATIONS

<table>
<thead>
<tr>
<th>Target Reaction</th>
<th>Thickness for 2%* Neutron Attenuation (in.)</th>
<th>Thickness for 2%** γ-Ray Attenuation (in.)</th>
<th>Actual Foil Thickness (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{23}Na (n,γ)^{24}Na</td>
<td>0.15</td>
<td>0.20</td>
<td>0.063</td>
</tr>
<tr>
<td>^{23}Na (n,2n)^{22}Na</td>
<td>0.15</td>
<td>0.064</td>
<td>0.063</td>
</tr>
<tr>
<td>^{24}Mg (n,p)^{24}Na</td>
<td>0.10</td>
<td>0.13</td>
<td>0.005</td>
</tr>
<tr>
<td>^{27}Al (n,p)^{24}Na</td>
<td>0.080</td>
<td>0.083</td>
<td>0.016</td>
</tr>
<tr>
<td>^{31}P (n,p)^{31}Si</td>
<td>0.50</td>
<td>N.A.</td>
<td>0.219</td>
</tr>
<tr>
<td>^{32}S (n,p)^{32}Si</td>
<td>0.50</td>
<td>N.A.</td>
<td>0.219</td>
</tr>
<tr>
<td>^{34}S (n,α)^{31}Si</td>
<td>0.50</td>
<td>N.A.</td>
<td>0.219</td>
</tr>
<tr>
<td>^{35}Cl (n,α)^{32}P</td>
<td>0.19</td>
<td>N.A.</td>
<td>0.156</td>
</tr>
<tr>
<td>^{55}Mn (n,γ)^{56}Mn</td>
<td>0.033</td>
<td>0.026</td>
<td>0.020</td>
</tr>
<tr>
<td>^{55}Mn (n,2n)^{54}Mn</td>
<td>0.033</td>
<td>0.015</td>
<td>0.020</td>
</tr>
<tr>
<td>^{54}Fe (n,p)^{54}Fe</td>
<td>0.035</td>
<td>0.014</td>
<td>0.020</td>
</tr>
<tr>
<td>^{56}Fe (n,p)^{56}Fe</td>
<td>0.035</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>^{59}Co (n,γ)^{60}Co</td>
<td>0.080</td>
<td>0.050</td>
<td>0.005</td>
</tr>
<tr>
<td>^{59}Co (n,2n)^{58}Co</td>
<td>0.080</td>
<td>0.050</td>
<td>0.023</td>
</tr>
<tr>
<td>^{58}Ni (n,p)^{58}Ni</td>
<td>0.032</td>
<td>0.013</td>
<td>0.023</td>
</tr>
<tr>
<td>^{58}Ni (n,2n)^{57}Ni</td>
<td>0.032</td>
<td>0.017</td>
<td>0.023</td>
</tr>
<tr>
<td>^{63}Cu (n,γ)^{64}Cu</td>
<td>0.032</td>
<td>0.011</td>
<td>0.005</td>
</tr>
<tr>
<td>^{65}Cu (n,2n)^{64}Cu</td>
<td>0.032</td>
<td>0.011</td>
<td>0.005</td>
</tr>
<tr>
<td>^{64}Zn (n,p)^{64}Zn</td>
<td>0.048</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>^{64}Zn (n,2n)^{63}Zn</td>
<td>0.048</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>Target Reaction</td>
<td>Thickness for 29%* Neutron Attenuation (In.)</td>
<td>Thickness for 2%** γ-Ray Attenuation (In.)</td>
<td>Actual Foil Thickness (In.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>In115 (n,n')In115m</td>
<td>0.044</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>I127 (n,2n)I126</td>
<td>0.150</td>
<td>0.025</td>
<td>0.188</td>
</tr>
<tr>
<td>Au197 (n,γ)Au198</td>
<td>0.044</td>
<td>0.001</td>
<td>0.004 and 0.000031</td>
</tr>
<tr>
<td>Th232 (n,f)F.P. [La140]</td>
<td>0.048</td>
<td>0.015</td>
<td>0.001</td>
</tr>
<tr>
<td>Th232 (n,γ)Th233</td>
<td>0.043</td>
<td>0.0015</td>
<td>0.001</td>
</tr>
<tr>
<td>U235 (n,f)F.P. [La140]</td>
<td>0.050</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>U238 (n,f)F.P. [La140]</td>
<td>0.048</td>
<td>0.015</td>
<td>0.002</td>
</tr>
<tr>
<td>U238 (n,γ)U239</td>
<td>0.083</td>
<td>0.00038</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* Simple Collision Attenuation Using Total Cross Section.

**Simple Attenuation Using Total Foil as Absorber.
In order to determine \(F_A \) for a given counting distance \(D \), each standard source was counted at the central position and at varying lateral distances, \(r \), from the crystal center. For each standard source, photopeak areas were thus obtained at the central position and at varying lateral distances. If the foil is considered as being composed of many small regions each with an area \(A(r) \) then \(F_A \) is given by

\[
F_A = \frac{\sum \frac{N(r)}{N_0} A(r)}{\sum A(r)}
\]

where \(N(r) \) = photopeak area with source at a lateral distance, \(r \), from the central axis, and \(N_0 \) = photopeak area with the source at the same counting distance but on the central axis.

For a 3 in. x 3 in. foil, the summation extends from \(r = 0 \) to \(r = 2.12 \) in. (the corner positions). Thus one obtains

\[
F_A = \frac{\sum_{r=0}^{2.12} \frac{N(r)}{N_0} A(r)}{\sum_{r=0}^{2.12} A(r)}
\]

By numerical integration, \(F_A \) was measured for each standard source at a counting distance of 10 cm and with the source on top of the crystal can.

By using each standard source, numerical integration was performed and \(F_A \) thus measured as a function of photon energy. Measurements were made for counting distance of 10 cm from the crystal and on top of the crystal can.

4. Distance Factor, \(F_D \)

To obtain sufficiently large count rates, it was necessary to count some of the foils on the top of the crystal can. This introduced the complication of coincidence effects
for many isotopes. For each isotope it became necessary to obtain a distance factor F_D, in order to relate the photopeak area from the top of the crystal can, to that which would have been obtained if the foil had been counted at 10 cm.

An additional correction was needed to account for the foil thickness. When the foil was placed 10 cm from the crystal, the actual counting distance ranged from 10 cm to $10 + t$ cm where $t =$ foil thickness. Similarly, when the foil was placed on top of the crystal can (actually 0.318 cm from the crystal face) the actual counting distance ranged from 0.318 to $0.318 + t$ cm. To correct for foil thickness, it is necessary to know how the efficiency of the crystal varies with counting distance. Heath (Ref. 4) has plotted a series of curves showing total absolute efficiency for a 3 in. x 3 in. NaI(Tl) crystal as a function of γ-ray energy for selected counting distances. The distance factor with foil at 10 cm is given by

$$F_D = \frac{\text{Efficiency at } (10 + t/2) \text{ cm}}{\text{Efficiency at } 10 \text{ cm}}$$

With the foil on top of the crystal can the distance factor is given by

$$F_D = \frac{A_T \text{ Efficiency at } (0.318 + t/2) \text{ cm}}{A_{10} \text{ Efficiency at } 0.318 \text{ cm}}$$

where $A_T =$ photopeak area from a point source on top of the crystal can, and $A_{10} =$ photopeak area from the same source at 10 cm.

For each foil, the measured photopeak area must be divided by F_D in order to obtain the equivalent photopeak area that would have been obtained at 10 cm.

5. Attenuation Factor, F_a

A further correction factor, F_a accounts for attenuation of photons within the material of the foil itself. The amount of attenuation is determined by the energy of the emitted photon and by the foil thickness. The measured photopeak area for each
foil must be multiplied by F_a in order to obtain the photopeak area that would have been measured had there been no attenuation. As the corrections are small it is sufficiently accurate to use F_a calculated for each foil from the relation:

$$F_a = 1 + 0.02 \frac{\text{Foil Thickness}}{\text{Thickness for } 2\% \gamma\text{-ray attenuation}}$$

Table II lists the thickness for each foil reaction that attenuates the emitted γ-rays by 2%.

6. Coincidence Factor, F_C

For those isotopes having coincidence losses caused by a secondary photon, the measured photopeak area was divided by a coincidence factor, F_C, which was calculated from the relation:

$$F_C = 1 - (G \varepsilon_t e^{-\mu X})$$

where $G =$ number of secondary photons per disintegration

$\varepsilon_t =$ absolute total efficiency of the crystal for the secondary photon

$e^{-\mu X} =$ transmission of the crystal canning material for the secondary photon energy.

7. Fission Track Measurements

Foil of U^{238}, U^{235}, Th^{232}, and MgTh alloy were sandwiched between thin (approximately $1/64$ in.) Lexan plastic and placed in the field of irradiation at each HENRE run. After irradiation, the Lexan sheets were etched in a 6 N solution of KOH at 150°F for 15 minutes, then rinsed in distilled water and blotted dry with lens tissue. Each Lexan sheet was then viewed through a microscope and the fission tracks counted. The number of tracks/cm2 was thus obtained. The value of 1.17×10^{-5} tracks/n-barn for foils of infinite thickness reported by Pretre, Tochilin, and Goldstein (Ref. 5) was used in order to determine a cross section value for the fission foils.
TABLE III

Irradiation Times, HENRE
Run No. 17, 11/11/66.

