EFFECT OF HEADSPACE OXYGEN ON THE QUALITY OF FREEZE-DRIED BEEF AND CHICKEN STEW

by

J. M. Tuomy, Larry Hinnergardt and R. L. Helmer

May 1968

UNITED STATES ARMY NATICK LABORATORIES
Natick, Massachusetts 01760

Food Laboratory
FL-78
This document has been approved for public release and sale; its distribution is unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

Destroy this report when no longer needed. Do not return it to the originator.
EFFECT OF HEADSPACE OXYGEN ON THE
QUALITY OF FREEZE-DRIED
BEEF AND CHICKEN STEW

by

J. M. Tuomy, Larry Hinnergardt and R. L. Helmer

Project reference:
1J6-24101-D553

Series: FL-78

May 1968

Food Laboratory
U. S. ARMY NATICK LABORATORIES
Natick, Massachusetts 01760
FOREWORD

The adverse effect of oxygen on freeze-dried foods has been recognized from the beginnings of the Armed Forces program to develop freeze-dried rations. It has been accepted generally that a maximum limit of 2 percent oxygen in the headspace gas or an equivalent vacuum is sufficient to protect foods and is practical to obtain industrially. This limit is currently standard in Armed Forces specifications. Storage tests as well as field usage have confirmed the validity of this requirement. However, foods are very complex and the response of foods to oxygen varies widely from item to item. Since packaging with low oxygen is expensive and is an inspection problem as well, studies on individual items are necessary to establish the oxygen "tolerance" of each item.

The items in the Food Packet, Long Range Patrol represent a new family of freeze-dried combination foods that are dried as complete items rather than as separate ingredients. Therefore, this study was initiated to determine the oxygen response of various types of products made this way. This report covers two of the eight items in the Long Range Patrol packet: Beef and Chicken Stews.

The work was performed under project 1J6-24101-D553, Food Processing and Preservation Techniques, Quality Parameters of Dehydrated Food.

The work of Mr. Otto Stark, US Army Natick Laboratories, in planning and conducting the chromatographic analyses for this study is gratefully acknowledged.

FERDINAND P. MEHRlich, Ph.D.
Director
Food Laboratory

APPROVED:

DALE H. SIELING, Ph.D.
Scientific Director

FELIX J. GERACE
Brigadier General, USA
Commanding
TABLE OF CONTENTS

Abstract ... v
Introduction ... 1
Experimental Methods .. 2
Results and Discussion .. 3
References .. 11

TABLES

Table No. ... Page No.
1 Formulas used in the Preparation of the Beef and Chicken Stews .. 5
2 Analysis of Variance Results 6
3 Flavor, Odor and Texture Ratings of Freeze-Dried Beef Stew over a 24 - Week Storage Period at 100°F and Amounts of Oxygen taken up by 125 Grams of Product ... 7
4 Flavor, Odor and Texture Ratings of Freeze-Dried Chicken Stew over a 24 - Week Storage Period at 100°F and Amounts of Oxygen taken up by 125 Grams of Product ... 8
5 Correlation Coefficients (r) and Regression Equations for ml Oxygen used versus the various Panel Ratings ... 9

FIGURES

Figure No. ... Page No.
I. Computed Regression Lines for Flavor and Odor Ratings on Oxygen Uptake 10
ABSTRACT

To study the effect of headspace oxygen on quality, beef and chicken stews freeze-dried after formulation were packed in cans with vacuums ranging from 30 to 0 inches. The cans were stored at 100°F and tested at intervals by a technological taste panel for 24-weeks. In addition, the headspace gas in each can was analyzed by chromatographic means for oxygen and carbon dioxide and the rehydration ratio determined at each interval.

Almost all of the oxygen available to the product was taken up during the 24-week period although at a slightly slower rate by the chicken stew than by the beef stew. Panel ratings for flavor and odor corresponded to the quantity of oxygen absorbed by the product with lower ratings being obtained with the higher oxygen uptake figures. No correlation was found between the rehydration ratio and oxygen uptake.

