The authors have greatly benefited from discussions with Messrs. Howard K. Hurwith and James M. Hurwith, Presidents of the First Commercial Bank, Chicago, and the First Trust and Savings Bank, Glenview, Illinois, respectively. They are not to be held responsible for the ideas expressed herein, nor is the model to be taken as representative of their business policies. M. Z. Hanani and A. S. Walters gave valuable assistance in data preparation and computer programming.

Part of the research underlying this report was undertaken for the Office of Naval Research, Contract NONR-1228(10), Project NR 047-021, for the U. S. Army Research Office - Durham, Contract No. DA-31-124-ARO-D-322, and for the National Science Foundation, Project GP 7550 at Northwestern University. Reproduction of this paper in whole or in part is permitted for any purpose of the United States Government.
ERRATA

IN THE COVARIANCE MATRIX ON PAGE 11, THE ENTRIES "1" SHOULD READ "o^t_a".
1. **INTRODUCTION**

This paper extends existing models of inter-temporal bank asset management (see [1], [5]) in the following respects:

(a) Bank customers are identified, with requirements that their demands for loan renewals be satisfied. Opportunities are provided for attracting new customers;

(b) feedback relationships between loans and deposits are introduced;

(c) costs of servicing loans with different degrees of risk are introduced explicitly;

(d) future deposits and loan repayments are expressed as jointly dependent random variables;

(e) the Federal Reserve Board's liquidity leverage suggestions are replaced by chance-constraints on meeting demands for loans. This leads to a policy of balancing maturities in the bond portfolio.

The format of the model is that of chance-constrained programming, with piecewise linear approximations to the non-linear constraints. A 5-period example, with parameterizing on the right hand side, is presented.
2. STRUCTURE OF THE MODEL

(a) Loans

We assume that in each period \(t \) \((t = 1, \ldots, T)\) the bank can allot its funds in six ways \((r = 1, \ldots, 6)\), apart from cash:

\[
\begin{align*}
 x_{1t} &= \text{early maturity government bonds} \\
 x_{2t} &= \text{late maturity government bonds} \\
 x_{3t} &= \text{loans to new industrial customers} \\
 x_{4t} &= \text{loans to new industrial customers, but more risky} \\
 x_{5t} &= \text{renewals of existing industrial loans} \\
 x_{6t} &= \text{personal loans}
\end{align*}
\]

The opportunities for making new loans are constrained by the demand, which varies from period to period. Let

\[
d_{it} = \text{demand for new loans in period } t \quad (i = 3, 4).
\]

Then

\[
0 \leq x_{it} \leq d_{it} \quad \quad i = 3, 4; \quad t = 1, \ldots, T \quad (1)
\]

All industrial loans are assumed repaid over two periods, and the bank, wishing to accommodate its customers, will meet all demands for renewal. The same applies to personal loans, a high proportion of which are to be renewed each period. We have not assumed a market limit on the amount of this type of loan which can be made. Let
Then

\[x_{5t} = \frac{w_{5t}}{x_{3t-n_2} + x_{4t-n_4} + x_{5t-n_5}} \quad t = 1, \ldots, T \quad (2) \]

\[x_{6t} = \frac{w_{6t}}{x_{6t-n_6}} \quad t = 1, \ldots, T \quad (3) \]

\(d_{it} \) and \(w_{it} \) may be represented as parameters jointly influenced by the level of economic activity in each time period, and similarly with prevailing loan charges and bond prices, but for the present we shall take them as known constants.

(b) Service Costs

The cost of a loan is not simply a function of its size, but depends largely upon its riskiness, which determines the time taken to service it. An opportunity cost representation seems most appropriate. Let

\[a_i = \text{time taken to service loan type } i \text{ (per dollar per period)} \]

\(i = 1, \ldots, 6 \).

\[A_t = \text{service time available in period } t \]

\[\sum_{i=1}^{6} a_i x_{it} \leq A_t \quad t = 1, \ldots, T \quad (4) \]

(c) Deposits

\[z_t = \text{deposits brought by new customers attracted in} \]

\[\text{in periods } i, \ldots, t, \quad z_0 = 0. \]

\[\lambda_i = \text{compensating balance with loan type } i. \]
\[
\begin{align*}
\bar{x}_t &= \bar{x}_{t-1} + \sum \lambda_i x_{it} \quad t = 1, \ldots, T. \quad (5)
\end{align*}
\]

\(\bar{S}_t\) = other deposits in time \(t\) -- a random variable.

