REAL TIME RECOGNITION
OF HANDPRINTED TEXT:
PROGRAM DOCUMENTATION

G. F. Groner

PREPARED FOR:
ADVANCED RESEARCH PROJECTS AGENCY

The RAND Corporation
SANTA MONICA • CALIFORNIA
REAL TIME RECOGNITION
OF HANDPRINTED TEXT:
PROGRAM DOCUMENTATION
G. F. Groner

This research is supported by the Advanced Research Projects Agency under Contract No. DAHC15 67 C 0141. RAND Memoranda are subject to critical review procedures at the research department and corporate levels. Views and conclusions expressed herein are nevertheless the primary responsibility of the author, and should not be interpreted as representing the official opinion or policy of ARPA or of The RAND Corporation.

DISTRIBUTION STATEMENT
This document has been approved for public release and sale; its distribution is unlimited.
This Memorandum documents a computer program for the recognition of symbols handprinted on a RAND Tablet or similar device used in conjunction with a CRT display. This documentation describes the program in sufficient detail to facilitate its use, maintenance, and/or recoding in another computer language. Since the program is written in IBM-360 assembly language, understanding of the documentation requires familiarity with this language. The study resulting in this program is but one facet of an overall search for techniques to increase the facility of the man-computer interface.
This Memorandum documents a computer program that permits an on-line computer user to print text naturally and have it recognized accurately. The program recognizes handprinted letters, numbers, punctuation marks, and geometric figures; it separates characters written in quick succession and in close proximity. The program is written as a re-entrant process in IBM-360 assembly language; it requires about thirty-seven hundred 32-bit words of storage. The user must provide programs that 1) communicate with an input device such as the RAND Tablet to supply a sequence of writing-instrument coordinates to the recognition program; 2) select options in real-time based on context; and 3) use the recognition program's outputs for displaying and editing information on a CRT display device.

This documentation describes the program at two levels. The most general description lists the symbols recognized and discusses feature extraction, character separation, symbol recognition, and user options. The second level provides a computer listing of the assembly-language program. This listing includes descriptions of the logical functions, calling sequences, and input/output parameters of each of the major processes comprising the program, and outlines the information processing and flow of control. The Appendix briefly describes processes and macros that perform functions required by the recognition program.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>v</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>The Program</td>
<td>2</td>
</tr>
<tr>
<td>The Documentation</td>
<td>3</td>
</tr>
<tr>
<td>Glossary</td>
<td>5</td>
</tr>
<tr>
<td>II. GENERAL DESCRIPTION OF THE PROGRAM</td>
<td>11</td>
</tr>
<tr>
<td>The Symbols Recognized</td>
<td>11</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>11</td>
</tr>
<tr>
<td>Character Separation</td>
<td>13</td>
</tr>
<tr>
<td>Character Identification</td>
<td>13</td>
</tr>
<tr>
<td>User Options</td>
<td>17</td>
</tr>
<tr>
<td>Controls</td>
<td>17</td>
</tr>
<tr>
<td>Vector Length</td>
<td>18</td>
</tr>
<tr>
<td>Character Size</td>
<td>18</td>
</tr>
<tr>
<td>Between-Character Time Delay</td>
<td>18</td>
</tr>
<tr>
<td>III. FUNCTIONAL AND PROCEDURAL DESCRIPTIONS OF THE PROCESSES AND RCS'S</td>
<td>20</td>
</tr>
<tr>
<td>CHAREC</td>
<td>20</td>
</tr>
<tr>
<td>CHAREC Function</td>
<td>20</td>
</tr>
<tr>
<td>CHAREC Call</td>
<td>21</td>
</tr>
<tr>
<td>CHAREC Inputs</td>
<td>21</td>
</tr>
<tr>
<td>CHAREC Outputs</td>
<td>22</td>
</tr>
<tr>
<td>CHAREC Exits</td>
<td>22</td>
</tr>
<tr>
<td>CHAREC Parameters</td>
<td>22</td>
</tr>
<tr>
<td>CHAREC Read-Only Constants</td>
<td>24</td>
</tr>
<tr>
<td>CHAREC Sequence of Information Processing</td>
<td>24</td>
</tr>
<tr>
<td>CHAREC Program Listing</td>
<td>29</td>
</tr>
<tr>
<td>CHAREC RCS'S</td>
<td>51</td>
</tr>
<tr>
<td>ANG4</td>
<td>51</td>
</tr>
<tr>
<td>CHECK</td>
<td>55</td>
</tr>
<tr>
<td>CORNER</td>
<td>61</td>
</tr>
<tr>
<td>DOT</td>
<td>64</td>
</tr>
<tr>
<td>DELTAS</td>
<td>65</td>
</tr>
<tr>
<td>FN56</td>
<td>67</td>
</tr>
<tr>
<td>HYST</td>
<td>68</td>
</tr>
<tr>
<td>MXMNC</td>
<td>69</td>
</tr>
<tr>
<td>MXMNS</td>
<td>71</td>
</tr>
<tr>
<td>QMM</td>
<td>72</td>
</tr>
<tr>
<td>RAZE</td>
<td>74</td>
</tr>
<tr>
<td>RELEM</td>
<td>75</td>
</tr>
<tr>
<td>SMOOTH</td>
<td>78</td>
</tr>
</tbody>
</table>
Appendix

