FRACTURE TOUGHNESS OF HIGH-STRENGTH STEELS FOR MILITARY APPLICATIONS

DEFENSE METALS INFORMATION CENTER
BATTelle MEMORIAL INSTITUTE
COLUMBUS, OHIO 43201
The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, aluminum, high-strength steels, refractory metals, high-strength alloys for high-temperature service, and corrosion- and oxidation-resistant coatings. Its functions, under the direction of the Office of the Director of Defense Research and Engineering, are as follows:

1. To collect, store, and disseminate technical information on the current status of research and development of the above materials.

2. To supplement established Service activities in providing technical advisory services to producers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.

3. To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.

4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

Contract No. F 33615-68-C-1325

Roger J. Runck
Director

Notices

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria, Virginia, 22314.

This document has been approved for public release and sale; its distribution is unlimited.
TABLE OF CONTENTS

SUMMARY .. 1

INTRODUCTION ... 1

U. S. MILITARY APPLICATIONS .. 2

- Fracture Toughness Testing ... 2
- Motor Cases and Large Boosters ... 5
- Pressure Vessels Other Than Motor Cases 7
- Landing Gear ... 8
- Aircraft Structural Components Other Than Landing Gear 9
- Gun Tubes ... 9
- Recoilless-Rifle Tubes ... 10

CANADIAN MILITARY APPLICATIONS 10

UNITED KINGDOM MILITARY APPLICATIONS 10

REFERENCES ... 11

REFERENCES NOT CITED IN TEXT 12
FRACTURE TOUGHNESS OF HIGH-STRENGTH STEELS FOR MILITARY APPLICATIONS

J. E. Campbell*

SUMMARY

This Memorandum reviews the testing procedures for evaluating the toughness of alloy steels used for military applications in the United States, Canada, and the United Kingdom.

In the United States, at the present time, testing methods are being developed for plane-strain fracture-toughness testing of high-strength steels. Fracture toughness as determined by plane-strain testing methods, has been used only to a limited extent as a criterion in qualifying steels for military applications. Because of the newness of the tests, only a limited amount of design data is available on the plane-strain fracture toughness of the high-strength steels. Also, there is only limited background experience to indicate what the minimum fracture toughness limit should be for a given component and how to interpret the data that are available. Consequently, the minimum toughness requirements for alloy steels for many military applications are often based on less sophisticated Charpy V-notch impact tests or on reduction-in-area-transverse (RAT) tests.

Steels for thick-wall motor cases in large rocket and missile boosters have been evaluated by plane-strain fracture-toughness tests, but the standard test methods available for sheet steel used in thin-wall motor cases for relatively small missiles provide only empirical data. Lacking standard plane-strain fracture-toughness tests, hydrostatic tests may be made on small prototype pressure vessels containing small cracks to determine the critical crack size at proof stress.

The present requirement in evaluating steels for landing gear is that transverse tensile specimens from the forging billets have values for reduction in area (RAT values) equal to or higher than a specified value when heat treated as for the landing gear. Steel forgings and weldments for other parts of military aircraft may or may not have minimum toughness requirements. However, for the F-111 airframe, advanced methods of plane-strain fracture-toughness testing are being used to qualify both the steel and the type of heat treatment used for the carry-through fittings of the wing pivots, for the outboard-pivot fittings and for other components.

Qualification of forgings for gun tubes is based on data obtained from transverse tensile and transverse Charpy V-notch specimens. More discriminating testing methods are being considered, but there is considerable variation in the fracture toughness of gun tubes at the present time.

Selection of alloy steel and heat treatment for recoilless-rifle tubes has been based on plane-stress fracture-toughness data.

In Canada, there is a growing interest in fracture-toughness requirements for military applications. The applications for which high-strength steels have been evaluated by fracture-toughness tests include armor plate and hydrofoils.

The United Kingdom has extensive programs for evaluating fracture toughness for a wide range of steels from structural steels for naval applications to high-strength martensitic steels and maraging steels. Emphasis has been placed on familiarizing laboratory personnel with methods of plane-strain fracture-toughness testing rather than on establishing specifications for military applications. There is considerable interest in developing advanced testing methods and in cooperation with ASTM Committee E24 in establishing standard methods for plane-strain and plane-stress fracture testing.

This report does not consider the application of notched and precracked specimens for stress-corrosion testing at certain stress intensity levels in aqueous media, although this is an outgrowth of fracture-toughness testing and is applicable in evaluating steels for many military applications.

INTRODUCTION

This Memorandum was prepared at the request of the Working Panel on Metals of Subgroup P on Materials of The Technical Cooperation Program (TTCP). The Memorandum is intended to clarify fracture toughness testing requirements and procedures for high-strength steels used in military applications, and is based on data subsequent to the Panel's October, 1964, symposium on ultrahigh-strength steels (see DMIC Report 210). Information in this Memorandum is based on reports in DMIC files and on interviews with a number of people concerned with materials used in military applications.

Many of those concerned with the application of high-strength steels for military hardware are aware of the need for minimum fracture-toughness specifications for the alloy steels used in these applications. However, the development of new standardized testing procedures has not kept up with the needs of those who are responsible for writing hardware specifications involving high-strength alloys. Many laboratories, using recently developed methods, have made fracture-toughness tests on specimens of high-strength steels over the past 8 years, and a large volume of data has been generated. Much of this work was done in order to determine what variables must be controlled in developing one or more standard testing specifications. Because of the many variables associated with the newer methods of fracture-toughness testing, considerable variation has been observed in the reported data. This has been confusing to those who wish to use the data.

Other considerations, such as the so-called plane-strain and plane-stress conditions for fracturing, have added to the uncertainties in using the data. The original effort of the ASTM Committee on Fracture Testing of High-Strength Metallic
Materials was to establish a testing procedure for high-strength alloys in relatively thin sections (plane-stress condition). However, before they had made much progress, the thick-section problem for large solid-propellant booster cases became more urgent. Since that time, the plane-strain condition has received most attention from those associated with the ASTM Committee (now the ASTM Committee E24).

As noted later, one recommended practice for plane-strain fracture-toughness testing has been evaluated in a round-robin program of nine laboratories. A second recommended practice is being developed for a different type of specimen, the compact K_c specimen. Procedures for the plane-stress condition also are being considered. The value of these procedures is that the information can be used in estimating critical flaw sizes in high-strength structures when the structures are being designed, if the service stresses can be calculated. Empirical data obtained on other types of toughness tests are not applicable to design calculations.

The following categories represent the major military applications for steels having yield strengths over 150,000 psi:

- Solid-propellant motor cases (including boosters and tactical missiles)
- Pressure vessels (other than motor cases)
- Aircraft landing gear
- Structural components for aircraft (other than landing gear)
- Gun tubes and recoilless-rifle tubes.

Steels for other applications include the high-strength stainless steels, steels for armor plate and projectiles (such as armor-piercing shot), steels for small arms components and fasteners, and hydrofoils. Fracture toughness studies on armor plate and steel for hydrofoils are discussed briefly in the section on Canadian military applications.