Let \(\bar{s}_t = \bar{S}_t - \bar{S}_{t-1}\), and let \(\bar{s}_t\) be independently normally distributed:

\(\bar{s}_t \sim N(\bar{s}_t, \theta_t)\).

(d) **Cash Reserves**

The bank is obliged to keep a minimum cash reserve against its deposits. Let

\(\delta = \) minimum cash reserve (proportion).

\(h_t = \) cash kept during period \(t\).

\(h_t \geq \delta (S_t + z_t) \quad t = 1, \ldots, T. \quad (6)\)

(e) **Returns**

Let \(n_i = \) duration of loan (or bond) type \(i\)

\(m_{it} = \) proportion of loan \(i\) to be repaid in \(\tau\)th period after loan made, where

\[\sum_{\tau=1}^{n_i} m_{i\tau} = 1.\]

\(y_{it} = \) planned repayments loan type \(i\) in period \(t\).

We have \(y_{it} = \sum_{\tau=1}^{n_i} m_{it} x_{i\tau-t} \quad i = 1, \ldots, 6; \ t = 1, \ldots, T \quad (7)\)

For \(i = 1\), we shall have \(m_{11} = 1\), hence \(y_{1t} = x_{1t-1}\).
Let \bar{f}_{it} be random variable representing defaults and mistimed repayments of loan type i in period t, where the f_{it} are assumed joint normally distributed with means \bar{f}_{it} and covariance matrix σ_{ij}.

Then actual repayments in period t are given by

$$\sum_{i=1}^{6} (1 - f_{it}) y_{it},$$

\bar{f}_{it} is the expected default rate on loan i in period t, and a value of \bar{f}_{it} below \bar{f}_{it} represents a late repayment, whereas \bar{f}_{it} greater than \bar{f}_{it} represents a repayment before schedule. We shall take $\bar{f}_{it} = 0$, $\sigma_{it} = 0$ for government bonds.

(f) **Budget Constraints**

It will be convenient to first write the budget constraints using expected values.

$$x_{lt} + \sum_{i=2}^{6} x_{lt} + h_{t} = \sum_{i=2}^{6} (1 - \bar{f}_{it}) y_{it} + x_{lt-1} + h_{t-1} + \bar{y}_{t} + x_{lt} - x_{t-1}$$

$t = 1, \ldots, T \ldots$ (8a)

Investment in short-maturity (one period) government bonds (x_{lt}) takes up the slack caused by the random nature of f_{it} and s_{t}. In (8a), x_{lt}, x_{lt-1} may be regarded as expected values.

By substituting successively for x_{lt-1}, x_{lt-2}, \ldots we derive a cumulative form of (8a):
are known initially; recollect \(z_0 = 0 \).

Now, we wish to ensure that with probability of at least \(100 \alpha \% \), the planned program of loans \((i = 3, \ldots, 6)\) is feasible. Planned bond purchases \((i = 1, 2)\) are secondary to this. Accordingly, we write

\[
\begin{align*}
\Pr\{\sum_{t=1}^{T} x_{lt} + h_t + \sum_{i=3}^{i=6} \left(1 - f_{i\tau}\right) y_{i\tau} + x_{lt-1} + h_{t-1} + \sum_{i=3}^{i=6} \tilde{s}_t + z_t - z_{t-1}\} \geq \alpha \\
&= \alpha \quad t = 1, \ldots, T
\end{align*}
\]

or in cumulative terms

\[
\begin{align*}
\Pr\{\sum_{t=1}^{T} x_{lt} + h_t + \sum_{i=3}^{i=6} \left(1 - f_{i\tau}\right) y_{i\tau} + x_{lt} + h_o + \sum_{i=3}^{i=6} \tilde{s}_t + z_t \} \geq \alpha \\
&= \alpha \quad t = 1, \ldots, T
\end{align*}
\]

The deterministic equivalent for (9b) may be obtained in the usual way [] .