The results emphasize the importance of limiting headspace oxygen in military specifications for freeze-dried products. The beef and chicken stews may not absorb oxygen as rapidly and thus not deteriorate as rapidly as some freeze-dried products, but in time will absorb enough oxygen, if it is available, to become unacceptable.
INTRODUCTION

The adverse effects of oxygen on the quality of freeze-dried foods have been of concern from the beginning of the Armed Services program for the development of new freeze-dried operational rations. A large number of in-house storage studies have shown that most freeze-dried foods are sufficiently stable for military use if, among other things, the oxygen is less than 2 percent in the headspace gas when the products are nitrogen packed or vacuum packed at 28 inches vacuum or better. Furthermore, a 2 percent oxygen limitation was met by industry without too much difficulty when the initial procurements were made to field test the new rations. Subsequent procurements amounting to many thousands of pounds of freeze-dried meats for field as well as garrison use have confirmed the validity of the storage study results. Almost all current military specifications for freeze-dried meats contain a requirement for nitrogen packing with a maximum oxygen content of 2 percent in the headspace gas.

Percentage oxygen in headspace gas is a convenient measurement, but does not give a complete picture since it does not relate the quantity of product with the actual quantity of oxygen present unless product and headspace are constant. The trend in ration design is toward flexible packaging with vacuum rather than rigid containers with gas packaging. Percentage oxygen in the headspace is therefore meaningless and any oxygen limitation will have to be expressed as a minimum vacuum or as a maximum quantity of oxygen available to the product. The validity of an absolute requirement of 2 percent of less oxygen for all freeze-dried products has been questioned by some manufacturers.

Sharp (1953) mentions that dehydrated meat must be kept in an oxygen-free atmosphere. Harper and Tappel (1957) point out that a large quantity of oxygen is absorbed during the deterioration of freeze-dried beef, but do not draw any conclusions as to a practical limitation on oxygen to insure storage stability. Wuhrmann et al. (1959) and Tappel et al. (1957) note that the storage stability of freeze-dried foods is improved when the foods are packed in a nitrogen atmosphere. Olcott (1962) states that there is a rapid loss of palatability when freeze-dried meat and fish are stored in oxygen or air. Smithies (1962) states that in an oxygen-free atmosphere, freeze-dried meat products suffer only a slow change in quality over periods of several months and air storage of these products can bring about spectacular decreases in rehydration. Thompson et al. (1962) states that three major factors determine the type and extent of deterioration reactions in freeze-dried foods: residual moisture level, headspace oxygen content, and duration of storage at elevated temperatures. Roth et al. (1965) investigated the deterioration of freeze-dried beef, chicken, carrots, and spinach, reporting that exposure to oxygen appeared to be the most significant factor in degradation of freeze-dried products stored at elevated temperatures. These investigators also reported that the specific biochemical and biophysical properties of each food determine its ability to tolerate some variation in residual moisture, headspace oxygen, and duration of storage at elevated
temperatures. Hanson (1961) reported oxygen tolerances for various foods using as a tolerance the ratio, quantity of oxygen available to the weight of product, resulting in the product being just acceptable after 10 weeks storage at 25° C. Tolerances for meat and fish products ranged from 0.1 to 1.0 mg of oxygen per gram of dry food.

In redesigning and improving the Packet, Subsistence, Long Range Patrol, which is carried by the individual soldier and consists of 8 different freeze-dried main menu items, it was decided to dehydrate the prepared item rather than mix dehydrated ingredients and to use vacuum packaging in a flexible pouch. Development studies showed that the products were sufficiently stable for the intended purpose when dried to less than 2 percent moisture and held at a vacuum of 28 inches or better. However, no information was available as to the effect of lower vacuum which would simplify operations during volume production. Therefore, this study was initiated to determine the effects of various vacuums on the organoleptic qualities of two main component items, when they are held at elevated temperatures.

EXPERIMENTAL METHODS

The beef and chicken stews were made in accordance with Interim Purchase Description IP/DES S-36-6 Packet, Subsistence, Long Range Patrol, dated 20 April 1966. Formulas used are shown in Table 1. The total amount of each stew needed for the investigation was made in a single batch and dehydrated in one freeze dehydrator chamber in order to minimize processing variations. Dehydration was to less than 2 percent moisture and the vacuum on the chamber was broken with nitrogen. Freeze dehydration conditions were 120° F plate temperature with radiant heating and a pressure of 400 microns. Packaging was in No. 2-1/2 cans and was accomplished as soon as possible after the dehydrator was opened.

