Comprehensive Survey of Oxygen X-Ray Emission Band Shifts

B. Krause and E. W. White

TECHNICAL REPORT NO. 2

Office of Naval Research, Metallurgy Program

8 AUGUST 1963

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED; REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT

Materials Research Laboratory
The Pennsylvania State University
University Park, Pennsylvania
Comprehensive Survey of Oxygen X-Ray Emission Band Shifts

B. Krause and E. W. White

TECHNICAL REPORT NO. 2

Office of Naval Research, Metallurgy Program

8 AUGUST 1968

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED; REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT

Materials Research Laboratory
The Pennsylvania State University
University Park, Pennsylvania
ABSTRACT

Shifts in the oxygen K-emission band from some fifty simple oxide compounds have been studied as part of a program to evaluate soft x-ray spectroscopy as a tool for characterizing thin layers on metals. The main peak tends to shift to shorter wavelength as the valence of the coordinating cation increases. For oxides of transition metal element one can determine the cation valence from the O-Kα position. For the oxide of the non-transition metals the oxygen peaks tend to be relatively narrow and exhibit little or no resolved fine structure. For oxides containing highly charged cations the OKr band becomes a well-resolved feature on the long wavelength side of the main peak.

INTRODUCTION

Oxygen is undoubtedly the most ubiquitous element. In spite of this fact, it is the least studied by direct techniques. Methods for direct analysis are generally lacking and even the analytical chemist generally arrives at the oxygen content indirectly by difference. Typically the role of oxygen in a given metal-oxygen system is determined either by x-ray structure analysis or by studies of the metal cation. Unfortunately, most structural analysis tools fail completely for amorphous materials.

We have felt for some time that x-ray emission spectroscopy promised to become one of the most powerful tools for the study of
oxides. Recently we have obtained an analyzing crystal which gives exceptionally good results for oxygen both in terms of peak intensity and spectral resolution. The OKα is the principal oxygen x-ray line and x-ray emission band. It results from electron transitions from the valence band of oxygen (2p band) to the K-shell. It is generally understood that the peak intensities of emission bands are not directly useful for quantitative analysis but on the other hand the emission bands are particularly sensitive to the chemical state of the emitting atom. Thus, although it may prove difficult to quantitatively analyze for oxygen, one should hope to use the OKα to establish something about how the oxygen is chemically combined. The line shifts are caused largely by changes in the effective charges due to the removal or the addition of the valence electrons. Furthermore, it has been found that the molecular character of the compound has an influence on the line position. Theories reported in the literature are not yet capable of quantitatively predicting spectra, and the experimental data in the case of oxide spectra are rather scarce.

Chun and Hendel found by the use of a high resolution spectrometer that the oxygen K-emission band is a complex of 6 lines. (Probably all the curves in Chun and Hendel's paper are plotted on a nonlinear intensity scale which has the effect of exaggerating the low intensity features.) The unresolved Kα doublet is the strongest line of the spectrum. On the high energy side of the main peak they observed the \(\alpha_3, \alpha_4, \alpha_5, \) and \(\alpha_6 \) satellites. On the low energy side occurs the \(\beta' \) satellite which probably can be explained as valence electron configuration states as predicted by Parratt. All lines vary both in position and intensity from oxide to oxide. However, the only correlation which
they found between the experimental data and crystal chemical parameters
was with the electronegativity of the elements forming the oxide.

With this sort of background in mind we asked the following questions:

1) Is it possible on a given metal substrate to determine which
oxide phase was formed simply by studying the oxygen K-emission
band?

2) Can one say anything about the chemical state of oxygen
dissolved in a metal?

EXPERIMENTAL

All the oxygen K-emission bands were recorded using an ARL model
EMX electron microprobe. The microprobe was operated at 20 keV and
0.1 μA with a 100 μm diameter beam size. A specially mounted clino-
chlore crystal (2d = 28.36Å) was bent to an eight inch radius for use
on the four inch ADP spectrometer. This crystal gave exceptionally
good results for oxygen both in terms of peak intensity and spectral
resolution. The peaks were scanned at approximately 0.05 Å/min. The
count rate varied from about 20 to over 500 cps. A typical count rate
was about 200 cps. Each peak was recorded in triplicate and all
wavelength measurements were made with respect to the oxygen peak from
quartz (α-SiO₂), the quartz peak was arbitrarily assigned the value of
23.60Å. The data were screened for higher order interference peaks.
Tracings of many of the bands are reproduced in the figures to illus-
trate shape changes. The individual peaks are unresolved, however, a
Kβ satellite can be recognized on the long wavelength side and Kα₂,₄
satellites on the short wavelength side of many of the tracings. The
α_{56} satellites were not observed; they are probably hidden in the background and therefore the tracings were not extended to correspondingly short wavelength.