Upon rewriting and introducing expected value terms, we have

\[
\begin{align*}
\Pr\{\sum_{t=1}^{T} x_{lt} + h_t + \sum_{i=3}^{i=6} \left(1 - f_{i\tau}\right) y_{i\tau} + x_{lt-1} + h_{t-1} + \sum_{i=3}^{i=6} \tilde{s}_t + z_t \} \geq \alpha \\
&= \alpha \quad t = 1, \ldots, T
\end{align*}
\]

But notice that the R.H.S. within (10) is precisely \(x_{lt} + x_{2t} \), as defined by (8b). Upon substituting

\[
F\left(\frac{x_{lt} + x_{2t}}{\text{s.d.}_t}\right) \geq \alpha
\]
hence \[x_{it} + x_{zt} \geq s. d. t \cdot F^{-1}(\alpha) \quad t = 1, \ldots, T \quad \ldots \quad (11) \]

where \(F \) is the cumulative \(N(0,1) \) distribution function, and \(s. d. t \) is the standard deviation of the l.h.s. term of (10). (11) ensures that government bonds form a "cushion" against having to cut down on planned loans if returns plus deposits are lower than expected. With \(\alpha = 0.95 \), a cushion greater than 1.645 standard deviations of returns plus deposits is provided.*

Notice the relationship between variability of loans and deposits (\(s. d. t \)) and the confidence level (\(\alpha \)). An increase in one has exactly the same effect as an appropriate increase in the other. We may expect the optimal confidence level to be inversely related to the variability of returns and deposits, for as the latter increases, the cost of maintaining a given confidence level will in general increase.

The form of \(s. d. t \) and piecewise linear approximations to (11) will be discussed in section 4.

(g) Objective Function

We take as the objective function the maximization of returns on loans, less interest paid on deposits, over a \(T \)-period horizon. Let

\[r_{it} = \text{per dollar return on loan (bond) type } i \text{ made in period } t, \]

cumulated up to maturity of loan (bond) or horizon, whichever earlier.

*Our constraint seems to embody the conclusions of Hodgman [4]:
"Therefore, the task of management is to anticipate those deposit drains which, while exceeding the amounts that can be met by borrowing at the Federal Reserve Bank, have a good probability of occurrence without involving the entire banking system and thus forcing a liberalization of central bank policy. The size of such drains determines the 'rock bottom' for the investment portfolio." p. 74
\(c_t = \text{interest paid on deposits in period } t. \)

The objective function is then

\[
\text{Max} \sum_{t=1}^{T} \sum_{i} r_{it} x_{it} - \sum_{t=1}^{T} c_{t} z_{t} \quad \ldots \quad (12)
\]

Some form of horizon constraint may also be included, but we have not done so here.
3. SUMMARY OF THE MODEL

\[
\text{Max } \sum_{t=1}^{T} \sum_{i=1}^{T} r_{it} x_{it} - \sum_{t=1}^{T} c_t z_t
\]

Subject to

1. \(0 \leq x_{it} \leq d_{it}\) for \(i = 3, 4\)

2. \(x_{5t} = \sum_{i} v_{it} (x_{3t} \cdot t_3 + x_{4t} \cdot t_4 + x_{5t} \cdot t_5)\)

3. \(x_{6t} = \sum_{i} v_{6t} x_{6t} \cdot t_{6t}\)

4. \(\sum_{i} a_{i} x_{it} \leq A_{it}\)

5. \(z_t = z_{t-1} + \sum_{i} \lambda_i x_{it}\)

6. \(h_t \geq \delta (s_t + z_t)\)

7. \(y_{it} = \sum_{i=1}^{n_i} m_{it} x_{it} \cdot t\)

8. \(\sum_{i} x_{it} + h_t = \sum_{i} (1 - f_{it}) y_{it} + h_{it} + s_t + z_t - z_{t-1}\)

9. \(x_{1t} + x_{2t} \geq F^{-1}(x) \cdot s_{1t}\)
4. PIECEWISE - LINEAR APPROXIMATIONS

Hartley and Hocking discuss a method of replacing the non-linear constraint

\[f(x) \leq b \] \quad \ldots \quad (13) \]

by a set of linear restrictions formed by taking the tangent planes to the surface at a set of points \(x^* \). This yields the set of linear inequalities.

\[
\sum_{j=1}^{n} \frac{\partial f(x^*)}{\partial x_j} \cdot (x_j - x_j^*) \leq b
\]

If \(f(x)b \) defines a convex set, the polyhedral space defined by the inequalities closes down upon the original constraint region as the \(x^* \) net becomes finer.

Hartley and Hocking develop a pricing algorithm for generating the \(x^* \), but in the relatively simple case which we have, with only four non-linear constraints, it is easier to make finer approximations in successive runs, as the optimal region is gradually located. We also make additional simplifications for computational convenience.