Twenty-five cans each containing 125 grams of product, which filled the can to the top, were closed at each vacuum. Vacuums used were 30, 28, 26, 24, 22, 20 and 0 inches. The cans closed at 30 inches were evacuated three times with 30 second dwell each time and flushed back with nitrogen the first two times. The other cans were closed as soon as the gauge indicated the required vacuum. The vacuums attained corresponded to approximately 1, 2, 3.5, 5, 6, 7 and 21 percent oxygen if the cans had been gas packed. The cans were then stored at 100° F and 5 cans of each vacuum withdrawn for evaluation at 0, 2, 4, 12, and 24 weeks. 100° F was chosen as the storage temperature since one of the standard requirements used in development work for freeze-dried meat ration items is that they must be acceptable after one year storage at this temperature.

Headspace gas analysis was performed by chromatographic means in accordance with the procedure outlined by Bishov and Henick (1966). Prior to analysis the cans were brought to room pressure with nitrogen and allowed to equilibrate overnight. Sample size was 250-500 mL. Experience with this method in-house would indicate an anticipated error for the method of approximately ± 0.25%. Results for the 5 cans of each level were averaged for reporting purposes.
Total headspace volume in the can was determined by compressing 125 grams of product in a laboratory press at 2000 pounds for 10 seconds and subtracting the volume of the resulting bar from the total volume of the can. It was recognized that this method is not the most accurate available, but considering that the volume of headspace is so large in comparison with the absolute volume of the product and that evaluations were to be made with a taste panel, any resulting error was considered insignificant.

Tast panel evaluation was made by a 10-member technological panel rating the product on a 9-point scale for flavor, odor, and texture where the highest number was the most acceptable flavor, odor, or texture. The same panel members were used for each evaluation. Product was rehydrated with 180°F water for 5 minutes for tasting. Product in the cans used for the chromatographic analyses was used for the panel evaluation.

Rehydration value was obtained by rehydrating 125 grams of product with water at 180°F for 5 minutes, draining the product for 1 minute on a wire screen with 1/8 inch square openings and reweighing. Rehydration ratio was calculated as weight of rehydrated product divided by weight of dry product.

RESULTS AND DISCUSSION

Analysis of variance of vacuum and storage time versus panel ratings is shown in Table 2. These results confirm that oxygen and storage time at evaluated temperatures are two important factors in determining the deterioration of freeze-dried foods (Thompson et al., 1962). This is true for flavor and odor in particular. However, the results for texture are not so distinct. This could be expected since texture in a stew is more difficult for a panel to assess than are flavor and odor.

Tables 3 and 4 show the average flavor, odor, and texture scores for the 24-week period. Almost all of the oxygen available to the products was taken up by the end of the 24-week period. It should be noted both that the oxygen uptake was gradual and that the rating values decreased as the oxygen uptake increased. Thus, quality of the product was time dependent as well as oxygen dependent. The results indicate that chicken stew took up oxygen at a slower rate than the beef stew. The acceptance ratings also decreased at a slower rate. Informal in-house observations have indicated that some freeze-dried meat products deteriorate more rapidly than did the two stews. By the end of the 24-week period both products received very similar ratings and the regression equations (Fig. 1) indicate that the uptake of an equivalent amount of oxygen resulted in equivalent panel results with each product. The results are of the same magnitude as those shown by Hanson (1961) for beef and vegetable stew. There is no question that if the products are exposed at 100°F to an excess of oxygen the quality will deteriorate to the point of being unacceptable within a few weeks. Only traces of carbon dioxide were found at any time during the 24-week period.
Correlation coefficients and linear regression equations for oxygen used versus the panel ratings are shown in Table 5. The correlations are excellent except for texture rating of chicken stew. Furthermore, while the slopes of the equation plots for odor and flavor (Fig. 1) are different, the slope for flavor for beef stew is almost identical to that for chicken stew. The same holds true for odor.

Rehydration ratios showed no correlation with vacuum, oxygen used or time in storage. This does not agree with the findings of Smithies (1962) which probably can be explained by the fact that this investigation was concerned with cooked stews rather than a single meat item. However, it should be noted that no good correlations of rehydration with storage time or oxygen have been found in any of the in-house studies made by these Laboratories.