RESULTS

Figure 1 shows the oxygen K-emission bands for a series of titanium oxides. With increasing reduction there is a shift of the main line towards longer wavelength. In addition, the low intensity OK$_3^+$ peak on the long wavelength side of the spectrum weakens and the OK$_4$, on the low angle side appears to come in. There is a small but significant difference between the bands from anatase and rutile.

A similar line shift with a decreasing percentage of oxygen can be observed in a vanadium-oxygen series (Fig. 2), in a manganese oxide series (Fig. 3), and in an iron-oxide series (not shown). On the other hand no such shifts occur in a lead oxide series (Fig. 4).

Figure 5 summarizes the shift measurements for three sets of transition metal oxides and a set of lead oxides. In the figure all peak shifts were measured with respect to the oxygen peak from α-quartz. Peak positions were determined at 2/3 peak height.

It appears that the d-electron configuration plays an important part in the peak geometry; vanadium, manganese and iron are transition metal oxides and consequently the OK$_3$ peaks of their oxides show similar trends. The bonding in lead, on the other hand, does not involve d-electrons, and the oxide K-spectrum behaves differently.

The difference type of bonding of transition metals on the one hand and metals with filled d-shells on the other manifests itself clearly in the spectra of the MeO series (Me = Metal) as shown in
Fig 1
Fig. 2
Fig. 3

- **Intensity** vs. **Wavelength** (Å)

 - MnO
 - Mn₂O₃
 - Mn₃O₄
 - MnO₂
Fig. 6. The series is ordered according to increasing atomic number of the metal. The transition metal series TiO, MnO, FeO, CoO, NiO and CuO show similarities. With increasing number of d-electrons, the main peak shifts towards longer wavelengths and a low wavelength peak appears to come in. The differences between the line profile of CuO with an unfilled d-shell and ZnO are striking. The character of the bonding in CdO, HgO and PbO is strongly covalent. It is, therefore, not astonishing that the curves differ markedly from those of the transition metals when the bonding is more strongly ionic.

Figure 7 shows a MeO\(_2\) series of compounds which crystallize in a rutile structure. The difference between oxides with filled d-shells and those with unfilled d-shells is again very obvious. In the one case the peaks are comparatively narrow, in the other case they are broad. The differences between TiO\(_2\) (anatase) and TiO\(_2\) (rutile) or GeO\(_2\) (quartz) and GeO\(_2\) (rutile), respectively, are much smaller than those between different compounds within the rutile series.

The line shapes from two MeO\(_3\) compounds (Fig. 8) are very similar. The same holds true for MeO\(_2\) curves for compounds with the corundum structure (Fig. 9). In fact, there is a close resemblance between CeO\(_2\), ThO\(_2\) and the rutile type compounds with filled d-shells.

It was noted that in the oxides of highly charged cations (Figs. 8 and 10) that the intensity of the curves decays only very slowly towards the long wavelength side. In other words, the OK\(\beta\)' band becomes stronger with respect to the OK\(\alpha\). In the vanadium series (Fig. 3) the OK\(\beta\)' band is clearly resolved for V\(_2\)O\(_5\). It becomes weaker with decreasing valency of the metal. In general, the line profiles become more symmetrical as the metal valency decreases. The Me\(_2\)O\(_5\) compounds (Fig. 10)
Fig. 6

Intensity vs. Wavelength (Å)

- BeO
- TiO
- MnO
- FeO
- CoO
- NiO
- CuO
- ZnO
- CdO
- HgO
- PbO
Fig. 8
Fig. 9

WAVELENGTH (Å)

INTENSITY →

Fe₂O₃ Cr₂O₃ V₂O₃ Ti₂O₃ aAl₂O₃
show a significant OKβ' tail whereas the series Me3O4 show almost symmetrical peaks (Fig. 11). In the transition metal series of the MeO compounds, on the other hand (Fig. 6), there is sometimes a pronounced low wavelength tail due to partially resolved \(\alpha'_{2\alpha} \) satellite lines.

REFERENCES

Fig. 11
Abstract

Shifts in the oxygen K-emission band from some fifty simple oxide compounds have been studied as part of a program to evaluate soft x-ray spectroscopy as a tool for characterizing thin layers on metals. The main peak tends to shift to shorter wavelength as the valence of the coordinating cation increases. For oxides of transition metal elements one can determine the cation valence from the O-Kα position. For the oxide of the non-transition metals the oxygen peaks tend to be relatively narrow and exhibit little or no resolved fine structure. For oxides containing highly charged cations the O-Kβ band becomes a well-resolved feature on the long wavelength side of the main peak.
Oxygen X-Ray Emission Shift, Oxide Layer Characteristics, Corrosion Layers, Short Range Order

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis. Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month-year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICE: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC." (2) "Foreign announcement and dissemination of this report by DDC is authorized." (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through _________." (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through _________." (5) "All distribution of this report is controlled. Qualified DDC users shall request through _________."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboritory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T3), (T2), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rates, and weights is optional.