We have to approximate the set of non-linear constraints

\[
X_{1t} + X_{2t} \geq S_{d,t} F^{-1}(x) \quad t = 1, \ldots, T \quad \ldots \quad (11)
\]

Suppose that \(T_{1t} \) and \(S_{1t} \) were distributed independently; then

\[
(S_{d,t})^2 = \sum_{i=1}^{t} \sum_{j=1}^{4} S_{i-1,j}^2 + \sum_{j=1}^{T} Y_{j}^2
\]

We shall assume, however, that in each period repayments on all industrial loans (\(t = 3,4,5 \)) are completely correlated, and independent of repayments on personal loans (\(t = 6 \)). Both are independent of deposits.
The covariance matrix is thus

\[
\sigma^{(t)}_{ij} = \begin{bmatrix}
\sigma_A^t & 1 & 1 & 0 \\
1 & \sigma_A^t & 1 & 0 \\
1 & 1 & \sigma_A^t & 0 \\
0 & 0 & 0 & \sigma_B^t \\
\end{bmatrix}
\]
Where \(\sigma_A^t \) is the variance of returns on industrial loans, \(\sigma_B^t \) on personal loans. We shall further assume, for computational convenience, that \(\sigma_A^t = \sigma_B^t = \sigma \). The variance on government bonds \(i = 1, 2 \) is assumed zero. In this case

\[
(s.d.)^2 = \sigma^2 \sum_{t=1}^{T} \left(\sum_{i=3}^{\infty} y_{it}^2 \right) + \sum_{t=1}^{T} \Theta_t^2
\]

Represent the R.H.S. by \(\mathbf{y}^2_{1t} + \mathbf{II}_t \), where \(\mathbf{II}_t = \sum_{t=1}^{T} \theta_t^2 \) is a known constant.

(11) reads

\[
x_{1t} + x_{2t} \geq F^{-1}(\alpha) \sqrt{\mathbf{y}^2_{1t} + \mathbf{II}_t}
\]

It will now be convenient to split the s.d. term and obtain the slightly more restrictive representation of (16)

\[
x_{1t} + x_{2t} \geq F^{-1}(\alpha) \sigma \sqrt{I_t} + F^{-1}(\alpha) \sqrt{\mathbf{II}_t}
\]

Introducing set of \(u \) spacer variables \(u_t \), we obtain

\[
x_{1t} + x_{2t} \geq F^{-1}(\alpha) \sigma u_t + F^{-1}(\alpha) \sqrt{\mathbf{II}_t}
\]

that is:

\[
x_{1t} + x_{2t} \geq F^{-1}(\alpha) \sigma u_t + F^{-1}(\alpha) \sqrt{\sum_{i=3}^{\infty} y_{it}^2} \]

\[
u_t^2 \geq \sum_{t=1}^{T} \left(\sum_{i=3}^{\infty} y_{it}^2 + y_{6t}^2 \right)
\]

(10) is of course a linear constraint; (19) remains to be approximated.

Write

\[
\mathbf{y}_{At} = \sum_{i=3}^{\infty} y_{it}^2 \quad \text{and} \quad \mathbf{y}_{Bt} = y_{6t}
\]
We now have a constraint of the form of (13)

\[f(y_{At}, y_{Bt}, \mu_t) = \sqrt{\sum_{t=3}^{T} (y_{At}^2 + y_{Bt}^2)} - u_t \leq 0 \quad \ldots (21) \]

We achieve the approximation by making a set of assumptions about the proportions \(\{ p_{At}, p_{Bt} \} \) in which the \(\{ y_{At}, y_{Bt} \} \) be.

For any such set of proportions, the point defined by

\[
\begin{align*}
y_{At} &= \frac{p_{At} \cdot \mu_t}{\sum_{t=3}^{T} p_{At}^2 + p_{Bt}^2} \quad y_{Bt} &= \frac{p_{Bt} \cdot \mu_t}{\sum_{t=3}^{T} p_{At}^2 + p_{Bt}^2}
\end{align*}
\]

lies on the surface of (21) (regarding \(u_t \) as constant for the moment). Derivatives of \(f \) are given by

\[
\frac{\partial f}{\partial y_{At}} = \frac{\mu_t}{u_t}, \quad \frac{\partial f}{\partial y_{Bt}} = \frac{\mu_t}{u_t}, \quad \frac{\partial f}{\partial u_t} = -1,
\]

which, evaluated at the chosen point, are

\[
\begin{align*}
\frac{p_{At}}{\sum_{t=3}^{T} p_{At}^2 + p_{Bt}^2} \quad \frac{p_{Bt}}{\sum_{t=3}^{T} p_{At}^2 + p_{Bt}^2} \quad -1
\end{align*}
\]

