AMMRC TR 68-19

HIGH ENERGY RATE FORMING (PNEUMATIC-MECHANICAL) OF TYPES 200, 250, AND 300 18% NICKEL MARAGING STEEL

Technical Report by
ROGER A. GAGNE

October 1968

This document has been approved for public release and sale; its distribution is unlimited.

AMCMS Code 4930
PEMA
Materials Manufacturing Technology
Subtask 56341

PROCESS LABORATORY
ARMY MATERIALS AND MECHANICS RESEARCH CENTER
WATERTOWN, MASSACHUSETTS 02172
ARMY MATERIALS AND MECHANICS RESEARCH CENTER

HIGH ENERGY RATE FORMING (PNEUMATIC-MECHANICAL) OF TYPES 200, 250, AND 300 18% NICKEL MARAGING STEEL

ABSTRACT

High energy rate forming with a pneumatic-mechanical press of types 200, 250, and 300 18% nickel maraging steels followed by heat treatment yielded optimum mechanical properties when forged to a 75% reduction at 1900 F. These properties were slightly superior to those observed for the as-received and heat-treated materials.
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>2</td>
</tr>
<tr>
<td>TESTING</td>
<td>2</td>
</tr>
<tr>
<td>MECHANICAL PROPERTIES VERSUS FORGING TEMPERATURE</td>
<td>12</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

Included among the evolution of today's various High Energy Rate Forming (often referred to as HERF) equipment is the pneumatic-mechanical press. Unlike explosive forming which requires a remote work area, the pneumatic-mechanical press is normally found housed among the more conventional metal-forming equipment. The ability of the HERF process to deliver energy rapidly, thereby inducing strain rates higher than those associated with that of conventional techniques, frequently results in greater formability limits and occasionally in correspondingly increased mechanical properties. This in turn can allow the forming of more intricate shapes than those possible with the more conventional deformation techniques.

This process, as a result of displaying appreciable dollar savings in a number of applications, is currently gaining wide acceptance in the metalworking industry. Complex components can be formed to close tolerances, thereby minimizing scrap losses and subsequent machining operations. These savings are significant when one considers the ever-increasing material costs together with the spiraling costs in today's labor market. Some typical case histories are:

1. More than four pounds of $1.70-per-pound material saved on 13,000 parts.\(^1\)

2. Eight-pound differential drive housing; a 20% material saving.\(^2\)

3. Stainless steel gimbal yoke; a 72% savings in raw material.\(^3\)

The purpose of the program was to generate forging data relating the effects, if any, of high speed deformation on the physical and metallurgical properties of the 18% nickel series of maraging steel.

PROCEDURE

Three types of commercially available vacuum-melted 18% nickel maraging steel (200, 250, and 300) were obtained in the form of 2-1/8-inch-diameter bar stock. The chemical composition of the material in weight percent was as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>S</th>
<th>P</th>
<th>Mo</th>
<th>Co</th>
<th>Ni</th>
<th>Ca</th>
<th>Al</th>
<th>Ti</th>
<th>B</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.020</td>
<td>0.03</td>
<td>0.07</td>
<td>0.008</td>
<td>0.005</td>
<td>3.29</td>
<td>8.22</td>
<td>18.17</td>
<td>0.05</td>
<td>0.11</td>
<td>0.18</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>250</td>
<td>0.020</td>
<td>0.05</td>
<td>0.06</td>
<td>0.006</td>
<td>0.003</td>
<td>4.74</td>
<td>7.82</td>
<td>18.57</td>
<td>0.05</td>
<td>0.11</td>
<td>0.38</td>
<td>0.004</td>
<td>0.015</td>
</tr>
<tr>
<td>300</td>
<td>0.012</td>
<td>0.05</td>
<td>0.07</td>
<td>0.006</td>
<td>0.004</td>
<td>4.70</td>
<td>8.95</td>
<td>18.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.68</td>
<td>0.003</td>
<td>0.009</td>
</tr>
</tbody>
</table>

The bar stock was machined into 2-inch-diameter, 3-inch-long billets. Two billets of each type of maraging steel were forged in a temperature range of 1400 to 2300 F at 100-degree intervals. All the billets received a 75 percent reduction (Figure 1) at temperature using a closed die (Figure 2) in conjunction with a quick-acting pneumatic-mechanical press, Dynapak Model 1220.