The yield-strength range of the steels considered in this review is from 150,000 to 300,000 psi. The principal reason for using steels in this strength range for military applications is to minimize the overall weight of the structure. Service stresses usually are high for these components and, in certain instances, may even approach the yield strength.

Correlation of yield strength versus fracture toughness for alloy steels shows that the toughness decreases as the strength increases, as seen in Figure 1. Therefore, when using steels at the higher strength levels, it is important to appreciate the significance of the limited toughness of the steel and the critical flaw size at the maximum service stress. These factors will be discussed in more detail later.

U. S. MILITARY APPLICATIONS

The following alloy steels often are used when high strength levels are required for U. S. military applications:

- **Motor cases and other steel pressure vessels**
 - AISI 4340 (AMS 6414 and AMS 6415)
 - AMS 6434
 - D6ac
 - 18Ni maraging steel (200 to 300 grades)

Landing gear

- AMS 6247 (4330 V Mod.)
- AMS 6407
- AMS 6423 (98BV40)

Airframe components other than landing gear

- AMS 6427 (4330 V Mod.)
- AMS 6407
- AISI 4340
- D6ac

Gun tubes

- Gun steel

Recoilless-rifle tubes

- 4330 V (Mod. + Si)
- AISI 4337

Compositions of these steels are given in Table 1.

Fracture-Toughness Testing

Fracture-toughness testing involves testing notched or precracked specimens to determine the tendency for brittle fracturing of a specific
Table 1. Compositions of Alloy Steels Used at High Strength Levels for U.S. Military Applications

<table>
<thead>
<tr>
<th>Steel Type</th>
<th>Composition, percent</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 4340</td>
<td>0.38-0.43 0.60-0.35</td>
<td>0.20-0.35</td>
<td>0.040</td>
<td>0.040</td>
<td>1.65-2.00</td>
<td>0.70-0.90</td>
<td>0.20-0.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMS 6434</td>
<td>0.31-0.38 0.60-0.35</td>
<td>0.20-0.35</td>
<td>0.040</td>
<td>0.040</td>
<td>1.65-2.00</td>
<td>0.65-0.90</td>
<td>0.30-0.40</td>
<td>0.17-0.23</td>
<td>Cu</td>
<td>0.35 max</td>
<td></td>
</tr>
<tr>
<td>AMS 6407</td>
<td>0.27-0.33 0.60-0.35</td>
<td>0.40-0.80</td>
<td>0.025</td>
<td>0.025</td>
<td>1.85-2.25</td>
<td>1.00-1.35</td>
<td>0.35-0.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AMS 6427</td>
<td>0.28-0.33 0.75-1.00</td>
<td>0.20-0.35</td>
<td>0.040</td>
<td>0.040</td>
<td>1.65-2.00</td>
<td>0.75-1.00</td>
<td>0.35-0.50</td>
<td>0.05-0.10</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>300M (AMS 6423)</td>
<td>0.40-0.46 0.75-1.00</td>
<td>0.50-0.80</td>
<td>0.025</td>
<td>0.025</td>
<td>0.60-0.90</td>
<td>0.80-1.05</td>
<td>0.45-0.60</td>
<td>0.01-0.06</td>
<td>B</td>
<td>0.007 max</td>
<td></td>
</tr>
<tr>
<td>4340V (Mod + Si)</td>
<td>0.28-0.33 0.65-0.85</td>
<td>1.45 (b)</td>
<td>-</td>
<td>-</td>
<td>1.65-2.00</td>
<td>0.70-0.90</td>
<td>0.20-0.30</td>
<td>0.10 (b)</td>
<td>Co</td>
<td>Ti</td>
<td></td>
</tr>
<tr>
<td>18Ni (200) (c)</td>
<td>0.03-0.10 0.10-0.10</td>
<td>0.010</td>
<td>0.010</td>
<td>17.0-19.0</td>
<td>-</td>
<td>4.5-8.0</td>
<td>1.0-0.10</td>
<td>0.05-0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18Ni (250) (c)</td>
<td>0.03-0.10 0.10-0.10</td>
<td>0.010</td>
<td>0.010</td>
<td>17.0-19.0</td>
<td>-</td>
<td>4.5-8.0</td>
<td>3.0-0.30</td>
<td>0.05-0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18Ni (300) (c)</td>
<td>0.03-0.10 0.10-0.10</td>
<td>0.010</td>
<td>0.010</td>
<td>18.0-19.0</td>
<td>-</td>
<td>4.5-8.0</td>
<td>5.5-0.55</td>
<td>0.05-0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) 0.40 to 0.45 percent carbon for C-54 landing gear. There is another version of this alloy called 4340M, with 0.38 to 0.45 percent carbon and 1.50 to 1.80 percent silicon, which is also used for landing gear.

(b) Typical.

(c) In addition, these alloys contain 0.05 to 0.15 percent aluminum, and these elements shall be added: boron 0.003 percent, zirconium 0.02 percent, calcium 0.05 percent (ASTM Standards, Part 4, 1967).

material. When brittle fracturing occurs, the gross fracture stress is usually lower than the yield strength. From the historical standpoint, brittle fractures have occurred in a number of structures such as steel storage tanks, welded ships, and Polaris missile cases.

Because of its usefulness in evaluating steels for storage tanks, ship plate, and piping, the Charpy V-notch impact test has been widely accepted as a standard test method for determining transition temperatures and for indicating relative toughness at specific testing temperatures. However, for high-strength steels, tests using standard V-notch Charpy specimens do not adequately discriminate between heats that possess the desired toughness and those that do not. In spite of the limited value of the Charpy impact test, it has been recommended for qualifying steels for gun tubes and landing gear. This test method was selected primarily because there was no other toughness test that was applicable. The precracked Charpy impact test and the precracked Charpy "slow bend test" have only limited usefulness in evaluating the toughness of high-strength steels, but they have been used to some extent for this purpose. Other toughness tests, such as the drop-weight test and the explosion-bulge test, provide useful empirical data on the toughness of low- and intermediate-strength steels, but they are not satisfactory for high-strength steels.

For determining the relative toughness of high-strength steels in sheet form (to 0.250-inch thickness), one may use notched tension test specimens described in "Proposed Recommended Practice for Sharp-Notch Tension Testing of High-Strength Sheet Materials". The resulting test data will provide information on the notch-strength/yield-strength ratio at a specific testing temperature.
Notch-tensile data also may be obtained on large precracked panels. Information on the residual strength of such panels may be useful to the designer, but the panel specimens require too much material for acceptable test specimens for qualification tests.

The present phase of fracture-toughness technology originated as a result of analysis of early Polaris motor cases, which had failed at unexpectedly low stresses on proof testing. These motor cases had been fabricated by roll forming and welding alloy steel sheet. They were heat treated after fabrication. During proof testing, fractures were initiated at flaws or cracks in the cases. These flaws or cracks usually were in the longitudinal welds and had not been detected by nondestructive tests. Personnel of the Naval Research Laboratory who were assigned the task of analyzing this problem realized that the steel should have sufficient toughness to perform satisfactorily in the presence of flaws that were too small to be detected by available nondestructive methods. The fracture-mechanics concept was applied to the problem to permit an estimation of the critical flaw size in a specific alloy steel at a certain strength level when subjected to a specific stress. At the present time, the fracture-mechanics concept for estimation of critical flaw sizes is still being developed, as discussed below.