Substituting these into (14) yields

\[
\begin{align*}
\sum_{t=3}^{T} \left(\frac{p_{At} \cdot y_{At}}{\sum_{t=3}^{T} p_{At}^2 + p_{Bt}^2} + \frac{p_{Bt} \cdot y_{Bt}}{\sum_{t=3}^{T} p_{At}^2 + p_{Bt}^2} \right) \leq u_t \quad \ldots (22)
\end{align*}
\]
(22) is of course a set of linear inequalities, and each set
\((P_{At}, P_{Bt})\) we choose will generate such a set. The non-linear constraint
set (19) can therefore be approximated as closely as desired by appropriate choice of sets
\((P_{At}, P_{Bt})\).

In the following example, it did not seem unreasonable to take
\(P_{At} = P_A, P_{Bt} = P_B\) for \(t\), as a first choice, because (i) ratios of
industrial to personal loans might be expected to remain roughly
constant, and (ii) the amount of loans in one period would be roughly
equal to that in another.

The first set of ratios used were \(3:1, 4:1, 5:1\).

After the first run, the set 3:1 was tight so the sets 4:1, 5:1 were
replaced by 2.5:1, 3.5:1, and the set 3:1 still remained tight. These
approximations were used to give the present results.
5. AN EXAMPLE

A number of prototype problems have been run, and we reproduce below a 5 period example with two different forecasts of deposits and loan demands, one involving an initial increase in deposits followed by a decrease, and the other with the opposite pattern. The parameters might refer to anything from thousands to hundreds of thousands of dollars.

(a) The parameters

<table>
<thead>
<tr>
<th>t</th>
<th>(d_{3t})</th>
<th>(d_{4t})</th>
<th>(s_t)</th>
<th>(\theta_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>50</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>0</td>
<td>800</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>0</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>250</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>600</td>
<td>200</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(i)</th>
<th>(a_i)</th>
<th>(\lambda_i)</th>
<th>(\sigma_{it})</th>
<th>(\sigma_{it}^*)</th>
<th>(m_{i1})</th>
<th>(m_{i2})</th>
<th>(m_{i3})</th>
<th>(f_{it})</th>
<th>% (\lambda)</th>
<th>(x_{i0})</th>
<th>(x_{i-1})</th>
<th>(x_{i-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>6.5</td>
<td>400</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>6.5</td>
<td>2400</td>
<td>2400</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.5</td>
<td>1500</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(r_{it})</td>
<td>% Cumulative Return</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6.5</td>
<td>7</td>
<td>6.5</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For all \(t \):
- \(w_{5t} = 0.9 \)
- \(w_{6t} = 0.9 \)
- \(\alpha = 0.99 \)
- \(\gamma_t = 8500 \)
- \(\sigma_t = 3\% \)
- \(\gamma_0 = 720 \)
- \(\sigma_{it} = 0.3 \)
Results

Projected Loans and Investments, Forecast I

<table>
<thead>
<tr>
<th>Period</th>
<th>Loan</th>
<th>h_t</th>
<th>x_{1t}</th>
<th>x_{2t}</th>
<th>x_{3t}</th>
<th>x_{4t}</th>
<th>x_{5t}</th>
<th>x_{6t}</th>
<th>z_t</th>
<th>s_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>804</td>
<td>0</td>
<td>2250</td>
<td>500</td>
<td>200</td>
<td>2520</td>
<td>1350</td>
<td>644</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1019</td>
<td>1311</td>
<td>2593</td>
<td>600</td>
<td>348</td>
<td>2520</td>
<td>1215</td>
<td>1337</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1084</td>
<td>1114</td>
<td>3263</td>
<td>300</td>
<td>317</td>
<td>2927</td>
<td>1094</td>
<td>2047</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1057</td>
<td>2341</td>
<td>3048</td>
<td>0</td>
<td>200</td>
<td>3153</td>
<td>984</td>
<td>2717</td>
<td>-1000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>952</td>
<td>0</td>
<td>6518</td>
<td>0</td>
<td>200</td>
<td>3222</td>
<td>886</td>
<td>3402</td>
<td>-2000</td>
</tr>
</tbody>
</table>