<table>
<thead>
<tr>
<th>Spark Number</th>
<th>Time Off PST</th>
<th>Length of Run (sec.)</th>
<th>Down Time (sec.)</th>
<th>Beam Current (ma)</th>
<th>Avg. ct/sec-ma w/ dead time correction</th>
<th>Continuous Total cts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12:16 - 07</td>
<td>63</td>
<td>28</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>12:17 - 04</td>
<td>30</td>
<td>20</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>12:22 - 10</td>
<td>285</td>
<td>35</td>
<td>---</td>
<td>92.8</td>
<td>6,254,952</td>
</tr>
<tr>
<td>4</td>
<td>12:23 - 20</td>
<td>35</td>
<td>79</td>
<td>300</td>
<td>98.3</td>
<td>7,217,600</td>
</tr>
<tr>
<td>5</td>
<td>12:28 - 17</td>
<td>218</td>
<td>32</td>
<td>300</td>
<td>122.5</td>
<td>14,580,000</td>
</tr>
<tr>
<td>6</td>
<td>12:29 - 21</td>
<td>33</td>
<td>30</td>
<td>300</td>
<td>95.7</td>
<td>15,466,000</td>
</tr>
<tr>
<td>7</td>
<td>12:33 - 36</td>
<td>225</td>
<td>72</td>
<td>320</td>
<td>110.1</td>
<td>22,777,000</td>
</tr>
<tr>
<td>8</td>
<td>12:42 - 45</td>
<td>477</td>
<td>68</td>
<td>340</td>
<td>102.4</td>
<td>38,107,000</td>
</tr>
<tr>
<td>9</td>
<td>12:57 - 03</td>
<td>791</td>
<td>167</td>
<td>350</td>
<td>80.6</td>
<td>59,000,000</td>
</tr>
<tr>
<td>10</td>
<td>13:00 - 00</td>
<td>10</td>
<td>22</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>13:02 - 30</td>
<td>128</td>
<td>41</td>
<td>350</td>
<td>63.2</td>
<td>61,687,000</td>
</tr>
<tr>
<td>12</td>
<td>13:05 - 00</td>
<td>109</td>
<td>150</td>
<td>350</td>
<td>59.8</td>
<td>63,856,000</td>
</tr>
<tr>
<td>13</td>
<td>13:08 - 16</td>
<td>46</td>
<td>29</td>
<td>350</td>
<td>61.3</td>
<td>64,793,000</td>
</tr>
<tr>
<td>14</td>
<td>13:09 - 00</td>
<td>15</td>
<td>24</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>13:11 - 14</td>
<td>109</td>
<td>47</td>
<td>350</td>
<td>59.3</td>
<td>67,175,000</td>
</tr>
<tr>
<td>16</td>
<td>13:15 - 15</td>
<td>194</td>
<td>358</td>
<td>---</td>
<td>59.3</td>
<td>71,004,000</td>
</tr>
<tr>
<td>17</td>
<td>13:23 - 54</td>
<td>162</td>
<td>23</td>
<td>350</td>
<td>53.4</td>
<td>73,900,000</td>
</tr>
<tr>
<td>18</td>
<td>13:25 - 42</td>
<td>85</td>
<td>43</td>
<td>350</td>
<td>48.7</td>
<td>75,290,000</td>
</tr>
<tr>
<td>19</td>
<td>13:26 - 57</td>
<td>32</td>
<td>82</td>
<td>---</td>
<td>---</td>
<td>75,643,000</td>
</tr>
<tr>
<td>20</td>
<td>13:33 - 06</td>
<td>287</td>
<td>32</td>
<td>350</td>
<td>50.9</td>
<td>80,543,000</td>
</tr>
<tr>
<td>21</td>
<td>13:36 - 04</td>
<td>146</td>
<td>47</td>
<td>350</td>
<td>47.1</td>
<td>82,854,000</td>
</tr>
<tr>
<td>22</td>
<td>13:37 - 43</td>
<td>52</td>
<td>40</td>
<td>350</td>
<td>---</td>
<td>83,604,000</td>
</tr>
<tr>
<td>23</td>
<td>13:42 - 54</td>
<td>271</td>
<td>57</td>
<td>350</td>
<td>45.3</td>
<td>87,739,000</td>
</tr>
<tr>
<td>Spark Number</td>
<td>Time Off PST</td>
<td>Length of Run (sec.)</td>
<td>Down Time (sec.)</td>
<td>Beam Current (ma)</td>
<td>Avg. ct/sec-ma w/ dead time correction</td>
<td>Continuous Total cts.</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>24</td>
<td>13:55 - 46</td>
<td>715</td>
<td>62</td>
<td>335</td>
<td>42.0</td>
<td>97,449,000</td>
</tr>
<tr>
<td>25</td>
<td>13:57 - 49</td>
<td>61</td>
<td>71</td>
<td>350</td>
<td>35.8</td>
<td>98,191,000</td>
</tr>
<tr>
<td>26</td>
<td>14:01 - 27</td>
<td>147</td>
<td>67</td>
<td>345</td>
<td>36.8</td>
<td>99,998,000</td>
</tr>
<tr>
<td>27</td>
<td>14:02 - 49</td>
<td>15</td>
<td>58</td>
<td>---</td>
<td>---</td>
<td>100,126,000</td>
</tr>
<tr>
<td>28</td>
<td>14:04 - 01</td>
<td>10</td>
<td>72</td>
<td>---</td>
<td>---</td>
<td>100,228,000</td>
</tr>
<tr>
<td>29</td>
<td>14:06 - 00</td>
<td>47</td>
<td>121</td>
<td>250</td>
<td>---</td>
<td>100,416,000</td>
</tr>
<tr>
<td>30</td>
<td>14:12 - 42</td>
<td>281</td>
<td>2008</td>
<td>330</td>
<td>34.4</td>
<td>103,519,000</td>
</tr>
</tbody>
</table>

Shut down after spark off to clean corona dome and column.

<table>
<thead>
<tr>
<th>Spark Number</th>
<th>Time Off PST</th>
<th>Length of Run (sec.)</th>
<th>Down Time (sec.)</th>
<th>Beam Current (ma)</th>
<th>Avg. ct/sec-ma w/ dead time correction</th>
<th>Continuous Total cts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>14:35 - 45</td>
<td>35</td>
<td>41</td>
<td>---</td>
<td>---</td>
<td>103,792,000</td>
</tr>
<tr>
<td>32</td>
<td>14:39 - 54</td>
<td>208</td>
<td>53</td>
<td>erratic</td>
<td>---</td>
<td>104,943,000</td>
</tr>
<tr>
<td>33</td>
<td>14:41 - 47</td>
<td>60</td>
<td>39</td>
<td>---</td>
<td>---</td>
<td>105,509,000</td>
</tr>
<tr>
<td>34</td>
<td>14:43 - 41</td>
<td>75</td>
<td>30</td>
<td>---</td>
<td>---</td>
<td>106,073,000</td>
</tr>
<tr>
<td>35</td>
<td>14:46 - 36</td>
<td>145</td>
<td>32</td>
<td>300</td>
<td>30.8</td>
<td>107,382,000</td>
</tr>
<tr>
<td>36</td>
<td>14:51 - 58</td>
<td>290</td>
<td>35</td>
<td>310</td>
<td>30.4</td>
<td>110,055,000</td>
</tr>
<tr>
<td>37</td>
<td>15:00 - 52</td>
<td>499</td>
<td>88</td>
<td>310</td>
<td>33.3</td>
<td>115,078,000</td>
</tr>
<tr>
<td>38</td>
<td>15:21 - 25</td>
<td>1145</td>
<td>48</td>
<td>310</td>
<td>40.6</td>
<td>129,045,000</td>
</tr>
<tr>
<td>39</td>
<td>15:53 - 12</td>
<td>1859</td>
<td>205</td>
<td>310</td>
<td>43.9</td>
<td>153,520,000</td>
</tr>
<tr>
<td>40</td>
<td>15:58 - 15</td>
<td>98</td>
<td>67</td>
<td>310</td>
<td>44.5</td>
<td>154,827,000</td>
</tr>
<tr>
<td>41</td>
<td>16:00 - 55</td>
<td>93</td>
<td>31</td>
<td>310</td>
<td>42.7</td>
<td>156,018,000</td>
</tr>
<tr>
<td>42</td>
<td>16:02 - 46</td>
<td>80</td>
<td>66</td>
<td>310</td>
<td>41.5</td>
<td>157,015,000</td>
</tr>
<tr>
<td>43</td>
<td>16:37 - 26</td>
<td>2016</td>
<td>63</td>
<td>300</td>
<td>43.6</td>
<td>182,516,000</td>
</tr>
<tr>
<td>44</td>
<td>17:00 - 34</td>
<td>1325</td>
<td>60</td>
<td>300</td>
<td>41.6</td>
<td>198,537,000</td>
</tr>
<tr>
<td>45</td>
<td>17:14 - 01</td>
<td>747</td>
<td>---</td>
<td>250</td>
<td>37.8</td>
<td>205,422,000</td>
</tr>
</tbody>
</table>
SECTION III

NEUTRON EMISSION OF HENRE TARGET AS A FUNCTION OF TIME

1. Run No. 17, 11/11/66

Table III gives the data obtained from the fission counter located above the HENRE accelerator and used to provide normalization of neutron emission during and between accelerator runs at varying times. The design of the accelerator is such that the accelerator is shut down frequently by sparking. During Run No. 17, 45 increments of irradiation occurred. The neutron emission as a function of time is not constant because of a number of factors:

a. The approximately 1,000 curie tritium targets lose tritium because of burn up in the intense deuteron beam of the accelerator.

b. Localized heating of the target may contribute to tritium loss.

c. Impurity molecules may be accelerated and deposited on the tritium target, thus attenuating the deuteron beam. Because the energy of the deuteron beam is close to the threshold for the D,T reaction, attenuation or energy loss may result in a deuteron energy too low to initiate the D,T reaction.

d. Some deuterium builds up on the target, probably increasing with time, which then leads to neutron emission from the D,D, reaction.