The OS/360 Operating System--2250 Display Recognition Program 161
CRT Display Character Codes 162
Register Assignment 163
Processes 163
CHAR 163
CLOCK 164
Macros 165
BEXIT 165
BOX 165
CLEAR 166
EPLOG (Epilogue) 166
INST (Instance) 167
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARL (Parallel)</td>
<td>168</td>
</tr>
<tr>
<td>PAWS (Pause)</td>
<td>169</td>
</tr>
<tr>
<td>PROC (Process)</td>
<td>170</td>
</tr>
<tr>
<td>PRO (Prologue)</td>
<td>170</td>
</tr>
<tr>
<td>RCS (Remote Code Sequence)</td>
<td>171</td>
</tr>
<tr>
<td>REGS (Registers)</td>
<td>172</td>
</tr>
<tr>
<td>SET</td>
<td>173</td>
</tr>
<tr>
<td>SVCS</td>
<td>173</td>
</tr>
<tr>
<td>TABLE</td>
<td>174</td>
</tr>
<tr>
<td>WATE (Wait)</td>
<td>175</td>
</tr>
</tbody>
</table>

REFERENCES: 177
I. INTRODUCTION

This Memorandum documents a symbol-recognition program† that is part of an experimental software system called GRAIL (GRAphical Input Language) [2] under development at The RAND Corporation (and supported by the Advanced Research Projects Agency). The objective of GRAIL is to investigate methods by which a user may deal directly, naturally, and easily with his problem. As one means of eliminating distracting operational mechanics from problem solving, the system features the ability to communicate with a computer via a single pen-like instrument moved over a two-dimensional surface in conjunction with a CRT display.†† Communication is enhanced by incorporating a program that interprets freehand motions and provides immediate feedback.†††

This symbol-recognition program allows an on-line computer user to print or draw symbols naturally, and have them recognized accurately and quickly, even though it recognizes a large set of symbols. Designed to work for many users, the program imposes few constraints on style, speed, or position of writing; it is not intended to be modified for individual printing styles. It makes use of size and position information to differentiate among symbols not distinguishable by shape alone. Preliminary experiments [1] indicate that recognition accuracy (not including lower-case letters and geometric symbols) is about 90 percent for inexperienced

†‡A general description of this program together with a discussion of user interaction, a performance evaluation, and references to related work appear in Ref. 1.

††Italicized words are defined in the Glossary at the end of this section (pp. 5-10).

†††An immediate, continuous track on the display corresponds to the writing instrument position. A completed track is replaced by a symbol after a few milliseconds for recognition plus a time delay for symbol separation.
users. This error rate is tolerable because of the quick response and the GRAIL editing facilities.

The recognition program has been used daily, as part of the GRAIL system, while developing means for creating, editing, and executing computer code and flowcharts. The GRAIL system is being developed on an IBM System/360 Model 40 and is written in 360 assembly language.

The recognition program within the GRAIL system is written to operate under a nonstandard GRAIL supervisor and in conjunction with a nonstandard CRT display; a modified version has been written that operates under the IBM OS/360 operating system and in conjunction with an IBM 2250 display unit. The differences between the GRAIL recognition program documented here and the OS program are summarized in the Appendix. The OS program also has a number of users at RAND (its use is described in Ref. 3).

THE PROGRAM

The user must provide programs that: 1) communicate with an input device such as the RAND Tablet [4] in order to provide a sequence of \(x, y \) coordinates to the recognition program; 2) select options in real-time based on the context of the input; and 3) use the recognition program's outputs for displaying and editing information on a CRT display based on context. When the recognition program has been provided with a time-ordered set of \(x, y \) coordinates (describing the motion of a writing stylus) and a set of control bits, it normally places vector strings (which approximate the stylus motion) directly into a display buffer as it receives the inputs; upon completion of each symbol, the program returns a character code (its interpretation of the input) along with some geometrical properties of the symbol.