Projected Loans and Investments, Forecast II

<table>
<thead>
<tr>
<th>Period</th>
<th>Loan</th>
<th>h_t</th>
<th>x_{1t}</th>
<th>x_{2t}</th>
<th>x_{3t}</th>
<th>x_{4t}</th>
<th>x_{5t}</th>
<th>x_{6t}</th>
<th>z_t</th>
<th>s_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>795</td>
<td>1135</td>
<td>1564</td>
<td>50</td>
<td>100</td>
<td>2520</td>
<td>1350</td>
<td>534</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>821</td>
<td>1255</td>
<td>1929</td>
<td>0</td>
<td>100</td>
<td>2520</td>
<td>1215</td>
<td>1058</td>
<td>-200</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>863</td>
<td>984</td>
<td>2939</td>
<td>0</td>
<td>200</td>
<td>2427</td>
<td>1094</td>
<td>1583</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>925</td>
<td>1032</td>
<td>3667</td>
<td>250</td>
<td>250</td>
<td>2382</td>
<td>984</td>
<td>2160</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1029</td>
<td>0</td>
<td>5728</td>
<td>519</td>
<td>600</td>
<td>2388</td>
<td>886</td>
<td>2861</td>
<td>600</td>
</tr>
</tbody>
</table>

It may be useful to translate the above into Balance Sheet figures.

For period t, outstanding loans are aggregated as follows:

Government bonds maturing in one period = $x_t + x_{2t-2}$

Government bonds maturing in two periods = x_{2t-1}

Government bonds maturing in three periods = x_{2t}

Industrial loans

$$= \frac{5}{5} \sum_{i=3}^{5} x_{1t} + 0.25 \sum_{i=3}^{5} x_{1t-1}$$

Personal loans

$$= x_{3t}$$
Projected Balance Sheets, Forecast I

<table>
<thead>
<tr>
<th>Asset</th>
<th>Period</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td></td>
<td>720</td>
<td>804</td>
<td>1019</td>
<td>1084</td>
<td>1057</td>
<td>952</td>
</tr>
<tr>
<td>Government Bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maturing in 1 period</td>
<td></td>
<td>2280</td>
<td>1000</td>
<td>2311</td>
<td>3364</td>
<td>4934</td>
<td>3263</td>
</tr>
<tr>
<td>Government Bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maturing in 2 periods</td>
<td></td>
<td>1000</td>
<td>1000</td>
<td>2250</td>
<td>2593</td>
<td>3263</td>
<td>3048</td>
</tr>
<tr>
<td>Government Bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maturing in 3 periods</td>
<td></td>
<td>1000</td>
<td>2250</td>
<td>2593</td>
<td>3263</td>
<td>3048</td>
<td>6518</td>
</tr>
<tr>
<td>Industrial Loans</td>
<td></td>
<td>3500</td>
<td>3920</td>
<td>4273</td>
<td>4411</td>
<td>4191</td>
<td>4277</td>
</tr>
<tr>
<td>Personal Loans</td>
<td></td>
<td>1500</td>
<td>1350</td>
<td>1215</td>
<td>1094</td>
<td>984</td>
<td>886</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10,000</td>
<td>10,324</td>
<td>13,661</td>
<td>15,809</td>
<td>17,477</td>
<td>18,944</td>
</tr>
</tbody>
</table>

Projected Balance Sheets, Forecast II

<table>
<thead>
<tr>
<th>Asset</th>
<th>Period</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td></td>
<td>720</td>
<td>795</td>
<td>821</td>
<td>863</td>
<td>925</td>
<td>1029</td>
</tr>
<tr>
<td>Government bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maturing in 1 period</td>
<td></td>
<td>2280</td>
<td>2135</td>
<td>2255</td>
<td>2548</td>
<td>2961</td>
<td>2939</td>
</tr>
<tr>
<td>Government bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maturing in 2 periods</td>
<td></td>
<td>1000</td>
<td>1000</td>
<td>1564</td>
<td>1929</td>
<td>2939</td>
<td>3667</td>
</tr>
<tr>
<td>Government bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maturing in 3 periods</td>
<td></td>
<td>1000</td>
<td>1564</td>
<td>1929</td>
<td>2939</td>
<td>3667</td>
<td>5728</td>
</tr>
<tr>
<td>Industrial Loans</td>
<td></td>
<td>3500</td>
<td>3370</td>
<td>3275</td>
<td>3284</td>
<td>3602</td>
<td>4384</td>
</tr>
<tr>
<td>Personal Loans</td>
<td></td>
<td>1500</td>
<td>1350</td>
<td>1215</td>
<td>1094</td>
<td>984</td>
<td>886</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10,000</td>
<td>10,214</td>
<td>11,059</td>
<td>12,657</td>
<td>15,078</td>
<td>18,633</td>
</tr>
</tbody>
</table>
6. DISCUSSION