To relate the activity of neutron-induced reactions and their products having varying half-lives to the neutron emission, it is necessary to calculate and sum 45 increments of build up, \((1 - e^{-\lambda t})\), and decay \((e^{-\lambda t} 2)\). A convenience
adopted was to define a correction factor, CF, which when multiplied by the disintegration rate measured transforms all the data to that which would have been obtained by an irradiation at constant flux density and of duration equal to the sum of the "on times" of the time increments for a given run. Such corrected values of disintegration rates may then be used in the usual activation formulas.

\[
CF = \frac{\lambda \sum C(I) (1 - e^{-\lambda T(I)}) / \lambda \sum T(I)}{\sum C(I) \lambda (1 - e^{-T(I)} e^{-(T_f - T_i) / \lambda T(I)}}
\]

\(\lambda\) is the decay constant for a particular half-life, \(\log_e 2/T_h\).

\(C(I)\) is the accumulated count of the fission counter in an interval of time, \(T(I)\).

\(T(I)\) is the "on time" of a given time interval.

\(T_f\) is the final time, the clock time at the end of the last time interval, \(T(I)\).

\(T_i\) is the clock time at the end of a time interval, \(T(I)\).

The correction factors for Run No. 17 are tabulated in Table IV*.

2. Run No. 40, 7/10/67

Irradiation time data are tabulated for Run No. 40 in Table V. The 40 increments of irradiation were treated in the same manner as described for Run No. 17. Table VI summarizes the results for various half-lives, and Figure 2 shows these data in graphical form.

*The assistance of Dr. John DePangher in providing these calculations is gratefully acknowledged.
TABLE IV
Irradiation Time Correction Factors for HENRE
Run 17

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>T 1/2 (days)</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni57</td>
<td>1.5</td>
<td>1.016</td>
</tr>
<tr>
<td>P32</td>
<td>14.2</td>
<td>1.0017</td>
</tr>
<tr>
<td>Mn54</td>
<td>311.9</td>
<td>1.00008</td>
</tr>
<tr>
<td>In115m</td>
<td>0.1863</td>
<td>1.12049</td>
</tr>
<tr>
<td>Zr89</td>
<td>3.292</td>
<td>1.00732</td>
</tr>
<tr>
<td>I127</td>
<td>12.8</td>
<td>1.00189</td>
</tr>
<tr>
<td>Au198</td>
<td>2.7</td>
<td>1.00892</td>
</tr>
<tr>
<td>Cu64</td>
<td>.5333</td>
<td>1.04436</td>
</tr>
<tr>
<td>Na24</td>
<td>.625</td>
<td>1.03798</td>
</tr>
<tr>
<td>Co60</td>
<td>1913.</td>
<td>1.000013</td>
</tr>
<tr>
<td>Sc46</td>
<td>84.1</td>
<td>1.000288</td>
</tr>
<tr>
<td>Sc47</td>
<td>3.42</td>
<td>1.00705</td>
</tr>
<tr>
<td>Sc48</td>
<td>1.84</td>
<td>1.013066</td>
</tr>
<tr>
<td>Co58</td>
<td>71.3</td>
<td>1.000340</td>
</tr>
<tr>
<td>Co57</td>
<td>267</td>
<td>1.000091</td>
</tr>
<tr>
<td>Mn56</td>
<td>.1075</td>
<td>1.193752</td>
</tr>
<tr>
<td>Au196</td>
<td>6.3</td>
<td>1.003834</td>
</tr>
<tr>
<td>Na22</td>
<td>941.7</td>
<td>1.000026</td>
</tr>
<tr>
<td>Spark Number</td>
<td>Machine Off Clock Time</td>
<td>Length of Run (mins.)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>11:03.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>11:04.0</td>
<td>.7</td>
</tr>
<tr>
<td>3</td>
<td>11:07.0</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>11:14.5</td>
<td>7.2</td>
</tr>
<tr>
<td>5</td>
<td>11:20.6</td>
<td>4.9</td>
</tr>
<tr>
<td>6</td>
<td>11:27.0</td>
<td>6.3</td>
</tr>
<tr>
<td>7</td>
<td>11:35.3</td>
<td>7.9</td>
</tr>
<tr>
<td>8</td>
<td>11:53.9</td>
<td>5.8</td>
</tr>
<tr>
<td>9</td>
<td>11:54.8</td>
<td>.4</td>
</tr>
<tr>
<td>10</td>
<td>11:55.3</td>
<td>.2</td>
</tr>
<tr>
<td>11</td>
<td>11:56.2</td>
<td>.6</td>
</tr>
<tr>
<td>12</td>
<td>11:58.9</td>
<td>2.4</td>
</tr>
<tr>
<td>13</td>
<td>12:00.3</td>
<td>.9</td>
</tr>
<tr>
<td>14</td>
<td>12:02.3</td>
<td>1.7</td>
</tr>
<tr>
<td>15</td>
<td>12:03.7</td>
<td>1.2</td>
</tr>
<tr>
<td>16</td>
<td>12:04.2</td>
<td>.2</td>
</tr>
<tr>
<td>17</td>
<td>12:04.8</td>
<td>.3</td>
</tr>
<tr>
<td>18</td>
<td>12:06.2</td>
<td>.1</td>
</tr>
<tr>
<td>19</td>
<td>12:06.8</td>
<td>.3</td>
</tr>
<tr>
<td>20</td>
<td>12:08.6</td>
<td>1.5</td>
</tr>
<tr>
<td>21</td>
<td>12:09.6</td>
<td>.7</td>
</tr>
<tr>
<td>22</td>
<td>12:12.6</td>
<td>2.7</td>
</tr>
<tr>
<td>23</td>
<td>12:13.2</td>
<td>.3</td>
</tr>
<tr>
<td>Spark Number</td>
<td>Machine Off Clock Time</td>
<td>Length of Run (mins.)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>24</td>
<td>12:16.5</td>
<td>3.1</td>
</tr>
<tr>
<td>25</td>
<td>12:17.2</td>
<td>.3</td>
</tr>
<tr>
<td>26</td>
<td>12:23.9</td>
<td>6.4</td>
</tr>
<tr>
<td>27</td>
<td>12:34.8</td>
<td>1.7</td>
</tr>
<tr>
<td>28</td>
<td>12:35.7</td>
<td>.6</td>
</tr>
<tr>
<td>29</td>
<td>12:36.3</td>
<td>.2</td>
</tr>
<tr>
<td>30</td>
<td>12:36.5</td>
<td>.2</td>
</tr>
<tr>
<td>31</td>
<td>12:37.5</td>
<td>.7</td>
</tr>
<tr>
<td>32</td>
<td>12:37.9</td>
<td>.1</td>
</tr>
<tr>
<td>33</td>
<td>12:39.1</td>
<td>.8</td>
</tr>
<tr>
<td>34</td>
<td>12:40.6</td>
<td>1.3</td>
</tr>
<tr>
<td>35</td>
<td>12:41.6</td>
<td>.6</td>
</tr>
<tr>
<td>36</td>
<td>12:49.6</td>
<td>.6</td>
</tr>
<tr>
<td>37</td>
<td>12:50.1</td>
<td>.2</td>
</tr>
<tr>
<td>38</td>
<td>12:50.6</td>
<td>.2</td>
</tr>
<tr>
<td>39</td>
<td>12:52.1</td>
<td>1.3</td>
</tr>
<tr>
<td>40</td>
<td>12:53.7</td>
<td>1.2</td>
</tr>
</tbody>
</table>
TABLE VI
Irradiation Time Correction Factors for HENRE
Run 40

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>T 1/2 (days)</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni57</td>
<td>1.5</td>
<td>1.01108</td>
</tr>
<tr>
<td>P32</td>
<td>14.2</td>
<td>1.00117</td>
</tr>
<tr>
<td>Mn54</td>
<td>311.9</td>
<td>1.00005</td>
</tr>
<tr>
<td>In115m</td>
<td>.1863</td>
<td>1.09116</td>
</tr>
<tr>
<td>Zr89</td>
<td>3.292</td>
<td>1.00504</td>
</tr>
<tr>
<td>I127</td>
<td>12.8</td>
<td>1.00130</td>
</tr>
<tr>
<td>Au198</td>
<td>2.7</td>
<td>1.00615</td>
</tr>
<tr>
<td>Au196</td>
<td>6.3</td>
<td>1.00263</td>
</tr>
<tr>
<td>Cu64</td>
<td>.5333</td>
<td>1.03135</td>
</tr>
<tr>
<td>Na24</td>
<td>.625</td>
<td>1.02671</td>
</tr>
<tr>
<td>Na22</td>
<td>941.7</td>
<td>1.00002</td>
</tr>
<tr>
<td>Co60</td>
<td>1913.</td>
<td>1.00001</td>
</tr>
<tr>
<td>Sc46</td>
<td>84.1</td>
<td>1.00020</td>
</tr>
<tr>
<td>Sc47</td>
<td>3.42</td>
<td>1.00485</td>
</tr>
<tr>
<td>Sc48</td>
<td>1.84</td>
<td>1.00903</td>
</tr>
<tr>
<td>Co58</td>
<td>71.3</td>
<td>1.00023</td>
</tr>
<tr>
<td>Co57</td>
<td>267</td>
<td>1.00006</td>
</tr>
<tr>
<td>Mn56</td>
<td>.1075</td>
<td>1.160583</td>
</tr>
</tbody>
</table>
Figure 2. Irradiation Time Correction Factors for HENRE, Run No. 40.
SECTION IV

HENRE RUN NO. 17, 11/11/66

1. General Description

This was a 3.64-hr irradiation during which foils were irradiated at two different distances from the neutron source, viz. at 1-meter and at 37 feet.