At the same time, there was some effort devoted to proving the sensitivity of nondestructive testing methods. When small flaws or cracks are detected, they can be ground out and the area reworked. The fracture toughness of the steel should be sufficient to preclude fracture initiation at flaws too small to be detected by whatever nondestructive testing methods are used.

Those assigned to the Polaris program were interested in developing more fundamental fracture testing methods than the empirical methods that were being used for ship plate and line-pipe steels. The fracture-mechanics approach was applicable to high-strength steels, since an elastic stress field could be assumed at the leading edge of a crack beyond a small plastic zone. Thus, the application of fracture mechanics to design for high-strength metals is based on the assumption that there are flaws or cracks in a structure fabricated from these metals. The calculations are based on the assumption that in the structure there is at least one flaw of a size just below that which can be detected by whatever nondestructive testing methods are used. It is further assumed that this flaw is at the location of highest stress and at an orientation transverse to the direction of the major stress. In a thick-wall pressure vessel of high-strength steel, for example, the critical flaw size is a function of the plane-strain fracture-toughness parameter (K_{IC}) and the maximum stress at proof pressure. If failure occurs at stresses equal to or lower than the intended proof pressure, the fracture usually initiates as a brittle fracture with its origin at a flaw or some other form of stress concentrator. The validity of this concept has been confirmed on several Air Force programs.\(^\text{[3,6,7]}\)

In addition, fracture-toughness parameters have been applied to stress-corrosion testing and fatigue testing using precracked specimens. In either case, it is important to know the rate of crack propagation under specific conditions (for specific stress intensities, K_{I}) and the residual strength of components containing cracks that have been developed under these conditions. This information may be used in estimating the size of critical components having cracks when exposed to cyclic and/or corrosive environments. Certain aircraft components, gun tubes, and other structures have certain finite service lives when they contain subcritical flaws and cracks.

ASTM Committee E24, with its four subcommittees and several task groups, has been actively engaged in studying and developing methods for evaluating fracture toughness of high-strength and intermediate-strength alloys. During 1967, one recommended practice for measuring plane-strain fracture toughness, using notched and precracked bend specimens, was submitted to ASTM for publication. This was the "Proposed Recommended Practice for Plane-Strain Fracture-Toughness Testing of High-Strength Metallic Materials Using a Fatigue-Cracked Bend Specimen" (ASTM Standards, Part 31, pp. 1018–1030, May 1968). This practice has been used in a round-robin program in which nine laboratories have participated. The alloys evaluated were:

- 2219–T831 aluminum alloy
- 18Ni maraging steel (250 grade)
- AISI 4340 steel (500 F temper)
- AISI 4340 steel (800 F temper).

The specimens were of sufficient thickness to obtain valid data for the plane-strain stress-intensity factors (K_{IC} values). Results of this program were presented at the Annual Meeting of ASTM in June, 1968.

Plane-strain fracture-toughness testing by the above method can be used only for relatively high-strength alloys. For 1-inch-thick specimens, this practice specifies that the yield-strength/elastic-modulus ratio be equal to 0.0075 or greater to obtain valid K_{IC} data. Thus, to permit use of 1-inch-thick specimens, the minimum yield strength for steels is about 230,000 psi, for aluminum alloys is 75,000 psi, and for titanium alloys is 120,000 psi. The 1-inch-thick specimen is 2 inches wide and 8.5 inches long. Larger specimens are required for testing corresponding alloys at lower yield strength levels.

Many other technical committees have been interested in evaluating fracture toughness of engineering materials. These committees usually have adapted ASTM testing methods to their programs.

The amount of available plane-strain fracture-toughness data that complies with the recommended practice is very limited at the present time. The scatter in K_{IC} data is expected to be somewhat greater than that obtained for tension-test data and other data from less complex tests. Eventually, sufficient fracture-toughness data will be available for high-strength steels, aluminum alloys, and titanium alloys to permit establishing minimum allowable values for design purposes. The designer then can apply the fracture-toughness data to the calculation of critical flaw sizes for the structure of relatively simple design, for a material of a given strength level, and for a predetermined design load. These
calculations may be made for several alternate materials, with the objective being to determine what material has the best balance of crack tolerance, strength level, fabricability, etc., for the structure.

Before reliable design data can be established, however, information on optimum mill practice is desirable. Variation in fracture toughness for 250-grade maraging steel, with variation in finishing temperature, is shown in Figure 2. Effects of variations in mill processing also are presented in Reference (9).

Representative plane-strain fracture-toughness data for high-strength plate materials are presented in Table 2. An explanation of the code letters for crack-propagation direction is shown in Figure 3.

Fracture-toughness data also may be applied to failure analysis of structures of high-strength alloys. One notable example of this is the analysis of the failure of the 260-inch-diameter booster of 18Ni maraging steel that failed on proof testing (10). This investigation provided a demonstration of the method for calculation of critical flaw sizes and correlation of calculated flaw size with the sizes of flaws observed in the fractures.

Other applications for fracture-toughness testing and uses for the stress-intensity criteria will be made as more experience is gained in applying this concept to design, material selection, material evaluation, and nondestructive testing requirements. However, because of the relatively high cost for producing the specimens and the special procedures required for obtaining the data, considerable time and expense will be required before a large backlog of data and experience is acquired.

Motor Cases and Large Boosters

In the examinations made on early Polaris motor cases that had failed prematurely on proof testing, various notched and precracked

Table 2: Representative Plane-Strain Fracture-Toughness Data from Notched-And-Precracked Bend Specimens of High-Strength Alloy Steels at Room Temperature