The following are some of the interesting features of the solution. (I or II in parentheses refers to forecast.) (i) Although autonomous deposits at times decrease, the bank continues to expand its asset base by attracting new customers.

(ii) In some periods, the bank can attract all the new customers it desires. In other periods it would be willing to pay more for them. Using information provided by the dual variables, we see that increasing d^{21}_{31} (I) by one dollar would bring a return of 0.206, or an average of 4.1% per period.

(iii) We have set the return on risky new industrial loans ($i = 4$) to be higher than that on safer new industrial loans ($i = 3$), and in periods when staff for servicing loans is adequate, the former are preferred. But in periods 2 (I) for example, when staff are fully occupied the marginal value of a less risky customer (averaged over the horizon) is nearly 1.4% whereas that of the risky customer is zero.

(iv) The costs of servicing customers can cause a shift to government bonds, which are relatively simple to purchase. In period 2 (I) long term government securities are preferred to risky new industrial customers, despite the fact that the latter yield a higher return and bring in deposits.

(v) The shadow price of the service time constraint enables us to evaluate the worth of hiring extra staff to service more difficult
loans. Under forecast I, extra staff hired for the whole of the 5-year period would bring in an average return of 2-1/4 %, (but 0 % under forecast 2), which should be set against the cost of hiring them.

(vi) The obligation to renew existing loans is never onerous in the present example, but in other examples we have run opportunity costs have been incurred in some periods.

(vii) The value of an extra unit of capital, raised in the first period (I), averages 5.4%. If we had included in the model capital leverage constraints, as in Chambers and Charnes [1], the value would presumably have been considerably higher.

(viii) The worth of a dollar of autonomous deposits in the first period only (I), may be calculated to be 5%. This takes into account the 8% cash balance that must be held.

(ix) The lack of a terminal constraint is apparent in that purchases of short term government securities are allowed to be zero in the last period, but it is doubtful whether this significantly affects first period decisions, which are what the bank will be most concerned about.

(x) Observe that the bank maintains a balanced portfolio of government bonds (with respect to maturity dates). In particular, there is a steady inflow of maturing securities in each period. This provides a safeguard for the bank against a downturn in deposits or laggardly loan repayments. In case there is a liquidity crisis affecting the whole banking system, the spread of maturities, in particular the presence of short-dated ones, minimises the chances of losses as bond prices are depressed. The bank is also enabled to purchase longer maturities with monies becoming available if a steady inflow in the immediate future has been planned. In general, such securities, if
held to maturity, are more profitable.

The examiners' criteria of the F.R.B. imply a somewhat more conservative policy than the above. It may be that they are designed to protect customers and bankers against risks of bankruptcy, rather than as a useful guide to liquidity policy in a time of more stable economic conditions. In the latter case the idea of a portfolio of steadily maturing loans may be more appropriate, and it is hoped that the techniques employed in the present paper will be useful in developing such a policy.
References

This paper extends existing models of inter-temporal bank asset management in the following respects:

(a) Bank customers are identified, with requirements that their demands for loan renewals be satisfied. Opportunities are provided for attracting new customers;
(b) feedback relationships between loans and deposits are introduced;
(c) costs of servicing loans with different degrees of risk are introduced explicitly;
(d) future deposits and loan repayments are expressed as jointly dependent random variables;
(e) the Federal Reserve Board's liquidity leverage suggestions are replaced by chance-constraints on meeting demands for loans. This leads to a policy of balancing maturities in the bond portfolio.

The format of the model is that of chance-constrained programming, with piecewise linear approximations to the non-linear constraints. A 5-period example, with parameterizing on the right hand side, is presented.
Report Data:

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of the principal author(s) of the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year, if more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T)(U), (S)(U), (C)(U), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used in index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.