The results of this study clearly indicate the need for rigid oxygen control measures for packaging freeze-dried rations to be used by the Armed Forces. This means that much more work is needed on flexible packaging of freeze-dried rations to insure that the low oxygen level needed is both obtained initially and preserved through the rigors of Armed Service distribution and use. The task ahead includes working out specification requirements that are (1) industrially feasible to comply with, and (2) fully responsive to the military need for high quality freeze-dried rations, capable of use in any part of the world.
Table 1. Formulas used in the preparation of the Beef and Chicken Stews

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Beef Stew</th>
<th>Chicken Stew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef, cooked, diced</td>
<td>38.8</td>
<td>--</td>
</tr>
<tr>
<td>Chicken, cooked, diced</td>
<td>--</td>
<td>29.0</td>
</tr>
<tr>
<td>Potatoes, raw, diced</td>
<td>16.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Peas, raw, frozen</td>
<td>3.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Carrots, raw, diced</td>
<td>4.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Water</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Vegetable oil</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Seasoning mix</td>
<td>3.3</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seasoning Mix</th>
<th>Beef Stew</th>
<th>Chicken Stew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soup and Gravy Base, Beef</td>
<td>50.0</td>
<td>--</td>
</tr>
<tr>
<td>Soup and Gravy Base, Chicken</td>
<td>--</td>
<td>25.0</td>
</tr>
<tr>
<td>Starch, instant</td>
<td>36.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Salt</td>
<td>7.0</td>
<td>10.6</td>
</tr>
<tr>
<td>Onion powder</td>
<td>2.0</td>
<td>--</td>
</tr>
<tr>
<td>Pepper, white</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Onions, dehydrated</td>
<td>4.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Poultry seasoning</td>
<td>--</td>
<td>0.21</td>
</tr>
<tr>
<td>Monosodium glutamate</td>
<td>--</td>
<td>0.1</td>
</tr>
<tr>
<td>Non-fat dry milk</td>
<td>--</td>
<td>30.0</td>
</tr>
<tr>
<td>Garlic powder</td>
<td>--</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Table 2. Analysis of Variance Results

<table>
<thead>
<tr>
<th>Factor</th>
<th>Flavor</th>
<th>Odor</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Stew</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Storage time</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Vacuum & Storage time</td>
<td>**</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>Chicken Stew</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td>**</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td>Storage time</td>
<td>**</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td>Vacuum & Storage time</td>
<td>**</td>
<td>**</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

** Significant at the 1% level
* Significant at the 5% level
n.s. Not significant
Table 3. Flavor, odor, and texture ratings of freeze-dried beef stew over a 24-week storage period at 100°F and amounts of oxygen taken up by 153 grams of product.

<table>
<thead>
<tr>
<th>Vacuum (Inches)</th>
<th>Time (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Oxygen Available (ml)</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vacuum (Inches)</th>
<th>Time (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxygen Available (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vacuum (Inches)</th>
<th>Time (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vacuum (Inches)</th>
<th>Time (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxygen Available (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vacuum (Inches)</th>
<th>Time (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxygen Available (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
</tr>
</tbody>
</table>
Table 4. Flavor, odor, and texture ratings of freeze-dried chicken over a 26-week storage period at 100°F and amounts of oxygen taken up by 125 grams of product.

<table>
<thead>
<tr>
<th>Vacuum (Inches)</th>
<th>30</th>
<th>28</th>
<th>26</th>
<th>24</th>
<th>22</th>
<th>20</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Available (ml)</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>35</td>
<td>44</td>
<td>59</td>
<td>131</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>6.7</td>
<td>7.2</td>
<td>5.1</td>
<td>0</td>
<td>6.7</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6.4</td>
<td>6.8</td>
<td>5.7</td>
<td>3</td>
<td>6.7</td>
<td>6.8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6.7</td>
<td>6.8</td>
<td>5.2</td>
<td>11</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>6.5</td>
<td>6.5</td>
<td>5.0</td>
<td>13</td>
<td>5.7</td>
<td>6.2</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>6.0</td>
<td>6.5</td>
<td>5.3</td>
<td>13</td>
<td>5.5</td>
<td>6.1</td>
</tr>
<tr>
<td>120</td>
<td>108</td>
<td>5.7</td>
<td>5.6</td>
<td>5.4</td>
<td>13</td>
<td>5.5</td>
<td>6.1</td>
</tr>
</tbody>
</table>
Table 5. Correlation coefficients (r) and regression equations for ml oxygen used versus the various panel ratings.