At 1-meter from the target, there was a copper tube arc on which were placed 95 sulfur pellets and 3 nickel foils, as shown in Figure 3.

At 37 feet from the target were placed all the foils listed in Table I. These foils were 11 inches above the ground and at a horizontal distance of 27 feet from the center of the target. The neutron source was 27 feet above the ground.

2. Angular Distribution of Source Neutrons, Measured at 1 Meter

In order to measure neutron emission from the HENRE source as a function of angle, sulfur pellets and nickel foils were irradiated. Ninety-five sulfur pellets were placed on a 1-meter arc around the target source as shown in Figure 3. All pellets were at a distance of 1 meter from the neutron source, but at angles ranging from 0° to 100°. Three nickel foils were placed at angles of 0°, 45°, and 90°, respectively, from the target source. The position of these nickel foils corresponded to sulfur pellets numbered 48-49, 28-29, and 3-4-5. After irradiation, all pellets were sublimed and the activities of 31Si and of 32P measured in an automatic beta scintillation counter. Activities of 58Co and of 57Ni were measured in a multichannel analyzer. Table VII lists the average activities, decay-corrected to time at end of irradiation. The activity in those foils at 0° and at 45° was approximately the same for each reaction. At 90°, the activity was much less. Note that at all angles, the activity measured by the reaction 58Ni($n,2n$)57Ni correspond to a much lower
Figure 3. Sulfur Pellets on 1-Meter Arc
Run No. 17, 11/11/66, HENRE Test Site
TABLE VII

ACTIVITIES IN SAMPLES IRRADIATED AT 1 METER
HENRE RUN NO. 17, 11/11/66.

<table>
<thead>
<tr>
<th>Angle</th>
<th>Reaction</th>
<th>Decay Corrected Activity (DPM/gram)</th>
<th>Activity at Saturation (DPS/nucleus X 10^18)</th>
<th>Flux Density* (n/cm^2·sec X 10^-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ni^{58}(n,p)Co^{58}</td>
<td>16858</td>
<td>27.4</td>
<td>77.8</td>
</tr>
<tr>
<td></td>
<td>Ni^{58}(n,2n)Ni^{57}</td>
<td>48.3</td>
<td>1.79</td>
<td>55.4</td>
</tr>
<tr>
<td></td>
<td>S^{32}(n,p)P^{32}</td>
<td>136300</td>
<td>17.3</td>
<td>75.4</td>
</tr>
<tr>
<td></td>
<td>S^{32}(n,α)Si^{31}</td>
<td>278500</td>
<td>9.48</td>
<td>68.3</td>
</tr>
<tr>
<td>45°</td>
<td>Ni^{58}(n,p)Co^{58}</td>
<td>17302</td>
<td>27.9</td>
<td>79.1</td>
</tr>
<tr>
<td></td>
<td>Ni^{58}(n,2n)Ni^{57}</td>
<td>48645</td>
<td>1.81</td>
<td>55.9</td>
</tr>
<tr>
<td></td>
<td>S^{32}(n,p)P^{32}</td>
<td>139500</td>
<td>17.7</td>
<td>77.2</td>
</tr>
<tr>
<td>90°</td>
<td>Ni^{58}(n,p)Co^{58}</td>
<td>6710</td>
<td>10.90</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td>Ni^{58}(n,2n)Ni^{57}</td>
<td>9496</td>
<td>0.353</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>S^{32}(n,p)P^{32}</td>
<td>51200</td>
<td>6.49</td>
<td>28.3</td>
</tr>
</tbody>
</table>

* Calculated by assuming all activity caused by 14.5 neutrons, and by using the following values for cross section:

- Ni^{58}(n,p)Co^{58} --- .352 Barns
- Ni^{58}(n,2n)Ni^{57} --- .0308 "
- S^{32}(n,p)P^{32} --- .2292 "
- S^{32}(n,α)Si^{31} --- .1346 "

24
flux density than for the other reactions. This might be an indication of the presence of low-energy neutrons, which could not initiate the reaction \(\text{Ni}^{58}(n,2n)\text{Ni}^{57} \), because the threshold of energy for this reaction is approximately 13 MeV. All the other reactions, however, are responsive to low-energy neutrons (1 to 3 MeV).

Figure 4 shows decay-corrected activity in the sulfur pellets measured as a function of angle. Each point plotted on the graph is the average of three separate determinations based on counting sublimed \(^{32}\text{P}\) samples at three considerably different times. The data show some relatively minor variations and few rather marked variations. The suggestion of symmetry is apparent from the graph. The low activities at approximately \(\pm 52^\circ\) are thought to be the result of the method of insulating the arc from the supporting pipes, which probably resulted in appreciable shielding of the sulfur pellets. Note that in the geometry employed, the total cross section tends to act as a removal cross section, because any scattering event results in a change in direction of the neutron. The neutron travels a large distance in air before experiencing another encounter and another change in direction. Thus there is an extremely low probability of the neutron returning to the sample. There is no apparent explanation for the marked decrease in activity noted at \(\pm 20^\circ\). A study of the drawings of the target did not lead to any reasonable explanation (e.g., attenuation in the target). While not understood, these apparent dips at \(\pm 20^\circ\) are thought to be spurious.

3. Neutron Spectrum with Ground Scatter, Measured at 37 ft.

Foils were positioned 11 inches above ground to provide an irradiation in which considerable ground scatter influences the neutron spectrum. The foils 37 ft from the neutron source, were to receive only about 1 percent of the neutron flux to be received by similar foils to be irradiated at 1 meter (Run No. 40).
Figure 4. $^{32}{\text{S}}(n,p)^{32}{\text{P}}$ on 1-Meter Arc.
Run No. 17, 11/11/66, HENRE Test Site.
After irradiation, activities of the foils were measured. Table VIII lists the activities, decay corrected to time at end of irradiation, and the corresponding activity at saturation for each reaction. These data were used as input to the SAND II Code. Eight different spectra were used as input to the SAND II Code and iteration performed. A persistent result from each test spectrum was the unexpectedly high total number of neutrons having energies greater than Cd cutoff. A typical result was one in which the number of neutrons was of the order of 6×10^6 n/cm2-sec. These low-energy results may have been influenced by the fact that the cross sections for most of the (n,γ) reactions are poorly known in the 14 MeV region. Most of the high-energy reactions gave a rather consistent result of approximately 0.6×10^6 neutrons/cm-sec at the 37-ft slant range. Figure 5 shows a typical result of differential flux vs energy as obtained from the SAND II Code.
TABLE VIII

ACTIVITIES IN FOILS IRRADIATED AT 37 FT
HENRE TEST SITE, RUN NO. 17, 11/11/66.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Decay Corrected Activity (DPM/μgram)</th>
<th>Saturation Activity (DPS/nucleus x 10^19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^{23})(n,2n)Na(^{22})</td>
<td>.00000819</td>
<td>.466</td>
</tr>
<tr>
<td>Na(^{23})(n,γ)Na(^{24})</td>
<td>.00110</td>
<td>.0450</td>
</tr>
<tr>
<td>Mg(^{24})(n,p)Na(^{24})</td>
<td>.0221</td>
<td>1.227</td>
</tr>
<tr>
<td>Al(^{27})(n,γ)Na(^{24})</td>
<td>.0168</td>
<td>.809</td>
</tr>
<tr>
<td>S(^{32})(n,p)P(^{32})</td>
<td>.001244</td>
<td>1.571</td>
</tr>
<tr>
<td>Cl(^{35})(n,α)P(^{32})</td>
<td>.3513</td>
<td>---</td>
</tr>
<tr>
<td>Mn(^{55})(n,γ)Mn(^{56})</td>
<td>.0672</td>
<td>1.63</td>
</tr>
<tr>
<td>Mn(^{55})(n,2n)Mn(^{54})</td>
<td>.0000967</td>
<td>4.39</td>
</tr>
<tr>
<td>Fe(^{54})(n,p)Mn(^{54})</td>
<td>.00000338</td>
<td>2.67</td>
</tr>
<tr>
<td>Fe(^{56})(n,p)Mn(^{56})</td>
<td>.0340</td>
<td>.918</td>
</tr>
<tr>
<td>Zn(^{64})(n,p)Cu(^{64})</td>
<td>.006356</td>
<td>1.31</td>
</tr>
<tr>
<td>Zr(^{90})(n,2n)Zr(^{89})</td>
<td>.00242</td>
<td>3.83</td>
</tr>
<tr>
<td>In(^{115})(n,n')In(^{115m})</td>
<td>.0238</td>
<td>1.84</td>
</tr>
<tr>
<td>I(^{127})(n,2n)I(^{126})</td>
<td>.00186</td>
<td>8.28</td>
</tr>
<tr>
<td>Au(^{197})(n,γ)Au(^{198})</td>
<td>.136</td>
<td>195.</td>
</tr>
<tr>
<td>Au(^{197})(n,γ)Au(^{198})-B(^{10})</td>
<td>.0092</td>
<td>13.3</td>
</tr>
<tr>
<td>Cu(^{63})(n,γ)Cu(^{64})-Cd</td>
<td>.02120</td>
<td>2.92</td>
</tr>
<tr>
<td>Cu(^{63})(n,γ)Cu(^{64})-B(^{10})</td>
<td>.02683</td>
<td>3.69</td>
</tr>
<tr>
<td>Ni(^{58})(n,2n)Ni(^{57})</td>
<td>.000558</td>
<td>.197</td>
</tr>
<tr>
<td>Ni(^{58})(n,p)Co(^{58})</td>
<td>.000202</td>
<td>3.29</td>
</tr>
<tr>
<td>Co(^{59})(n,2n)Co(^{58})</td>
<td>.000412</td>
<td>3.29</td>
</tr>
<tr>
<td>Co(^{59})(n,γ)Co(^{60})</td>
<td>.00000625</td>
<td>1.86</td>
</tr>
<tr>
<td>Th(^{232})(n,f)Tracks</td>
<td>4.430 x 10^4*</td>
<td></td>
</tr>
</tbody>
</table>