Fire pressures ranged from 1500 psi for the 1400 F and 1500 F forging temperatures to 1200 psi for working temperatures from 1600 F to 2100 F and 1000 psi for temperatures of 2200 F and 2300 F. The working stroke of the machine was held constant at 10-1/2 inches.

Subsequent to the deformation operation the upset disks were sectioned into halves, one half being tested in the as-formed condition and the other half receiving the following heat treatment prior to mechanical test evaluation: solution anneal at 1500 F for 1 hour; and age at 900 F for 3 hours.

TESTING

Standard tensile (0.252-inch diameter) and impact (0.394 x 0.197 inch notched face) specimens were machined from both the as-formed and as-formed-plus-heat-treated disk halves. All tests were conducted at room temperature. Each data point plotted in Figure 3 is the average value of two tests.

MECHANICAL PROPERTIES VERSUS FORGING TEMPERATURE

As-Formed

As shown in Figure 3, no significant trends were observed for working temperatures of 2100 F, 2200 F, and 2300 F, for any of the as-formed materials. However, the elongation (Figure 3d) for all three types was lower in the 1600 F to 2000 F forming range.

It is of interest to note that the impact energy (Figure 3f) for both the 200 and 250 types increased with increasing temperature from 1900 F to 2300 F, except for a slight drop for the 250 type at 2300 F. Conversely, impact energy declined from 2000 F to 2300 F for the 300 type steel.

As-Formed-Plus-Heat-Treated

As expected, heat treatment resulted in improved mechanical properties with corresponding decrease in impact properties when compared with those of the as-formed material.

Type 200

High velocity deformation with subsequent heat treatment of the 200 series steel increased the 0.1% and 0.2% yield strengths as well as tensile
Figure 1. BILLET BEFORE AND AFTER UPSET

Figure 2. UPSET DIE
Figure 3a. YIELD STRENGTH AT 0.1 PERCENT OFFSET VERSUS FORGING TEMPERATURE

Figure 3b. YIELD STRENGTH AT 0.2 PERCENT OFFSET VERSUS FORGING TEMPERATURE
Figure 3c. TENSILE STRENGTH VERSUS FORGING TEMPERATURE

Figure 3d. ELONGATION VERSUS FORGING TEMPERATURE
Figure 3e. REDUCTION OF AREA VERSUS FORGING TEMPERATURE

Figure 3f. IMPACT ENERGY VERSUS FORGING TEMPERATURE
Figure 3g. HARDNESS VERSUS FORGING TEMPERATURE

Figure 3h. ESTIMATED GRAIN SIZE VERSUS FORGING TEMPERATURE
strength for all deformation temperatures investigated. When compared with
the as-received-plus-heat-treated properties, the maximum gains occurred for
material worked at 1900 F and were on the order of 11 percent for the 0.1%
yield strength, 10 percent for the 0.2% yield strength, and 8 percent for the
tensile strength. Reduction of area and elongation were generally lower for
all forming temperatures. Elongation was poorest at the 1700 F deformation
temperature.

Type 250

Heat treatment of type 250 maraging steel formed at 1700 F to 2000 F
increased the yield strength over the as-received-plus-heat-treated material
for both the 0.1% and 0.2% offset, with a maximum increase of approximately
5 percent at 1900 F. Material processed at temperatures of 2100 F to 2300 F
with subsequent heat treatment exhibited strength levels below those of the
heat-treated-as-received material. Tensile strength was influenced by defor­
mation temperatures, displaying the same trend as the yield strength.
Elongation showed a reversed trend with lower values occurring between 1800 F
and 2000 F. All other deformation temperatures produced values higher than
unworked heat-treated material. Reduction of area did not exhibit any signif­
icant trends. No appreciable influence was observed on impact properties as
a function of forging temperature.

Type 300

High velocity deformation with subsequent heat treatment of the type
300 steel displayed slightly improved properties over unworked heat-treated
material for deformation temperatures of 1800 F to 1900 F for both the 0.1%
and 0.2% yield strengths as well as for the tensile strength. Optimum proper­
ties were attained by material formed at 1900 F. Neither reduction of area
or elongation showed any trend as a function of deformation temperature; in
general, both were lower than unworked material for all forging temperatures
investigated. Impact properties were not significantly influenced by forging
temperature.