<table>
<thead>
<tr>
<th>Variates</th>
<th>r Values</th>
<th>Regression Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Stew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavor rating</td>
<td>0.8518**</td>
<td>Y=6.46 - 0.032X</td>
</tr>
<tr>
<td>Odor rating</td>
<td>0.8789**</td>
<td>Y=6.65 - 0.024X</td>
</tr>
<tr>
<td>Texture rating</td>
<td>0.7322**</td>
<td>Y=5.84 - 0.012X</td>
</tr>
<tr>
<td>Chicken Stew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavor rating</td>
<td>0.8301**</td>
<td>Y=6.17 - 0.030X</td>
</tr>
<tr>
<td>Odor rating</td>
<td>0.8233**</td>
<td>Y=6.64 - 0.022X</td>
</tr>
<tr>
<td>Texture rating</td>
<td>0.1932</td>
<td></td>
</tr>
</tbody>
</table>

* P >0.05
** P >0.01

DF = 27
REFERENCES

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
</table>
| 2 - Commanding General
US Army Medical Research & Development Command
Main Navy Building
Washington, D. C. 20315 | 1 - Commanding Officer
US Army Nuclear Defense Laboratory
ATTN: Technical Library
Edgewood Arsenal, Maryland 21010 |
| 1 - Commanding General
US Army Combat Development Command
ATTN: CDCMR-O
Fort Belvoir, Virginia 22060 | 1 - Commanding Officer
US Army Medical Nutrition Laboratory
Fitzsimons General Hospital
Denver, Colorado 80240 |
| 2 - Commanding General
US Army Test & Evaluation Command
ATTN: AMSTE-BC
Aberdeen Proving Ground, Maryland 21005 | 1 - Commanding Officer
US Army Arctic Test Center
ATTN: STEAC-TA
APO Seattle, Washington 98733 |
| 1 - Commanding General
US Army Materiel Command
ATTN: AMCRD-JI, Development Directorate
Department of the Army
Washington, D. C. 20315 | 1 - Commanding Officer
Edgewood Arsenal
ATTN: SMUEA-TSTI-TL
Edgewood Arsenal, Maryland 21010 |
| 1 - Commanding General
US Army Combat Development Command
Combat Service Support Group
Fort Lee, Virginia 23801 | 1 - Commander
US Army Biological Laboratories
ATTN: Technical Library
Fort Detrick
Frederick, Maryland 21701 |
| 1 - Commanding Officer
US Army Research Officer - Durham
ATTN: CRD-AA-IP
Box CM, Duke Station
Durham, North Carolina 27706 | 2 - Commander
Defense Personnel Support Center
ATTN: Directorate of Subsistence, DPSC-STT
2800 South 20th Street
Philadelphia, Pennsylvania 19101 |
| 1 - Commanding Officer
US Army Combat Development Command
Supply Agency
ATTN: CDCSA-R
Fort Lee, Virginia 23801 | 1 - Commandant of the Marine Corps
Code A04D
Washington, D. C. 20380 |
<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
</table>
| 1 - Commandant
ATTN: Head Librarian
US Army Medical Field Service School
Brooke Army Medical Center
Fort Sam Houston, Texas 78234 | 2 - National Aeronautics & Space Administration
ATTN: Acquisition Branch, 'S-AK/DL'
PO Box 33
College Park, Maryland 20740 |
| 2 - Executive Director
Joint Committee on Atomic Energy
Congress of the United States
Washington, D. C. 20545 | 1 - US Army Combat Development Command
Institute of Nuclear Studies
Fort Bliss, Texas 79916 |
| 1 - Director
Division of Biology & Medicine
US Atomic Energy Commission
Washington, D. C. 20545 | 1 - US Department of Agriculture
Division of Acquisitions
National Agriculture Library
Washington, D. C. 20250 |
| 1 - Director
Division of Isotopes Development
US Atomic Energy Commission
Washington, D. C. 20545 | 1 - Headquarters, USAF (AFRDDG)
DCS/Research & Development
Washington, D. C. 20330 |
| 2 - Director
Biological Sciences Division
Office of Naval Research
Department of the Navy
Washington, D. C. 20360 | 1 - Arctic Medical Research Laboratory, Alaska
ATTN: Librarian
APO Seattle, Washington 98731 |
| 2 - Director, Development Center
Marine Corps Development & Education Command
ATTN: Combat Service Support Division
Quantico, Virginia 22134 | 1 - US Atomic Energy Commission
Division of Technical Information Extension
PO Box 62
Oak Ridge, Tennessee 37820 |
| 3 - Office of the Coordinator of Research
University of Rhode Island
Kingston, Rhode Island 02881 | 1 - National Aeronautics & Space Administration
Ames Research Center
ATTN: J. E. Greenleaf, 239-4A
Moffett Field, California 94035 |
| 10 - Headquarters 12th Support Brigade
ACoFS Services
ATTN: Food Advisor
Fort Bragg, North Carolina 28307 | 2 - Quartermaster School Library
US Army Quartermaster School
Fort Lee, Virginia 23801 |
| 1 - US Naval Research Laboratory
Code 6140
Washington, D. C. 20390 | 1 - |
Copies