*Tracks/cm²
Figure 5. HENRE Neutron Spectrum at 37 ft Slant Range.
1. General Description

Figure 6 shows the experimental arrangement for this 1.1567-hour irradiation. Note that all irradiations were performed at a height of more than 20 ft above the ground, thus minimizing ground scatter. In order to measure the neutron cross section for those nuclear reactions listed in Table I, 3 in. x 3 in. foils were fastened to a large rotating disc placed one meter from the target. The disc consisted of a 1/8 in. aluminum plate covered with 0.030 inches of cadmium. During irradiation the disc was rotated at 5 revolutions per minute, thereby assuring that all foils received the same neutron flux.

In addition to the irradiations just described, the following foils were irradiated:

a. Nickel foils and sulfur pellets were placed along the radius of the large rotating disc.

b. A nickel strip was placed in contact with the center of the target.

c. Gold foils were placed within varying amounts of polyethylene moderator (8 ft 2 in. from target center).

d. Foils of copper, gold, nickel, and sulfur were placed inside boron balls on a small rotating disc at a distance of 1.24 meters from the target source.

2. Relative Neutron Energy Distribution Across the Radius of the Large Disc.

In order to measure the neutron energy distribution, 20 nickel foils and 15 sulfur pellets were wrapped in aluminum foil and placed in a straight line along the radius of the large
Figure 6. Experimental Setup for Run No. 40, HENRE, 7/10/67.
rotating disc. The nickel foils weighed between 0.9145 and 0.935 grams and measured 0.4443 ± 0.0005 inches in diameter. The sulfur pellets weighed between 0.2661 and 0.3351 grams and were approximately 0.25 inches in diameter. The reactions $^3\text{S}_2(n,p)^3\text{P}$ $\text{Ni}^{58}(n,p)^\text{Co}^{58}$, and $\text{Ni}^{58}(n,2n)^\text{Ni}^{57}$ were studied across the radius of the disc. Figure 7 lists the relative intensity product activity of each of these three nuclear reactions across the radius of the disc.

Because this ratio is strongly dependent on neutron energy, the constant ratio of activity of Ni^{57} relative to Co^{58} indicates that there was no neutron energy gradient over the foil positions. Thus it may be inferred that

a. The 3 in. x 3 in. foils were in a neutron flux that was uniform to within ±2 percent.

b. All portions of any 3 in. x 3 in. foil were exposed to neutrons having the same energy.

3. Emitted Neutron Energy Distribution

To refine previous calculations of the emitted energy distribution, a strip of nickel was irradiated while lying directly in contact with the target and on the diameter. The nickel strip was 11-15/16 inches long, 0.13 inches wide, and 0.13 inches thick.

Following irradiation, the large nickel strip was subdivided into twelve approximately 1 in. strips. The activity resulting from the reactions $\text{Ni}^{58}(n,p)^\text{Co}^{58}$ and $\text{Ni}^{58}(n,2n)^\text{Ni}^{57}$ was then measured in each strip. Table IX lists the activities of Co^{58} and Ni^{57}, decay-corrected to time at end of irradiation, as well as the corresponding saturation activities and ratios of saturated activities. Figures 8 and 9 show the activities of Co^{58} and Ni^{57} as a function of distance from the center of the target. One notes that the activities of both Ni^{57} and Co^{58} increase toward the center of the strip. This
Figure 7. Neutron Distribution Across
3 in. x 3 in. Foils on Rotating Disc,
HENRE Run No. 40, 7/10/67.
TABLE IX
DECAY-CORRECTED ACTIVITIES IN NICKEL STRIP NEXT TO TARGET,
RUN NO. 40, 7/10/67.

<table>
<thead>
<tr>
<th>Strip No.</th>
<th>Ni57 Activity (DPM/gram) x 10^-5</th>
<th>Co58 Activity (DPM/gram) x 10^-5</th>
<th>Co58 Sat. Activity (DPS/nucleus x 10^16)</th>
<th>Ni57 Sat. Activity (DPS/nucleus x 10^17)</th>
<th>Sat. Activity Co58 Sat. Activity Ni57</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.51</td>
<td>1.41</td>
<td>7.19</td>
<td>4.90</td>
<td>14.7</td>
</tr>
<tr>
<td>2</td>
<td>5.69</td>
<td>1.78</td>
<td>9.09</td>
<td>6.18</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>8.92</td>
<td>2.69</td>
<td>13.8</td>
<td>9.69</td>
<td>14.2</td>
</tr>
<tr>
<td>4</td>
<td>15.4</td>
<td>4.30</td>
<td>21.9</td>
<td>16.7</td>
<td>13.1</td>
</tr>
<tr>
<td>5</td>
<td>20.6</td>
<td>5.73</td>
<td>29.2</td>
<td>22.4</td>
<td>13.0</td>
</tr>
<tr>
<td>6</td>
<td>18.5</td>
<td>5.46</td>
<td>27.9</td>
<td>20.0</td>
<td>13.9</td>
</tr>
<tr>
<td>7</td>
<td>16.1</td>
<td>4.79</td>
<td>24.4</td>
<td>17.5</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>13.2</td>
<td>3.99</td>
<td>20.4</td>
<td>14.3</td>
<td>14.2</td>
</tr>
<tr>
<td>9</td>
<td>9.78</td>
<td>2.88</td>
<td>14.7</td>
<td>10.6</td>
<td>13.8</td>
</tr>
<tr>
<td>10</td>
<td>6.75</td>
<td>2.12</td>
<td>10.8</td>
<td>7.34</td>
<td>14.8</td>
</tr>
<tr>
<td>11</td>
<td>4.31</td>
<td>1.47</td>
<td>7.51</td>
<td>4.68</td>
<td>16.0</td>
</tr>
<tr>
<td>12</td>
<td>5.04</td>
<td>1.62</td>
<td>8.27</td>
<td>5.47</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Figure 8. \(\text{Co}^{58} \) Activity from \(\text{Ni}^{58}(n,p)\text{Co}^{58} \)
Across Radius of Target, 7/10/67
Figure 9. Ni57 Activity from Ni58(n,2n)Ni57
Across Radius of Target, 7/10/67
would be expected because the neutron flux density should be greatest at the center, becoming less as distance from the center increases. A feature that is unexplained is the activity of strip No. 11, which for both reactions was less than for strip No. 12. It may be that the lower activity resulted from the geometry involved. There may have been some water coolant, for example, affecting the average neutron energy at that part of the target. The ratio of saturation activities is of great interest, as it reflects the neutron energy. The ratio of cross sections as given by Barrall and McElroy (Ref. 6) for the reactions $\text{Ni}^{58}(n,p)\text{Co}^{58}$ and $\text{Ni}^{58}(n,2n)\text{Ni}^{57}$ is plotted as a function of neutron energy in Figure 10.

Thus if it is assumed that all the neutrons are D,T neutrons, one can use the ratio of saturation activities to measure energy of the neutrons. For example, strip No. 5, which had the highest activity, gave a ratio of 13.0, which corresponds to a neutron energy of 14.34 MeV. Strip No. 11, which had the lowest activity, gave a ratio of 16.0, which corresponds to a neutron energy of 14.15 MeV. The neutron energy is highest at the center. As distance from the center increases, the neutron energy decreases. This would be expected because the angle would be much greater toward the end positions. Finally, one would expect the energy of the neutrons striking the strip to be less than that striking the foils at a distance of 1 meter, because at a distance of 1 meter the angle is nearly 0°, whereas adjacent to the target, there is a wide range of angles. These considerations are generally confirmed by the data.

4. Measurement of Energy and Flux Density of D,T Neutrons at 1 Meter

To determine the energy of neutrons striking the foils on the large disc 1 meter from the target, a study was made of the reactions $\text{Al}^{27}(n,\alpha)\text{Na}^{24}$ and $\text{Ni}^{58}(n,2n)\text{Ni}^{57}$.