Microstructural Examination

Microstructures are shown in Figures 4, 5, and 6. Significant differences
between the three types of maraging steel were not evident for the material
in the as-forged condition for a deformation temperature of 1400 F (this is
below the temperature necessary to induce complete martensitic transformation
from austenite on cooling). Heat treatment at 1500 F of the as-forged material
worked at 1400 F results in a complete austenite-to-martensite transformation
as expected.

Grain boundaries can be seen plainly for the material in the as-forged
condition for the 1900 F deformation temperature. The original boundaries
are still evident after heat treatment. The precipitation reaction induced
by the maraging treatment can also be observed.
Figure 4. MICROSTRUCTURES OF TYPE 200 MARAGING STEEL
Etch: 150 cc H₂O, 50 cc HCl, 25 cc HNO₃, 1 grain CuCl₂. Mag. 1000X
Figure 5. MICROSTRUCTURES OF TYPE 250 MARAGING STEEL.
Etch: 150 cc H₂O, 50 cc HCl, 25 cc HNO₃, 1 grain CuCl₂. Mag. 1000X
Figure 6. MICROSTRUCTURES OF TYPE 300 MARAGING STEEL
Etch: 150 cc H₂O, 50 cc HCl, 25 cc HNO₃, 1 grain CuCl₂. Mag. 1000X
The structure of the material worked at 2300 F shows substantially larger grains than the material processed at 1900 F and similarly these grain boundaries remain evident after heat treatment. The coarser structures are indicative of the decreased mechanical properties at 2300 F as compared with the 1900 F working temperature.

The estimated grain sizes (Figure 3h) ranged from approximately 14 at the 1400 F forming temperatures to 5 at the 2300 F working temperature. Post heat treatment did not influence grain size.

CONCLUSIONS

In comparing the as-received-plus-heat-treated material with the forged-plus-heat-treated material it was found that:

1. HERF with a pneumatic-mechanical press of types 200, 250, and 300 18% nickel maraging steels did result in slightly improved properties after 75 percent deformation at 1900 F forging temperature.

2. The type 200 steel achieved higher values for both yield and tensile strengths for all forging temperatures when compared with those of the as-received-plus-heat-treated material.

3. Both types 250 and 300 showed decreased yield and tensile strengths when forged at both the low and high end of temperature range investigated. Forgings produced at the mid-range of 1700 F to 2000 F generally resulted in improved properties.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Munitions Command, Dover, New Jersey 07801</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Tank-Automotive Command, Warren, Michigan 48090</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Weapons Command, Research and Development Directorate, Rock Island, Illinois 61201</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Aberdeen Proving Ground, Maryland 21005</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Frankford Arsenal, Philadelphia, Pennsylvania 19137</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Picatinny Arsenal, Dover, New Jersey 07801</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Rock Island Arsenal, Rock Island, Illinois 61201</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland 21005</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Electronics Command, 225 South 18th Street, Philadelphia, Pennsylvania 19103</td>
</tr>
<tr>
<td>2</td>
<td>Commanding Officer, U. S. Army Mobility Equipment Research and Development Center, Fort Belvoir, Virginia 22060</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Mobility Equipment Center, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>To</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Production Equipment Agency, Manufacturing Technology Branch, Rock Island Arsenal, Illinois 61202</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: AMXPE, Mr. Ralph Siegel</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Research and Engineering Directorate, Warren, Michigan 48090</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: SMOTA-RCM.1, Mr. Edward Moritz</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: SMOTA-RCM.1, Mr. Donald Phelps</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Watervliet Arsenal, Watervliet, New York 12189</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: SMEWV-R</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Robert Weigle</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Bureau of Naval Weapons, Department of the Navy, Room 2225, Munitions Building, Washington, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: RRMA, Mr. N. E. Promisel, Director, Materials Division</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Bureau of Ships, Department of the Navy, Washington, D. C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Code 341</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Office of Naval Research, Department of the Navy, Washington, D. C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Code 423</td>
</tr>
<tr>
<td>1</td>
<td>Office, Director of Research and Development, Department of the Air Force, The Pentagon, Washington, D. C. 20330</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: AFDRD-OR, Lt. Col. Horace C. Hamlin</td>
</tr>
<tr>
<td>1</td>
<td>Headquarters, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio 45433</td>
</tr>
<tr>
<td>2</td>
<td>ATTN: AFML-MATB, Mr. George Glenn</td>
</tr>
<tr>
<td>1</td>
<td>AFML-MAA</td>
</tr>
<tr>
<td>1</td>
<td>AFML-MAM</td>
</tr>
<tr>
<td>1</td>
<td>AFML-MAN</td>
</tr>
<tr>
<td>1</td>
<td>AFML-MAT</td>
</tr>
<tr>
<td>1</td>
<td>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Mr. Donald A. Douglas, Jr., Supervisor, Metallurgy Division</td>
</tr>
<tr>
<td>1</td>
<td>National Aeronautics and Space Administration, Washington, D. C. 20546</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: AFSS-AD, Office of Scientific and Technical Information</td>
</tr>
<tr>
<td>1</td>
<td>Mr. B. G. Achhammer</td>
</tr>
<tr>
<td>1</td>
<td>Mr. G. C. Deutsch, Chief, Materials Research Program</td>
</tr>
<tr>
<td>1</td>
<td>Mr. R. V. Rhode</td>
</tr>
</tbody>
</table>
National Aeronautics and Space Administration, Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
1 ATTN: Mr. G. Mervin Ault, Assistant Chief, M&S Division