<table>
<thead>
<tr>
<th>Steel Type</th>
<th>Yield Strength, ksi</th>
<th>Tensile Strength, ksi</th>
<th>Specimen Orientation</th>
<th>Specimen Dimensions, in.</th>
<th>Type of Bend Test</th>
<th>Best Estimate for k_c at F ksi-in.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>18Ni Maraging (VAR)</td>
<td>242</td>
<td>-</td>
<td>WR</td>
<td>0.45, 1.2</td>
<td>4 pt.</td>
<td>84.5</td>
<td>(11)</td>
</tr>
<tr>
<td>18Ni Maraging (VAR)</td>
<td>259</td>
<td>-</td>
<td>RN</td>
<td>0.50, 1.2</td>
<td>4 pt.</td>
<td>68.0</td>
<td>(11)</td>
</tr>
<tr>
<td>18Ni Maraging (VAR)</td>
<td>285</td>
<td>-</td>
<td>RK, RT</td>
<td>0.25-1.0, 1.2</td>
<td>4 pt.</td>
<td>52.0</td>
<td>(11)</td>
</tr>
<tr>
<td>4340</td>
<td>313</td>
<td>-</td>
<td>RK(b)</td>
<td>0.5, -</td>
<td>3 pt.</td>
<td>70.0</td>
<td>(12)</td>
</tr>
<tr>
<td>4340</td>
<td>230</td>
<td>-</td>
<td>RK(b)</td>
<td>1, -</td>
<td>3 pt.</td>
<td>53.0</td>
<td>(12)</td>
</tr>
<tr>
<td>4110 (3 heats)</td>
<td>190</td>
<td>205</td>
<td>RK(b)</td>
<td>1, 1</td>
<td>4 pt.</td>
<td>70-110</td>
<td>(1)</td>
</tr>
<tr>
<td>4340 (3 heats)</td>
<td>220</td>
<td>265</td>
<td>RK(b)</td>
<td>0.4, -</td>
<td>3 pt.</td>
<td>52-56</td>
<td>(1)</td>
</tr>
<tr>
<td>5Cr-Mo-V (H-11)</td>
<td>211</td>
<td>260</td>
<td>RK(b)</td>
<td>0.5, 1</td>
<td>3 pt.</td>
<td>51-55</td>
<td>(1)</td>
</tr>
<tr>
<td>5Cr-Mo-V (H-11)</td>
<td>275</td>
<td>-</td>
<td>RK(b)</td>
<td>1, 1</td>
<td>3 pt.</td>
<td>25.0</td>
<td>(1)</td>
</tr>
<tr>
<td>Uboac</td>
<td>-</td>
<td>275</td>
<td>RK(b)</td>
<td>0.25, 0.26-0.7</td>
<td>3.4 pt.</td>
<td>60-70</td>
<td>(15)</td>
</tr>
</tbody>
</table>

(a) VM = vacuum melted, VAR = vacuum arc remelted.
(b) Probable orientations of specimens and notches (see Figure 3).
specimens were used in attempting to obtain a quantitative parameter for evaluating the plane-stress (thin-section) properties of high-strength sheet steels and weldments. As a result of these studies, a better understanding was reached regarding the fracture-toughness requirements for high-strength steels used in thin-wall pressure vessels; however, no standard procedure is yet available for determining quantitative parameters to define the plane-stress fracture toughness of high-strength steels in sheet thicknesses.

Alloy-steel motor cases for tactical missiles usually are thin-wall cylinders that would require plane-stress analysis for determining the fracture-toughness parameters. In the absence of a standard quantitative test for obtaining values of K_C, several alternatives may be used. One is to use the sharp-edge-notch or the precracked-center-notch specimens described in "Proposed Recommended Practice for Sharp-Notch Tension Testing of High-Strength Sheet Materials." The resulting information on notch-strength/yield-strength ratios is indicative only of the relative toughness of the sheet material.

Another alternative is to make somewhat arbitrary plane-stress fracture-toughness tests, using center-notched-and-precracked specimens as described in the above reference to obtain values for K_C. Large center-notched panels also may be used. The procedure is discussed in a Committee report. Data from such tests may be used to estimate critical flaw sizes under plane-stress conditions. However, there are a number of uncertainties in these tests that have not been resolved, such as the effect of thickness, the effect of strain rate, the stress analysis when a relatively large plastic zone occurs ahead of the crack, etc. Therefore, proper interpretation of the data is necessary.

A more practical approach to the problem of determining the effects of small flaws in thin-wall pressure vessels is to induce small cracks in prototype vessels and subject them to hydrostatic tests. This has been done on several Government programs. The data are summarized in Table 3, and in Figure 4. The data show that cracks of subcritical size do not appreciably affect the burst strength of the vessels. When information has been obtained in this way regarding the critical flaw size, one has an indication of the sensitivity required of the nondestructive testing equipment for identifying flaws in similar production motor cases. After the flaws are located, the same information is helpful in deciding which flaws should be repair welded. Welding repairs for flaws that are substantially smaller than critical size actually may cause damage rather than improvement in the motor-case performance.

This approach is feasible only for small pressure vessels or motor cases having relatively thin walls. However, precracked pressure vessel tests will be required to confirm plane-stress fracture-toughness data obtained on precracked sheet-type specimens when such tests are finally developed.

For relatively thick-wall booster cases of high-strength steel, fracturing at flaws tends to occur under plane-strain conditions. Since fracturing under these conditions occurs with only a limited amount of plastic deformation at the leading edge of the crack, the required stress analysis is not as complex as for the thin-section problem. The status of plane-strain fracture-toughness testing is discussed in a previous section. A limited amount of information has been obtained from hydrostatic tests on thick-wall pressure vessels containing intentional flaws. The available information verified the relationship between the fracture-toughness parameter and the critical flaw size for fracture initiation.
Since the practice recommended for plane-strain fracture-toughness testing has become available only recently, nonstandard methods were used in the earlier fracture-toughness studies of high-strength steel plate for solid-propellant boosters. One of the outstanding studies in this area was that conducted by Aerojet-General Corporation in evaluating maraging steels for large booster motors. The specifications developed on this program for maraging steel used in a large booster motor were eventually used in a later program in fabricating a 260-inch-diameter motor case that was successfully proof tested and test fired. In the initial program, plane-strain fracture-toughness tests were made on specimens representing a number of heats of maraging steel and welds in these steels. Fracture-toughness correlation studies were conducted, using part-through-crack tensile specimens, center-notch tensile specimens, notch-bend test specimens, and precracked Charpy specimens. Air-melted, vacuum-degassed, and vacuum-arc-remelted heats of 18Ni maraging steel having yield strengths over the range from 200,000 to 300,000 psi were evaluated. These tests indicated that the highest yield strength that would provide the required level of fracture toughness for large motor cases was 255,000 psi for vacuum-arc-remelted maraging steel. The significant point is that the primary requirement was adequate fracture toughness to minimize the possibility of premature failure on proof testing and during static firing tests.

In a similar program for fabricating and testing 260-inch-diameter motor cases of maraging steel conducted by Thokol Chemical Corporation and Newport News Shipbuilding and Drydock Company, the first motor case (SL-1) failed on proof testing. Failure occurred at about 56 percent of the intended proof pressure. Examination of the fractures revealed two flaws, one being the primary origin of fracture and the other appeared to be a secondary origin of fracture. These defects were located in submerged arc welds under manual TIG repair welds. This motor case was fabricated from air-melted 18Ni maraging steel of 250 grade. The fracture toughness of the submerged arc welds was not adequate to tolerate the defects that were revealed in the fractures. In this instance, nondestructive testing did not reveal these flaws before final aging and no inspection was conducted after final aging. This program has demonstrated the need for close cooperation among those responsible for material selection, welding, and nondestructive testing in order to minimize occurrence of premature failures. Because of complications in trying to determine Xc values equivalent to the stress-intensity factors representative of the weld materials in the areas of the flaws, an accurate correlation of flaw size and fracture stress was not feasible. However, the failure analysis based on plane-strain fracture-toughness measurements and the size of the flaw at the fracture origin is described in the report.

The results of these programs indicate that plane-strain fracture-toughness data can be applied when selecting materials and heat treatment for large thick-wall motor cases of high-strength steel, if the nondestructive inspection procedures are sufficiently sensitive to detect flaws of critical size.

Pressure Vessels Other Than Motor Cases

The situation in the establishment of fracture-toughness criteria for pressure vessels other than motor cases is much the same as for motor cases.