37
Figure 10. Energy Dependence of the Ratio of Cross Sections or Saturated Activities of Ni\(^{58}\)(n,p)Co\(^{58}\)/Ni\(^{58}\)(n,2n)Ni\(^{57}\)
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Average measured activity (DPM/gram)</th>
<th>Activity at saturation (DPS/nucleus × 10⁻¹⁸)</th>
<th>Activity at saturation caused only by D,T neutrons (DPS/nucleus × 10⁻¹⁸)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F¹⁹(n,2n)F¹⁸</td>
<td>783000</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td>Na²³(n,γ)Na²⁴</td>
<td>3406</td>
<td>.415</td>
<td>(.364)*</td>
</tr>
<tr>
<td>Na²³(n,2n)Na²²</td>
<td>68.4</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Mg²⁴(n,p)Na²⁴</td>
<td>294131</td>
<td>4.82</td>
<td>4.82</td>
</tr>
<tr>
<td>Al²⁷(n,α)Na²⁴</td>
<td>209635</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>S³⁴(n,α)S³¹</td>
<td>42900</td>
<td>3.42</td>
<td>2.86</td>
</tr>
<tr>
<td>S³²(n,p)P³²</td>
<td>14400</td>
<td>5.76</td>
<td>4.46</td>
</tr>
<tr>
<td>Cl³⁵(n,α)P³²</td>
<td>4818</td>
<td>2.68</td>
<td>2.68</td>
</tr>
<tr>
<td>Mn⁵⁵(n,γ)Mn⁵⁶</td>
<td>62599</td>
<td>.356</td>
<td>(.186)</td>
</tr>
<tr>
<td>Mn⁵⁵(n,2n)Mn⁵⁴</td>
<td>1364</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Fe⁵⁴(n,p)Mn⁵⁴</td>
<td>37.6</td>
<td>9.38</td>
<td>8.61</td>
</tr>
<tr>
<td>Fe⁵⁶(n,p)Mn⁵⁶</td>
<td>446494</td>
<td>2.81</td>
<td>2.81</td>
</tr>
<tr>
<td>Co⁵⁹(n,γ)Co⁶⁰</td>
<td>13.2</td>
<td>1.24</td>
<td>(0.55)</td>
</tr>
<tr>
<td>Co⁵⁹(n,2n)Co⁵⁸</td>
<td>5427</td>
<td>18.9</td>
<td>18.9</td>
</tr>
<tr>
<td>Ni⁵⁸(n,np)+(n,d)Co⁵⁷</td>
<td>941</td>
<td>18.2</td>
<td>18.2</td>
</tr>
<tr>
<td>Ni⁵⁸(n,p)Co⁵⁸</td>
<td>1838</td>
<td>9.388</td>
<td>8.48</td>
</tr>
<tr>
<td>Ni⁵⁸(n,2n)Ni⁵⁷</td>
<td>7634</td>
<td>.8293</td>
<td>.8293</td>
</tr>
<tr>
<td>Cu⁶⁵(n,2n)Cu⁶⁴</td>
<td>238500</td>
<td>22.3</td>
<td>22.3</td>
</tr>
<tr>
<td>Cu⁶³(n,γ)Co⁶⁰</td>
<td>8.37</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Zn⁶⁴(n,p)Cu⁶⁴</td>
<td>62921</td>
<td>3.83</td>
<td>3.66</td>
</tr>
<tr>
<td>Zr⁹⁰(n,2n)Zr⁸⁹</td>
<td>40385</td>
<td>19.7</td>
<td>19.7</td>
</tr>
<tr>
<td>In¹¹⁵(n,2n)In¹¹⁴m</td>
<td>6641</td>
<td>33.0</td>
<td>33.0</td>
</tr>
<tr>
<td>In¹¹⁵(n,n')In¹¹⁵m</td>
<td>169290</td>
<td>3.44</td>
<td>1.66</td>
</tr>
<tr>
<td>I¹²⁷(n,2n)I¹²⁶</td>
<td>30914</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>Au¹⁹⁷(n,2n)Au¹⁹⁶</td>
<td>50800</td>
<td>51.4</td>
<td>51.4</td>
</tr>
<tr>
<td>Au¹⁹⁷(n,γ)Au¹⁹⁸</td>
<td>82020</td>
<td>36.3</td>
<td>(16.6)</td>
</tr>
<tr>
<td>Th²³²(n,f)Tracks</td>
<td>19570000**</td>
<td>12.6</td>
<td>11.1</td>
</tr>
<tr>
<td>Th²³²(n,f)[Mo⁹⁹]</td>
<td>2510000</td>
<td>16.1</td>
<td>14.2</td>
</tr>
<tr>
<td>U²³⁵(n,f)[Mo⁹⁹]</td>
<td>109700000**</td>
<td>71.34</td>
<td>(63.88)</td>
</tr>
<tr>
<td>U²³⁸(n,f)Tracks</td>
<td>55550000**</td>
<td>36.6</td>
<td>30.8</td>
</tr>
<tr>
<td>U²³⁸(n,f)[Mo⁹⁹]</td>
<td>52300000**</td>
<td>36.4</td>
<td>28.9</td>
</tr>
</tbody>
</table>

* = Values in parenthesis show effect of additional low energy neutrons.

** = Fissions/min-gram
By comparing the ratio of saturation activities for the two reactions with the cross section ratio at different energies, one may deduce an energy value for the D,T neutrons. Because neither of these reactions is induced by low-energy neutrons, any such "impurity" neutrons in the emitted spectrum will not introduce errors in the energy determination. On the other hand, the reaction \(\text{Ni}^{58}(n,p)\text{Co}^{58} \), used in measuring the energy of neutrons hitting the nickel strip next to the target, has a threshold energy of approximately 1 MeV. Thus low-energy neutrons, if present, would cause an increase in the activity of Co\(^{58} \).

Table X, which lists the activities measured in the foils irradiated at 1 meter, gives saturation activities of \(0.829 \times 10^{18} \) DPS/nucleus for \(\text{Ni}^{58}(n,2n)\text{Ni}^{57} \) and \(3.00 \times 10^{18} \) DPS/nucleus for \(\text{Al}^{27}(n,\alpha)\text{Na}^{24} \). The ratio of saturation activities is thus 3.62. By referring to Figure 11, one notes that this activity is thus corresponds to a neutron energy of 14.6 MeV. This result is several hundred KeV lower than one calculates based on a thin target, using the relativistic calculations of Blumberg and Schlesinger (Ref. 7).

5. Cross-Section Measurements

Table X lists the activities measured in foils on the large rotating disc. Note that all foils were irradiated simultaneously while at a distance of 1 meter from the target source. Therefore, the ratios of the saturated activities are proportional to the relative cross sections. By selecting one known cross-section value, all the measured cross sections may be obtained. The \(\text{Al}^{27}(n,\alpha)\text{Na}^{24} \) cross section of 0.1207 barns at 14.6 MeV was used because this reaction is reliably measured and the cross section in this energy region is well known (Ref. 5). The values obtained are tabulated in Table XI.

Corrections were made for low-energy neutrons at an energy of 2.73 MeV for D,D neutrons; 2.58 MeV for the \(\text{Cu}^{65}(n,2n)\text{Cu}^{64} \).
Figure 11. Energy Dependence of the Ratio of Cross Sections or Saturated Activities of Al27(n,α)Na24/Ni58(n,2n)Ni57.
TABLE XI

Measured Cross Sections at 14.6 MeV ± 0.2 MeV,
HENRE Run No. 40, 7/10/67.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Cross Section (Barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(^{19})(n,2n)F(^{18})</td>
<td>.047 ± .04</td>
</tr>
<tr>
<td>Na(^{23})(n,2n)Na(^{22})</td>
<td>.0495 ± .01</td>
</tr>
<tr>
<td>Mg(^{24})(n,p)Na(^{24})</td>
<td>.194 ± .014</td>
</tr>
<tr>
<td>Al(^{27})(n,α)Na(^{24})</td>
<td>(.1207)*</td>
</tr>
<tr>
<td>S(^{34})(n,α)Si(^{31})</td>
<td>.137 ± .01</td>
</tr>
<tr>
<td>S(^{32})(n,p)P(^{32})</td>
<td>.214 ± .016</td>
</tr>
<tr>
<td>Cl(^{35})(n,α)P(^{32})</td>
<td>.108 ± .09</td>
</tr>
<tr>
<td>Mn(^{55})(n,2n)Mn(^{54})</td>
<td>.785 ± .08</td>
</tr>
<tr>
<td>Fe(^{54})(n,p)Mn(^{54})</td>
<td>.346 ± .03</td>
</tr>
<tr>
<td>Fe(^{56})(n,p)Mn(^{56})</td>
<td>.113 ± .08</td>
</tr>
<tr>
<td>Co(^{59})(n,2n)Co(^{58})</td>
<td>.760 ± .06</td>
</tr>
<tr>
<td>Ni(^{58})(n,np)+(n,d)Co(^{57})</td>
<td>.73 ± .06</td>
</tr>
<tr>
<td>Ni(^{58})(n,p)Co(^{58})</td>
<td>.341 ± .03</td>
</tr>
<tr>
<td>Ni(^{58})(n,2n)Ni(^{57})</td>
<td>.0334 ± .002</td>
</tr>
<tr>
<td>Cu(^{65})(n,2n)Cu(^{64})</td>
<td>.897 ± .10</td>
</tr>
<tr>
<td>Cu(^{63})(n,α)Co(^{60})</td>
<td>.0495 ± .01</td>
</tr>
<tr>
<td>Zn(^{64})(n,p)Cu(^{64})</td>
<td>.147 ± .01</td>
</tr>
<tr>
<td>Zr(^{90})(n,2n)Zr(^{89})</td>
<td>.793 ± .06</td>
</tr>
<tr>
<td>I(^{127})(n,2n)I(^{126})</td>
<td>1.67 ± .09</td>
</tr>
<tr>
<td>In(^{115})(n,2n)In(^{114m})</td>
<td>1.33 ± .012</td>
</tr>
<tr>
<td>In(^{115})(n,n')In(^{115m})</td>
<td>.067 ± .007</td>
</tr>
<tr>
<td>Au(^{197})(n,2n)Au(^{196G})</td>
<td>2.07 ± .2</td>
</tr>
<tr>
<td>Th(^{232})(n,f)Tracks</td>
<td>.45 ± .04</td>
</tr>
<tr>
<td>Th(^{232})(n,f)[Mo(^{99})]</td>
<td>.56 ± .14</td>
</tr>
<tr>
<td>U(^{238})(n,f)Tracks</td>
<td>1.24 ± .06</td>
</tr>
<tr>
<td>U(^{238})(n,f)[Mo(^{99})]</td>
<td>1.16 ± .23</td>
</tr>
</tbody>
</table>