1 - US Army Command & General Staff College
 Library Division
 Fort Leavenworth, Kansas 66027

1 - US Atomic Energy Commission
 Reports Section, Headquarters Library
 Main Station, J-004
 Division of Technical Information
 Washington, D. C. 20545

4 - Exchange & Gift Division
 Library of Congress
 Washington, D. C. 20540

2 - Chief, Radiation Branch
 Food Industries Division, 552
 Business & Defense Service Administration
 US Department of Commerce
 Washington, D. C. 20230

1 - Chief, Life Sciences Division
 Army Research Office
 Office of Chief of Research & Development
 Washington, D. C. 20310

Copies

1 - Library, Southern Utilization Research & Development Division
 Agricultural Research Service, US Department of Agriculture
 PO Box 19687
 New Orleans, Louisiana 70119

1 - US Army Research Office
 ATTN: Technical Library
 3045 Columbia Pike
 Arlington, Virginia 22204

1 - Armour and Company
 Food Research Library
 801 West 22nd Street
 Oak Brook, Illinois 60521

1 - Dr. Herbert E. Hall, Chief
 Food Microbiology
 National Center for Urban & Industrial Health
 Food Protection Research
 222 East Central Parkway
 Cincinnati, Ohio 45202

1 - Mr. Harry W. Ketchum, Director
 Radiation Program
 Food Industries Division, BDSA
 US Department of Commerce,
 Room 4042
 14th & Constitution Avenues, NW
 Washington, D. C. 20230
FOOD LABORATORY INTERNAL DISTRIBUTION LIST

Copies

25 - Chief, Technical Plans Office, NLABS
 (20 for transmittal to Defense Documentation Center)

2 - Technical Library, NLABS

10 - Program Coordination Office, Food Laboratory, NLABS

7 - Division Chiefs, Food Laboratory, NLABS

2 - Marine Liaison Officer, NLABS

5 - Air Force Liaison Officer, NLABS

1 - Director, Earth Sciences Laboratory, NLABS

2 - Acting Director, General Equipment and Packaging Laboratory, NLABS

3 - Director, Pioneering Research Laboratory, NLABS

1 - Commanding Officer, US Army Research Institute of Environmental Medicine, NLABS
Effect of Headspace Oxygen on the Quality of Freeze-Dried Beef and Chicken Stew

To study the effect of headspace oxygen on quality, beef and chicken stews freeze-dried after formulation were packed in cans with vacuums ranging from 30 to 0 inches. The cans were stored at 100°F and tested at intervals by a technological taste panel for 24-weeks. In addition, the headspace gas in each can was analyzed by chromatographic means for oxygen and carbon dioxide and the rehydration ratio determined at each interval.

Almost all of the oxygen available to the product was taken up during the 24-week period although at a slightly slower rate by the chicken stew than by the beef stew. Panel ratings for flavor and odor corresponded to the quantity of oxygen absorbed by the product with lower ratings being obtained with the higher oxygen uptake figures. No correlation was found between the rehydration ratio and oxygen uptake.

The results emphasize the importance of limiting headspace oxygen in military specifications for freeze-dried products. The beef and chicken stews may not absorb oxygen as rapidly and thus not deteriorate as rapidly as some freeze-dried products, but in time will absorb enough oxygen, if it is available, to become unacceptable.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headspace</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-Dried Foods</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Rations</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-Dried</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>