When there is no weight limitation, pressure vessels for pressurized gases or storage of liquids often are made of lower strength steels. If there is a weight limitation, the corrosive conditions or temperature conditions often dictate the use of high-strength stainless steels, aluminum, titanium, or nickel-base alloys.

However, maraging-steel pressure vessels have been fabricated for high-pressure gas storage. For these applications, the same fracture-toughness criteria apply as discussed in the previous section.

Table 3. Hydrostatic Test Data on Alloy-Steel Pressure Vessels Having Intentional Flaws

<table>
<thead>
<tr>
<th>Steel Type</th>
<th>Wall Thickness, in.</th>
<th>Diameter, in.</th>
<th>Flaw Size</th>
<th>Max Wall Stress With Flaw, ksi</th>
<th>Max Wall Stress Without Flaw, ksi</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18Ni Maraging (277 ksi Y.S.)</td>
<td>0.040</td>
<td>20</td>
<td>0.030 0.014</td>
<td>331</td>
<td>319</td>
<td>Tested at -65 F. (15)</td>
</tr>
<tr>
<td>18Ni Maraging (305 ksi Y.S.)</td>
<td>0.020</td>
<td>6</td>
<td>0.042 0.011</td>
<td>286</td>
<td>304</td>
<td>See Figure 4 for plot of data. (16)</td>
</tr>
<tr>
<td>Type 301 Stainless (280 ksi Y.S.)</td>
<td>0.064</td>
<td>12.5</td>
<td>0.050 0.035</td>
<td>352</td>
<td>343</td>
<td>Tested at -65 F. (15) Vessel stretched 15.8 percent on cryoforming at -320 F.</td>
</tr>
</tbody>
</table>

The data in Table 3 is based on plane-strain fracture toughness measurements and the size of the flaw at the fracture origin is described in the report.
Landing Gear

Steels for landing gear are put into service at higher strength levels than any other major structural components. At maximum design loads, some of the stresses in landing gear may approach the yield strength. According to information from the Bendix Corporation, the following four steels are used for the major landing gear components.

<table>
<thead>
<tr>
<th>Steel Type</th>
<th>Aircraft Designations</th>
<th>Tensile Strength Range, ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 4340 (AMS 6414)</td>
<td>707, C-141, Electra</td>
<td>280 to 300</td>
</tr>
<tr>
<td>904V40 (AMS 6423)</td>
<td>C-5A, 720, 727-200</td>
<td>280 to 300</td>
</tr>
<tr>
<td>N-11</td>
<td>737, 747, 2707</td>
<td>280 to 300</td>
</tr>
<tr>
<td></td>
<td>F4, NASC</td>
<td>260 to 280</td>
</tr>
<tr>
<td></td>
<td>B-70</td>
<td>--</td>
</tr>
</tbody>
</table>

At Grumman, all alloy steels for aircraft components are vacuum-arc remelted to achieve highest quality and best toughness. The general opinion at Grumman is that, since the cost of vacuum-arc-remelted (VAR) alloy steels has declined in recent years, the improved quality is worth the extra cost. With all alloy steels from VAR heats, there is no chance for mixing air-melted and VAR heats. Vacuum-degassed steel apparently does not meet their quality requirements.

At Grumman, for landing gear for the F-111A are made of 4330 V Mod. steel vacuum-arc remelted and heat treated to 220-240 ksi tensile strength. Axles for these gear are D6ac steel at 260-280 ksi, and pins and other small parts are AISI 4340 steel at 260-280 ksi.

The above information was confirmed by the Bendix Corporation, which has the responsibility for fabricating landing gear for a number of military and civilian aircraft. Among these is the landing gear for the F-4. The main forgings for this landing gear are made from billets of air-melted 904V40 (AMS 6423) steel (aircraft quality) and are heat treated to 260-280 ksi tensile strength.

Additional information from Grumman Aircraft Engineering Corporation indicates that landing-gear forgings for the F-111A are made of 4330 V Mod. steel vacuum-arc remelted and heat treated to 220-240 ksi tensile strength. Axles for these gear are D6ac steel at 260-280 ksi, and pins and other small parts are AISI 4340 steel at 260-280 ksi.

At the beginning of the F-111 program, for landing gear were required to have a minimum 15-foot-pound Charpy V-notch energy at -65°F. This was not practical for steels in the 260-280 ksi strength range, and the requirement was eased after the program had begun. The D6ac steel and the 4330 V Mod. steel are purchased under General Dynamics specifications. The Charpy V-notch impact requirement, when it applies, is dependent on the cross section of the forging billet. However, most significance is placed on the transverse ductility of tensile specimens obtained from the forging billets and heat treated to the same strength as the forgings. The transverse ductility is the same as the reduction in area in transverse tensile specimens (RAT).

Vacuum-arc-remelted 500M steel forgings (0.40 to 0.45 percent C) at 280-300 ksi tensile strength are being used in landing gear for the C-5A cargo aircraft. These are exceptionally large forgings and require large forging billets. At the beginning of the C-5A program, there was a 15-foot-pound Charpy V-notch energy requirement at -65°F for transverse specimens of the forging billets. However, the large billets had not received sufficient reduction on forging from the largest available VAR ingots to achieve this level of toughness at the high strength level. The highest impact values that were obtained for the large billets under the specified testing conditions were 5 to 9 foot-pounds, according to information from Lockheed-Georgia Company. Although the hot working received by the billets during their reduction to the landing-gear forgings substantially improves the toughness of the material, the object of the initial tests is to qualify the billets before the forging operation. The material that does not qualify can be rejected before it is subjected to the costly forging operations.

Because of this problem, Lockheed-Georgia has been authorized to qualify the forging billets by means of RAT values from tensile specimens. Lockheed personnel believe that this is a much more useful means of qualification, and they have obtained statistical data to verify this conclusion. In order to obtain correlation with fracture-toughness data, samples from the 300 M alloy steel billets are being sent to the Air Force Materials Laboratory for fracture-toughness tests.

According to additional information from the Bendix Corporation, the selection of steels for landing gear will be influenced by heat-treating procedure as well as by fracture-toughness considerations. In order to minimize the distortion that is usually experienced during the normal austenitizing and oil-quenching operations, Bendix has installed a new quasby heat-treating unit that is large enough for C-5A landing-gear components. In this unit, the landing-gear components are austenitized in a controlled atmosphere furnace, quenched in a salt bath at 1000°F (at the nose of the S curve), then transferred to a salt bath at 400°F or to an oil quenching tank. This treatment is followed by the regular tempering treatment. The alloy steels to be heat treated by this method must have sufficient hardenability and extended transformation times at 1000°F for thorough hardening. Alloy steels that can be hardened satisfactorily by this method include AISI 4340, 300M, and AMS 6423. Achieving minimum distortion is significant, because this indicates low residual stresses.

As a result of this limited survey of fracture-toughness requirements of steels for landing gear, it is obvious that there is little if any application of fracture-toughness testing to the selection of alloy steels, qualification of forging billets, or forgings for landing gear.