* Assumed Value
reaction; and at an energy of 2.20 MeV for the $\text{Cu}^{63}(n,2n)\text{Cu}^{62}$ reaction. Thus for each reaction listed in Table X the activity caused by low-energy neutrons was subtracted to obtain a saturation activity caused by D,T neutrons. These corrected activities were used in calculating the measured cross section.

6. Gold in Polysphere

A study was made of neutron attenuation in plastic by placing a series of gold foils at various distances throughout a polysphere. The gold foils used measured 0.5-inch in diameter, and were 0.004-inch thick. Following irradiation, measurements were made of the activity of Au^{198} in each foil. Table XII lists the activities, decay-corrected to time at end of irradiation, and also an estimate of the activity of Au^{196} interference. Figure 12 shows Au^{198} activity as a function of sphere thickness.

7. B^{10}C Studies

Studies were also made on attenuation due to boron. A second rotating disc was positioned beneath the large rotating disc at a distance of 1.24 meters from the target source. On this rotating disc were placed B^{10}C balls containing small thin foils of copper, gold, nickel and sulfur. The B^{10} used had a thickness of 1.4 grams/cm².

Following irradiation, activities were measured and data obtained for both shielded and unshielded activities.

Results for the reaction $\text{S}^{32}(n,p)\text{P}^{32}$ are shown in Figure 13. The P^{32} data were obtained relative to two unshielded pellets rotating on the same disc and at the same level as the center of the sphere. The $\text{Ni}^{58}(n,p)\text{Co}^{58}$ centered in the sphere and facing the source indicated a transmission of 0.95 while the gold and copper were not interpretable because of low-energy neutron interference.
<table>
<thead>
<tr>
<th>Sphere Diameters (inches)</th>
<th>Activity Au^{198} (DPM/gram)</th>
<th>Estimated Activity Au^{196} (DPM/gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10971</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>78145</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>237673</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>598717</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>783553</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>766355</td>
<td>none</td>
</tr>
<tr>
<td>12</td>
<td>676621</td>
<td>none</td>
</tr>
</tbody>
</table>
Figure 12. Gold Foils in Polysphere, HENRE Run No. 40.
Figure 13. Neutron Attenuation in B_4^{10}C Sphere
As Measured by Using $S^{32}(n,p)P^{32}$
1. Introduction

The purpose of the irradiations at the Lawrence Radiation Laboratory was to study the effects of low-energy D,D neutrons emitted along with the approximately 15 MeV D,T neutrons. This problem was deemed worthy of an investigation following the irradiations at the HENRE test site where it became evident that a considerable number of low-energy neutrons were emitted in addition to the D,T neutrons. These low-energy neutrons cause an increased activity for those reactions having an appreciable cross section for low-energy neutrons, but would not influence such reactions as $Al^{27}(n,a)Na^{24}$ and $Ni^{58}(n,2n)Ni^{57}$, which have a high threshold energy.

2. Method

A newly fabricated target was prepared at Lawrence Radiation laboratory, and a series of consecutive irradiations were performed. On May 13, 1968, the first irradiation began at the instant the power was turned on. This irradiation lasted for approximately 10 minutes, and was followed by three more irradiations each of approximately 20 minutes, and finally by a 2-hour irradiation (runs 1 to 5). Then on June 26, 1968 when the target could be considered old, there were two more irradiations each of approximately 1-hour duration (runs 6 and 7).

Foil irradiated and the nuclear reactions studied are listed in Table XIII. All foils were placed on a single large rotating disc placed 14.5 ± 0.5 inches from the target. During irradiation the disc was rotated slowly with all foils on the same radius, the center of each foil being 6.5 inches from the
<table>
<thead>
<tr>
<th>Foil Material</th>
<th>Reaction</th>
<th>Photon Energy Analyzed (MeV)</th>
<th>Photons per Disintegration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>$\text{Al}^{27}(\text{n},\alpha)\text{Na}^{24}$</td>
<td>1.37</td>
<td>1.00</td>
</tr>
<tr>
<td>S</td>
<td>$\text{S}^{32}(\text{n},\text{p})\text{P}^{32}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fe</td>
<td>$\text{Fe}^{56}(\text{n},\text{p})\text{Mn}^{56}$</td>
<td>0.845</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>$\text{Fe}^{54}(\text{n},\text{p})\text{Mn}^{54}$</td>
<td>0.835</td>
<td>1.00</td>
</tr>
<tr>
<td>Ni</td>
<td>$\text{Ni}^{58}(\text{n},\text{p})\text{Co}^{58}$</td>
<td>0.810</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>$\text{Ni}^{58}(\text{n},2\text{n})\text{Ni}^{57}$</td>
<td>1.37</td>
<td>0.86</td>
</tr>
<tr>
<td>In</td>
<td>$\text{In}^{115}(\text{n},\text{n}')\text{In}^{115\text{m}}$</td>
<td>0.335</td>
<td>0.50</td>
</tr>
<tr>
<td>I</td>
<td>$\text{I}^{127}(\text{n},2\text{n})\text{I}^{126}$</td>
<td>0.386</td>
<td>0.34</td>
</tr>
<tr>
<td>Au</td>
<td>$\text{Au}^{197}(\text{n},\gamma)\text{Au}^{198}$</td>
<td>0.412</td>
<td>0.956</td>
</tr>
</tbody>
</table>
0° axis. Thus, the midpoint of each foil was at an angle of about 26°. In the case of a thin target, the neutrons produced by the D,T reaction would have an energy of 15.0 MeV.

Foil of a given material were of the same thickness and, except for the gold foil, all measured 3 in. x 3 in. configuration. The multichannel analyzer used for measuring the activity had previously been calibrated for foils of this size, using point source gamma ray standards from the National Bureau of Standards.

After irradiation, activities for all foils were measured and decay-corrected to time at end of irradiation. Saturated activity was then calculated for each reaction from each irradiation. These results are shown in Table XIV. The saturated activity for each foil was then compared with the average saturated activity measured from the reactions Al\st{}27(n,\alpha)Na\st{}24 and Ni\st{}58(n,2n)Ni\st{}57. Table XV lists these results.

A proton recoil telescope was used during these irradiations to measure the total number of coincidence counts. (See Table XVI). The proton recoil counter had a discriminator set to accept pulses only from neutrons with an energy greater than 9 or 10 MeV. Thus no low-energy neutrons were detected by these measurements. The number of neutrons per unit solid angle is given by the relation:

\[
\text{No. neutrons/steradian} = \frac{\text{No. Coincidence Counts}}{6.61 \times 10^{-9}}
\]