National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama 35812
1 ATTN: M-66AE-M, Mr. W. A. Wilson, Building 4720
1 R-P&VE-M, Dr. W. R. Lucas

Albany Metallurgy Research Center, Albany, Oregon 97321
1 ATTN: Mr. A. H. Roberson, Research Director

Defense Materials Service, General Services Administration, Washington, D. C. 20405
1 ATTN: Mr. Clarence A. Fredell, Director, Technical R&D Staff

Technical Director, Army Materials and Mechanics Research Center, Watertown, Massachusetts 02172
2 ATTN: AMXMR-AT
1 AMXMR-AA
1 AMXMR-RP
1 AMXMR-RX
1 AMXMR-TP, Mr. S. V. Arnold
1 AMXMR-TX
1 Author

94 TOTAL COPIES DISTRIBUTED
High energy rate forming with a pneumatic-mechanical press of types 200, 250, and 300 18% nickel maraging steels followed by heat treatment yielded optimum mechanical properties when forged to a 75 percent reduction at 1900°F. These properties were slightly superior to those observed for the as-received and heat-treated materials.
**REPORT TITLE**
High energy rate forming (pneumatic-mechanical) of types 200, 250, and 300 18% nickel maraging steel

**AUTHOR(S)**
Gagne, Roger A.

**REPORT DATE**
October 1968

**ABSTRACT**
High energy rate forming with a pneumatic-mechanical press of types 200, 250, and 300 18% nickel maraging steels followed by heat treatment yielded optimum mechanical properties when forged to a 75% reduction at 1900°F. These properties were slightly superior to those observed for the as-received and heat-treated materials. (Author)
### Instructions

1. **Title:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified.

2. **Date:** Enter the date of the report as day, month, year; or month, year.

3. **Author(s):** Enter the name(s) of author(s) as shown on the report. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

4. **Report Number(s):** Enter any formal report number by which the document will be identified. This number must be unique to this report.

5. **Originator's Report Number(s):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

6. **Other Report Number(s):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

7. **Number of References:** Enter the total number of references cited in the report.

8. **Contract or Grant Number:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

9. **Project Number:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

10. **Availability/Limitation Notices:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

    (1) "Qualified requesters may obtain copies of this report from DDC."

    (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

    (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through Other qualified users shall request through"

    (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

    (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **Supplementary Notes:** Use for additional explanatory notes.

12. **Sponsoring Military Activity:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **Abstract:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

14. **Key Words:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

### Key Words

<table>
<thead>
<tr>
<th>High energy rate</th>
<th>Role</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraging steels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microstructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal working</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Security Classification

- **UNCLASSIFIED**
- **CLASSIFIED**
- **SECRET**
- **CONFIDENTIAL**
- **U.S. ONLY**
- **U.S. GOVERNMENT ONLY**
- **U.S. MILITARY ONLY**

### Notes

- For security classification, using standard statements such as "Qualified requesters may obtain copies of this report from DDC." or "Foreign announcement and dissemination of this report by DDC is not authorized."

- If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required.