In nondestructive inspection of forgings for landing-gear parts, one source reported that magnetic-particle inspection was the only method used. Others reported that they used magnetic-particle, penetrant, and ultrasonic methods. X-ray inspection was used only when welding was employed during fabrication. Because of the high strength level and high service stresses, the critical flaw sizes for landing gear are expected to be very small (about 1/8 inch long at the surface) for AISI 4340 steel at a tensile strength of 265,000 psi and yield strength of 220,000 psi when subjected to a tensile stress of 180,000 psi.
assuming the length of the crack is four times its depth. Repeated loading and corrosive conditions can cause growth of small flaws or cracks. Therefore, careful inspection of landing gear in service is warranted.

Aircraft Structural Components
Other Than Landing Gear

The F-111 and C-5A aircraft contain a number of structural components of high-strength steel.

The carry-through fitting for the wing pivots and the outboard-pivot fittings for the F-111 are of D6ac steel forgings and weldments heat treated to 220-240 ksi tensile strength (190 ksi minimum yield strength). Information from General Dynamics/Fort Worth indicates that fracture-toughness specimens representative of the forgings and plates are tested in order to insure adequate fracture toughness. Both center-notched-and-precracked tensile specimens and notched-and-precracked bend specimens are used. The type of specimen used presumably is dependent on the thickness of the metal in the forging or plate which it represents. The method used in testing the bend specimen is the same as the ASTM-recommended practice discussed previously. (See page 6) According to General Dynamics, the fracture-toughness tests are very sensitive to variations in quality of the material and processing variables. The KIC data from these tests have not been applied to stress analysis for estimating critical crack sizes at General Dynamics/Fort Worth, but if the KIC values are lower than the accepted minimum values, either the steel quality or the heat treatment is not satisfactory.

Some bulkhead forgings for the F-111 are of D6ac steel heat treated to 220-240 ksi tensile strength. Some of the other structural components for the F-111 also are D6ac steel forgings that are heat treated to 260-280 ksi tensile strength.

Most of these structural components are fabricated by welding of forgings. The weld areas in the components are very thoroughly inspected by radiographic, ultrasonic, and magnetic-particle procedures. If any defects are observed, they are ground out and the repair area is rewelded.

In the C-5A airframe, 500M steel forgings (VAR) are being used for a number of components, such as fittings, hinges, pins, etc. A few parts of the landing-gear auxiliary structure are made of AISI 4340 steel (VAR) at 260-280 ksi tensile strength. A few forgings of D6ac steel heat treated to 260-280 ksi tensile strength also are used in the airframe. No fracture-toughness testing is involved in qualifying any of these forgings.

According to information from Grumman, 4330 V Mod. steel (VAR) at 220-240 ksi tensile strength is the steel used for many airframe components fabricated at Grumman. No fracture-toughness requirements are specified for these components, other than the limited Charpy V-notch requirements in the purchase specification for the forging billets.

Arresting hooks for naval aircraft represent a critical application of alloy steels at high strength levels. These hooks have been made of 4330 V Mod., AISI 4340, D6ac, and maraging steels. However, no further information is available on the preferred alloy, its strength level, or the evaluation of the steel for this application.

Gun Tubes

Gun tubes such as those used for 175-mm M113 and 105-mm M68 cannon represent critical applications by the Army for high-strength steels. For many years, there has been a continuing effort to obtain quality alloy steel for gun tubes, since the service requirements are unusually severe. Because of a fracture in service in Vietnam of one 175-mm M113 gun tube, this fractured tube and a number of others were subjected to an extensive mechanical-property study at Watervliet Arsenal. The traditional qualification tests for gun tubes are tensile tests and V-notch Charpy impact tests, made on specimens obtained in the transverse direction from disks cut from one or both ends of the forged tube. The impact tests are made at -40 F and at room temperature.

In the above investigation, 38 175-mm M113 gun tubes from three vendors were sectioned in order to obtain test specimens from specified locations in each tube. Particular significance was placed on reduction in area for ductility and in Charpy V-notch energy for toughness. Results of the program indicated that the variation in these properties within a given tube and from one tube to another was significant. For this application, there was sufficient variation in the toughness in the transverse direction to be readily detected in the Charpy V-notch test data. The overall range for all Charpy data obtained at -40 F was from 4 foot-pounds to 25 foot-pounds. Pre-cracked Charpy specimens also were obtained in the transverse direction using disks cut from the gun tubes and tested at -40 F. Data from these tests also indicated a wide scatter in W/A values (fracture energy in inch-pounds/residual fracture area in square inches). At -40 F, the W/A value for each tube was from 100 to 800 in-lb/in2, while the overall range for all specimens was from 150 to about 1070 in-lb/in2.

In another program conducted at Watervliet Arsenal, Charpy V-notch specimens and precracked Charpy specimens were used in characterizing the toughness of a series of 105-mm M68 gun tubes. Again, a considerable spread in data was observed for both the standard Charpy and precracked Charpy data. However, statistical evaluation of the data obtained by both methods indicated that the pre-cracked Charpy data provided a normal distribution, while the standard V-notch data represented a bimodal distribution. This effect reduces the validity of a direct comparison of the data. Actually, some of the standard V-notch specimens had fractured in the same way as had the precracked specimens, because of inclusions or flaws at the roots of the notches.

These results indicate that additional studies on fracture toughness of gun tubes are warranted. Advanced studies are being conducted at Watervliet Arsenal on the fracture problem.

According to information from Watervliet Arsenal, a correlation has been obtained between
The tubing is heat treated to a yield strength of 130,000 to 160,000 psi. Precracked impact tubing of AISI 4337 steel is currently being used apparently proved the 4330 V (Mod in production of the 106-in recoilless rifle.

Following these tests, firing tests were conducted to evaluate recoilless-rifle tubes of each of the steels were compared in selecting the alloy steel and heat treatment that gave the best balance of strength and toughness for the application. Once the cracks are started, they become larger each time the gun is fired. The problem is to determine how long the gun can remain in service after the cracks have been initiated before complete fracture of the tube is imminent. The shock-loading effect, the heating effect of the charge, the corrosion effect of the gases in the tube, the possibility of a low-temperature environment, and the stress-concentration effect at the rifling notches are some of the factors to be considered in analysing the problem of crack initiation and propagation in gun tubes. Since these factors are peculiar to the gun-tube application, the development of specific test methods for gun-tube steels may be required to provide quantitative information on their fracture-toughness characteristics. At the present time, however, the Charpy impact test is the primary test for indicating toughness of gun tubes.

Recoilless-Rifle Tubes

Alloy-steel tubing for recoilless rifles is a relatively thin-wall material and therefore is not amenable to plane-strain fracture-toughness testing. However, potential alloy steels for recoilless-rifle tubing were evaluated in 1962 at Frankford Arsenal, using sheet-type specimens of edge-notched and center-notched-precracked design. These specimens were fractured on tensile loading, and Kic values (for plane-strain fracturing) were obtained for each of the steels (Type 410 stainless, 4350 V [Mod. + Si], AMS 6434, D6ac, Airsteel X200, 300M, H-11 and AM350-CRT) at various tempering temperatures. The yield strength and toughness of each of the steels were compared in selecting the alloy steel and heat treatment that gave the best balance of strength and toughness for the application. Following these tests, firing tests were conducted to evaluate recoilless-rifle tubes of 4330 V (Mod + Si) steel. The firing tests apparently proved the 4330 V (Mod + Si) steel to be satisfactory for this type of service.