By using the inverse square law, the neutron flux density at the position of the foils (14.5 ± 0.5 inches from target) can be obtained from the relation:

\[
\text{Neutron Flux density (n/cm}^2\text{sec)} = \frac{\text{No. neutrons/steradian}}{\text{Time of irradia. (sec)x(14.5x2.54)}}
\]
<table>
<thead>
<tr>
<th>Foil Reaction</th>
<th>Run No.</th>
<th>Ave. Measured Activity (DPM/gram)</th>
<th>Saturated Activity (DPS/nucleus x 10^{18})</th>
<th>Relative Sat. Activity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al^{27}(n,\alpha)Na^{24}</td>
<td>1</td>
<td>15260</td>
<td>1.482</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32524</td>
<td>1.585</td>
<td>1.070</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>33616</td>
<td>1.624</td>
<td>1.096</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>33783</td>
<td>1.646</td>
<td>1.111</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>203496</td>
<td>1.717</td>
<td>1.159</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>91861</td>
<td>1.361</td>
<td>.918</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>104514</td>
<td>1.571</td>
<td>1.060</td>
</tr>
<tr>
<td>In^{115}(n,n')In^{115m}</td>
<td>1</td>
<td>6686</td>
<td>.8733</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14550</td>
<td>.9646</td>
<td>1.102</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14638</td>
<td>.9625</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14795</td>
<td>.9809</td>
<td>1.121</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>83097</td>
<td>1.040</td>
<td>1.188</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>38702</td>
<td>.8126</td>
<td>.928</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>42073</td>
<td>.8957</td>
<td>1.023</td>
</tr>
<tr>
<td>Ni^{58}(n,2n)Ni^{57}</td>
<td>1</td>
<td>621</td>
<td>.4630</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1327</td>
<td>.4962</td>
<td>1.070</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1370</td>
<td>.5079</td>
<td>1.096</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1407</td>
<td>.5263</td>
<td>1.135</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8416</td>
<td>.5330</td>
<td>1.130</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3781</td>
<td>.4253</td>
<td>.917</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4215</td>
<td>.4914</td>
<td>1.060</td>
</tr>
<tr>
<td>Ni^{58}(n,p)Co^{58}</td>
<td>1</td>
<td>115</td>
<td>4.062</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>247</td>
<td>4.379</td>
<td>1.078</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>255</td>
<td>4.472</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>259</td>
<td>4.586</td>
<td>1.129</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1600</td>
<td>4.727</td>
<td>1.164</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>712</td>
<td>3.768</td>
<td>.928</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>797</td>
<td>4.282</td>
<td>1.054</td>
</tr>
<tr>
<td>S^{32}(n,p)P^{32}</td>
<td>1</td>
<td>850</td>
<td>2.355</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1820</td>
<td>2.522</td>
<td>1.071</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1854</td>
<td>2.547</td>
<td>1.082</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1878</td>
<td>2.602</td>
<td>1.105</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11863</td>
<td>2.744</td>
<td>1.165</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5365</td>
<td>2.221</td>
<td>.943</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6010</td>
<td>2.525</td>
<td>1.072</td>
</tr>
</tbody>
</table>

* Normalized to Run No. 1 in each case.
3. Results

The reactions Al$^{27}(n,\alpha)Na^{24}$ and Ni$^{58}(n,2n)Ni^{57}$ can be looked upon as references because they are initiated only by high-energy neutrons. Those reactions induced by both high-energy and low-energy neutrons should have a relatively higher response as the target becomes older and emits more D,D neutrons. Table XV indicates this effect to be very small at the ICT. The reactions S$^{32}(n,p)P^{32}$, Ni$^{58}(n,p)Co^{58}$, In$^{115}(n,n')In^{115m}$ and Au$^{197}(n,\gamma)Au^{198}$ all have a relative response (saturated activity very slightly greater than 1.00 by the time of the fifth and sixth irradiations.

The energy of the D,T neutrons in runs 5 and 6 was measured in a manner similar to that used for HENRE, Run No. 40. Satur-ation activities for the reactions Ni$^{58}(n,2n)Ni^{57}$ and Al$^{27}(n,\alpha)Na^{24}$ were obtained from the measured activities. A saturation activity ratio was thus obtained and, by referring to a curve showing cross section ratio as a function of neutron energy, a neutron energy could be assigned. For Run 5 the saturation activities of 1.7173×10^{-18} and 0.5330×10^{-18} give a ratio of 3.222. This corresponds to a neutron energy of 14.79 MeV. The neutron flux density, based on the reaction Al$^{27}(n,\alpha)Na^{24}$ with a cross section of 0.1165 is calculated to be 14.55×10^6 neutrons/cm2-sec. For Run 6, the saturation values of 1.361×10^{-18} and 0.4253×10^{-18} gives a ratio of 3.200, corresponding to a neutron energy of 14.80 MeV. The flux density, based on the reaction Al$^{27}(n,\alpha)Na^{24}$ with a cross section of 0.1163 at 14.80 MeV, is calculated to be 11.55×10^6 neutrons/cm2-sec. For Run No. 5 the proton recoil telescope measurements gave a result of $14.79 \times 10^6 \pm 7$ percent neutrons/cm2-sec. The flux density measurement based on the Al$^{27}(n,\alpha)Na^{24}$ reaction (14.55×10^6 n/cm2-sec) is 1.6 percent lower.

51
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Al^{27}(n,\alpha)M_{24}</th>
<th>Ni^{58}(n,2\alpha)Ni^{57}</th>
<th>Ni^{58}(n,p)Co^{58}</th>
<th>Co^{58}</th>
<th>Proton Recoil</th>
<th>Au^{197}(n,\gamma)Au^{198} (moderated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>3</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>4</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>6</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Run No.</td>
<td>Time of Irradiation (seconds)</td>
<td>Number of Coincidence Counts</td>
<td>Neutron Flux Density (n/cm² sec x 10⁻⁶)</td>
<td>Neutron Fluence (n/cm² x 10⁻⁶)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>600</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>145852</td>
<td>13.56</td>
<td>15912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1210.2</td>
<td>151415</td>
<td>13.95</td>
<td>16882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1200</td>
<td>155013</td>
<td>14.41</td>
<td>17292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7200</td>
<td>954608</td>
<td>14.79</td>
<td>106488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4020</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3960</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table XVII lists the measured cross sections for Runs 5 and 6. The measured cross sections are in agreement within 2 percent whether based on the proton recoil data or relative to the $^{27}\text{Al}(n,\alpha)^{24}\text{Na}$ reaction as reported by Paulsen and Liskien (Ref. 9).
TABLE XVII

CROSS SECTIONS MEASURED AT THE ICT

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saturation Activity (DPS/nucleus x 10^{18})</th>
<th>Measured Cross Section (Barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.79 MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Al}^{27}(n,\alpha)\text{Na}^{24}$</td>
<td>1.717</td>
<td>0.1161 ± 0.008</td>
</tr>
<tr>
<td>$\text{Ni}^{58}(n,2n)\text{Ni}^{57}$</td>
<td>0.5330</td>
<td>0.0361 ± 0.003</td>
</tr>
<tr>
<td>$\text{Ni}^{58}(n,\text{np+n},d)\text{Co}^{57}$</td>
<td>11.30</td>
<td>0.764 ± 0.06</td>
</tr>
<tr>
<td>$\text{Ni}^{58}(n,p)\text{Co}^{58}$</td>
<td>4.727</td>
<td>0.320 ± 0.025</td>
</tr>
<tr>
<td>$\text{S}^{32}(n,p)\text{P}^{32}$</td>
<td>2.744</td>
<td>0.186 ± 0.015</td>
</tr>
<tr>
<td>$\text{In}^{115}(n,n')\text{In}^{115m}$</td>
<td>1.040</td>
<td>0.0703 ± 0.005</td>
</tr>
<tr>
<td>$\text{In}^{115}(n,2n)\text{In}^{114m}$</td>
<td>20.60</td>
<td>1.39 ± 0.11</td>
</tr>
<tr>
<td>14.80 MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Al}^{27}(n,\alpha)\text{Na}^{24}$</td>
<td>1.361</td>
<td>0.1158^*</td>
</tr>
<tr>
<td>$\text{Ni}^{58}(n,2n)\text{Ni}^{57}$</td>
<td>0.4253</td>
<td>0.0362 ± 0.003</td>
</tr>
<tr>
<td>$\text{Ni}^{58}(n,p)\text{Co}^{58}$</td>
<td>3.768</td>
<td>0.321 ± 0.025</td>
</tr>
<tr>
<td>$\text{Fe}^{56}(n,p)\text{Mn}^{56}$</td>
<td>1.272</td>
<td>0.1082 ± 0.009</td>
</tr>
<tr>
<td>$\text{Fe}^{54}(n,p)\text{Mn}^{54}$</td>
<td>3.507</td>
<td>0.298 ± 0.024</td>
</tr>
<tr>
<td>$\text{In}^{115}(n,n')\text{In}^{115m}$</td>
<td>0.8126</td>
<td>0.0691 ± 0.005</td>
</tr>
<tr>
<td>$\text{S}^{32}(n,p)\text{P}^{32}$</td>
<td>2.221</td>
<td>0.189 ± 0.015</td>
</tr>
<tr>
<td>$\text{I}^{127}(n,2n)\text{I}^{126}$</td>
<td>18.83</td>
<td>1.60 ± 0.13</td>
</tr>
</tbody>
</table>

* Assumed Value
REFERENCES

7. Blumberg, L.; Schlesinger, S.; Relativistic Tables of Energy and Angle Relationships for the \(^{1}T(p,n)^{3}He \), \(^{2}D(d,n)^{3}He \) and \(^{3}T(d,n)^{4}He \) Reactions, (AECU-3118) Los Alamos Scientific Laboratory, Los Alamos, NM. May 1956

Neutron cross sections reported by various investigators often differ far in excess of the estimates of error reported. The high neutron emission of the High Energy Neutron Reaction Experiment (HENRE) source, 10^{13} n/sec, afforded an opportunity to compare measured values of many disintegration rates in a single experiment thus eliminating some of the uncertainty necessarily associated with such measurements when based on varying standards and normalizations. From these measurements, the 14.6 MeV neutron cross sections of 24 reactions are derived. The neutron spectrum near ground level at 37 feet slant range from the HENRE source was measured by using foil data and SAND II code. Additional measurements at the Insulated Core Transformer (ICT) accelerator at the Lawrence Radiation Laboratory, Livermore, served to confirm the HENRE results.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation cross section</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>Threshold foils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron spectra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation HENRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAND I Computer Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>