At Watervliet Arsenal, Timken seamless tubing of AISI 4337 steel is currently being used in production of the 106-mm recoilless rifle. The tubing is heat treated to a yield strength of 130,000 to 160,000 psi. Precracked impact specimens (thinner than standard Charpy specimens) have been used to determine the relative toughness values of the steel in these tubes.

When a standard procedure has been developed for plane-strain fracture-toughness testing, evaluation of steels for recoilless-rifle tubes would be one application for the test.

Canadian Military Applications

Available reports from the Department of Energy, Mines and Resources in Ottawa indicate that plane-strain fracture-toughness tests have been made on high-strength steel armor plate and steels for hydrofoils. The armor plate was a silicon-chromium-molybdenum steel with zirconium and boron added (XAR-30) and was 1/4 inch thick. After heat treating, it had an equivalent surface hardness of 495 Brinell and an equivalent center hardness of 410 Brinell. Single-edge-notch specimens for tensile loading were obtained from both the longitudinal and transverse directions in the plate. Fatigue cracks were developed at the roots of the notches. Since the plate did not have uniform hardness through the thickness, the data have only limited value. However, the results showed a significant difference in toughness between the longitudinal and transverse directions, the effects of low-temperature testing, and the effects of distilled water and seawater environments on the toughness of the plate. Such information could be useful to the designer and might be used for failure analysis in the event that brittle fractures occur in service.

In 1965, the foils of the prototype model of the Royal Canadian Navy’s hydrofoil vessel were to be manufactured of 18Ni maraging steel (250 grade). Other steels, of lower strength and higher toughness, also were considered for this application; these included 12Ni maraging steel and HP 9Ni-4Co steel. Toughness of a laboratory heat and a commercial heat of 12Ni maraging steel was evaluated using standard V-notch Charpy impact specimens and precracked Charpy specimens. Information on the final results of tests obtained on this program is not available.

The importance of adequate fracture toughness in military applications of high-strength steels is being recognized in Canada and sever 1 Canadians are active on the subcommittee program of ASTM Committee E 24.

United Kingdom Military Applications

Most of the British programs on fracture-toughness testing of steels are under the jurisdiction of the Navy Department Advisory Committee on Structural Steel and the Inter-Group Laboratories of the British Steel Corporation (formerly BISRA). In the Navy programs, steels and weldments have been divided into these categories:

(a) Steels with yield strengths up to 90 ksi
(b) Steels with yield strengths between 90 and 180 ksi
(c) Steels with yield strengths greater than 180 ksi
For steels and weldments having less than 180-ksi yield strength, tests to indicate fracture initiation conditions and fracture propagation conditions include the Wells wide-plate test, the Pellini explosion-bulge test, the Robertson isothermal wide-plate test, the drop-weight tear test, and the Navy tear test; all of these have been considered by the Navy Department Advisory Committee. The V-notch Charpy impact test is considered suitable for quality-control purposes if correlated with intermediate- or large-scale tests.

For steels having yield strengths greater than 180-ksi, the Navy Department Advisory Committee has agreed that the linear elastic fracture mechanics approach is the most appropriate for fracture-toughness evaluation. Much of the research on fracture-toughness testing of high-strength steels is being conducted by the Inter-Group Laboratories of the British Steel Corporation and by 25 cooperating laboratories associated with the High Strength Steels Working Group. Steels which have been evaluated on these programs include low-alloy steels of the following compositions:

<table>
<thead>
<tr>
<th>Specification</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>W</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCM</td>
<td>0.05</td>
<td>0.79</td>
<td>0.04</td>
<td>0.008</td>
<td>0.012</td>
<td>1.72</td>
<td>1.31</td>
<td>0.28</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>0.39</td>
<td>1.45</td>
<td>1.15</td>
<td>0.006</td>
<td>0.008</td>
<td>1.40</td>
<td>0.39</td>
<td>0.40</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM-3</td>
<td>0.27</td>
<td>0.20</td>
<td>0.13</td>
<td>0.009</td>
<td>0.012</td>
<td>1.89</td>
<td>1.11</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These steels may be heat treated to yield strengths in the range of 180 to 260 ksi (tensile strength range 200 to 310 ksi). Maraging steel also has been evaluated in one of the programs. These steels might be applicable to landing gear, other aircraft forgings, missile motor cases, and other types of pressure vessels. Emphasis, however, has been placed on familiarization with the testing methods among cooperating laboratories and determination of the limitations of the testing methods rather than on testing a certain alloy for a specific application. Testing methods usually involved notched-and-precracked bend specimens and single-edge-notch tensile specimens proposed originally by members of ASTM Committee E24. As a result of these programs, each of the cooperating laboratories has gained experience in making plane-strain fracture-toughness tests. No information is available at the present time regarding plans for imposing requirements for minimum fracture-toughness values on British military components of high-strength steels. However, as more high-strength components are used in various military applications, there will be an increased demand to meet minimum fracture-toughness standards. Eventually, this will apply to high-strength aluminum and titanium alloys as well as to high-strength steels.

REFERENCES

REFERENCES NOT CITED IN TEXT

(29) Annual Report, Navy Department Advisory Committee on Structural Steel, NDACS/R.100 (1967).

REFERENCES NOT CITED IN TEXT

LIST OF DMIC MEMORANDA ISSUED
DEFENSE METALS INFORMATION CENTER
Battelle Memorial Institute
Columbus, Ohio 43201

Copies of the memoranda listed below may be obtained, while the supply lasts, from DMIC at no cost by Government agencies, and by Government contractors, subcontractors, and their suppliers. Qualified requestors may also order copies of these memoranda from the Defense Documentation Center (DDC), Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314. A complete listing of previously issued DMIC memoranda may be obtained by writing DMIC.

<table>
<thead>
<tr>
<th>DMIC Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>Recent Information on Long-Time Creep Data for Columbium Alloys, April 26, 1965 (AD 464715)</td>
</tr>
<tr>
<td>204</td>
<td>Summary of the Tenth Meeting of the Refractory Composites Working Group, May 5, 1965 (AD 465260)</td>
</tr>
<tr>
<td>205</td>
<td>Corrosion Protection of Magnesium and Magnesium Alloys, June 1, 1965 (AD 469906)</td>
</tr>
<tr>
<td>206</td>
<td>Beryllium Ingot Sheet, August 10, 1965 (AD 470551)</td>
</tr>
<tr>
<td>207</td>
<td>Mechanical and Physical Properties of Invar and Invar-Type Alloys, August 31, 1965 (AD 474255)</td>
</tr>
<tr>
<td>208</td>
<td>New Developments in Welding Steels With Yield Strengths Greater Than 150,000 psi, September 28, 1965 (AD 473480)</td>
</tr>
<tr>
<td>209</td>
<td>Materials for Space-Power Liquid Metals Service, October 5, 1965 (AD 473754)</td>
</tr>
<tr>
<td>210</td>
<td>Metallurgy and Properties of Thoria-Strengthened Nickel, October 1, 1965 (AD 474854)</td>
</tr>
<tr>
<td>211</td>
<td>Recent Developments in Welding Thick Titanium Plate, November 24, 1965 (AD 477403)</td>
</tr>
<tr>
<td>212</td>
<td>Summary of the Eleventh Meeting of the Refractory Composites Working Group, April 1, 1966 (AD 481620)</td>
</tr>
<tr>
<td>213</td>
<td>Review of Dimensional Instability in Metals, June 23, 1966 (AD 487419)</td>
</tr>
<tr>
<td>214</td>
<td>Surface Welding in the Space Environment, June 9, 1966 (AD 488246)</td>
</tr>
<tr>
<td>215</td>
<td>Titanium - 1966 (Lectures Given at a Norair Symposium, March 28-29, 1966), September 1, 1966 (AD 801280)</td>
</tr>
<tr>
<td>216</td>
<td>Weldability of High-Strength Aluminum Alloys, August 22, 1966 (AD 801281)</td>
</tr>
<tr>
<td>217</td>
<td>A Survey of the Feasibility of an Analytical Approach to Die Design in Closed-Die Forging, June 1, 1966 (AD 803745)</td>
</tr>
<tr>
<td>218</td>
<td>Corrosion of Titanium, September 1, 1966 (AD 803701)</td>
</tr>
<tr>
<td>219</td>
<td>Vacuum-Degassed Steels From the Consumer's Viewpoint, September 15, 1966 (AD 803703)</td>
</tr>
<tr>
<td>220</td>
<td>The 9Ni-4Co Steels, October 1, 1966 (AD 801977)</td>
</tr>
<tr>
<td>221</td>
<td>First National Symposium of The Center for High-Energy-Rate Forming, November 1, 1966 (AD 807453)</td>
</tr>
<tr>
<td>222</td>
<td>Summary of the Twelfth Meeting of the Refractory Composites Working Group, April 1, 1967 (AD 813036)</td>
</tr>
<tr>
<td>223</td>
<td>Designation Of Alloys for the Aerospace Industry, April 12, 1967 (AD 815372)</td>
</tr>
<tr>
<td>224</td>
<td>Review of Alloys and Fabricating Methods Used for Tactical Missile Motor Cases, August 15, 1967</td>
</tr>
<tr>
<td>225</td>
<td>Explosive Bonding, September 15, 1967</td>
</tr>
<tr>
<td>226</td>
<td>Current and Future Trends in the Utilization of Titanium, October 27, 1967</td>
</tr>
<tr>
<td>227</td>
<td>Summary of the Thirteenth Meeting of the Refractory Composites Working Group, September 1, 1967</td>
</tr>
<tr>
<td>228</td>
<td>Accelerated Creep Propagation of Titanium by Methanol, Halogenated Hydrocarbons, and Other Solutions, March 6, 1967</td>
</tr>
<tr>
<td>229</td>
<td>Melting and Casting Review, November 15, 1967</td>
</tr>
<tr>
<td>230</td>
<td>New High-Temperature Alloys, February 15, 1968</td>
</tr>
<tr>
<td>231</td>
<td>Stress-Corrosion Cracking of Aluminum Alloys, A Review of the German Literature, August, 1967</td>
</tr>
<tr>
<td>232</td>
<td>Designations of Alloys for the Aerospace Industry (Revised), February 1, 1968</td>
</tr>
<tr>
<td>233</td>
<td>Ind7ex of Temper Designations of Alloys, February 1, 1968</td>
</tr>
<tr>
<td>234</td>
<td>Titanium for the Chemical Engineer (presented at AIChE Materials Conference, April 1, 1968)</td>
</tr>
<tr>
<td>236</td>
<td>Rupture Strengths of Selected High-Iron, Nickel-Base, and Refractory Metal Alloys, May 1, 1968</td>
</tr>
<tr>
<td>237</td>
<td>A Review of Metallographic Preparation Procedures for Beryllium and Beryllium Alloys, June 1, 1968</td>
</tr>
<tr>
<td>238</td>
<td>The Oxidation and Contamination of Titanium and its Alloys, July 1, 1968</td>
</tr>
</tbody>
</table>
This Memorandum discusses the current situation on the inclusion of fracture-toughness testing requirements in specifications for high-strength steels used for military applications. The Memorandum was prepared at the request of The Technical Cooperation Program (TTCP), and contains information from Canadian and British members of that program, as well as U. S. information. Military applications discussed include missile motor cases, aircraft landing gear, gun tubes, armor plate, and hydrofoils.
Instructions

<table>
<thead>
<tr>
<th>1. ORIGINATING ACTIVITY</th>
<th>Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a. REPORT SECURITY CLASSIFICATION</td>
<td>Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.</td>
</tr>
<tr>
<td>2b. GROUP</td>
<td>Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.</td>
</tr>
<tr>
<td>3. REPORT TITLE</td>
<td>Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.</td>
</tr>
<tr>
<td>4. DESCRIPTIVE NOTES</td>
<td>If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.</td>
</tr>
<tr>
<td>5. AUTHOR(S)</td>
<td>Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.</td>
</tr>
<tr>
<td>6. REPORT DATE</td>
<td>Enter the date of the report as day, month, year or month, year. If more than one date appears on the report, use date of publication.</td>
</tr>
<tr>
<td>7a. TOTAL NUMBER OF PAGES</td>
<td>The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.</td>
</tr>
<tr>
<td>7b. NUMBER OF REFERENCES</td>
<td>Enter the total number of references cited in the report.</td>
</tr>
<tr>
<td>8a. CONTRACT OR GRANT NUMBER</td>
<td>If appropriate, enter the applicable number of the contract or grant under which the report was written.</td>
</tr>
<tr>
<td>8b. 8c. & 8d. PROJECT NUMBER</td>
<td>Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.</td>
</tr>
<tr>
<td>9a. ORIGINATOR'S REPORT NUMBER(S)</td>
<td>Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.</td>
</tr>
<tr>
<td>9b. OTHER REPORT NUMBER(S)</td>
<td>If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).</td>
</tr>
<tr>
<td>10. AVAILABILITY/LIMITATION NOTICES</td>
<td>Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:</td>
</tr>
<tr>
<td>(1) "Qualified requesters may obtain copies of this report from DDC."</td>
<td></td>
</tr>
<tr>
<td>(2) "Foreign announcement and dissemination of this report by DDC is not authorized."</td>
<td></td>
</tr>
<tr>
<td>(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"</td>
<td></td>
</tr>
<tr>
<td>(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"</td>
<td></td>
</tr>
<tr>
<td>(5) "All distribution of this report is controlled. Qualified DDC users shall request through"</td>
<td></td>
</tr>
</tbody>
</table>

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Abstract

Fracture-toughness testing
- **Gun tubes**
- **High-strength steels**
- **Landing gear**
- **Motor cases**
- **Pressure vessels**
- **Testing**