The recognition program is written as a reentrant process in 360 assembly language. It requires about thirty-seven hundred 32-bit words of storage. Each logical instance
of this process requires 26 words for data and context; the remaining storage is for the read-only code, which is required only once.

The user program calls the process CHAREC, which in turn calls the processes REC and CLOCK and a set of remote code sequences (processes with general-purpose register input/output operating in the environment of the calling process context) referred to herein as RCS's. CHAREC and its RCS's perform "inking" (generation of the vector strings), feature extraction, and character separation. CLOCK is used as a real-time clock for separating characters by timing. REC, together with its RCS's, identifies characters by testing the features computed by CHAREC. Most of the tests are performed in INTERP, an RCS comprised of decision tables. Figure 1 outlines the input/output parameters and logical functions of the two processes CHAREC and REC. The processes and RCS's called by CHAREC and REC are indicated by asterisks. The figure was drawn using the GRAIL system (but does not illustrate this system's scope or symbology).

THE DOCUMENTATION

The following documentation describes the program at two levels. The most general description lists the symbols recognized and discusses feature extraction, character separation, character identification, and user options.

The second level provides a computer listing of the assembly-language program. This listing includes descriptions of the logical functions, calling sequences, and input/output parameters of each of the processes and RCS's (except CLOCK); and outlines the sequence of information processing in CHAREC, REC, and INTERP. Entry points in these outlines are labeled (e.g., ****ENTRY****) identically to the corresponding entry points in assembly-language program listings. Also described are the program's parameters, features, and indicators used by CHAREC, REC, and the RCS's.
Fig. 1—CHAREC and REC outlines
In addition to summarizing the difference between the GRAIL and OS programs, the Appendix lists the CRT display character codes and briefly describes CLOCK, CHAR (the GRAIL process that allows the user's application program to interact with the Tablet by providing a convenient interface), and the GRAIL macros as used by the recognition program.

GLOSSARY†

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(NAME)</td>
<td>The address of NAME.</td>
</tr>
<tr>
<td>NAME</td>
<td>In a call to process NAME, this is a linkage between the calling process context and NAME's context; the label "ANAME" is user determined.</td>
</tr>
<tr>
<td>aspect ratio</td>
<td>A character's height divided by its width.</td>
</tr>
<tr>
<td>buffer</td>
<td>A number of bytes used for transmitting x,y coordinates to the recognition program or vector strings from the program.</td>
</tr>
<tr>
<td>byte</td>
<td>Eight bits; referred to as 0 to 7, left to right.</td>
</tr>
<tr>
<td>call</td>
<td>Transfer of flow of control to another process.</td>
</tr>
<tr>
<td>calling sequence</td>
<td>The sequence of information and commands required to call a process.</td>
</tr>
<tr>
<td>cannot interpret</td>
<td>A sequence of input coordinates not interpretable as one of the allowable symbols; same as "no character."</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode ray tube.</td>
</tr>
</tbody>
</table>

†In addition to those italicized above, other words and phrases used throughout the text are also defined.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>character</td>
<td>A sequence of input coordinates encoded as an entity by this program; same as "symbol" (see The Symbols Recognized, Sec. II).</td>
</tr>
<tr>
<td>character code</td>
<td>A 1-byte encoding of a character (see CRT Display Character Codes, Appendix, p. 162).</td>
</tr>
<tr>
<td>context</td>
<td>1) a continuous storage block consisting of linkages between parent (calling) and daughter (called) processes, formal parameters, and other information; 2) the environment used to interpret the meaning of an action or inputs.</td>
</tr>
<tr>
<td>data</td>
<td>1) (x,y) coordinates; 2) indicators or computed quantities used by the program.</td>
</tr>
<tr>
<td>daughter process</td>
<td>A process called by a parent process.</td>
</tr>
<tr>
<td>display</td>
<td>A programmed output device that presents an image.</td>
</tr>
<tr>
<td>display stream</td>
<td>The sequence of instructions controlling the display.</td>
</tr>
<tr>
<td>EEXIT</td>
<td>Appears in a call to a process or RCS; EXIT is a re-entry point in the calling (parent) process corresponding to a return from the called (daughter) process or RCS; the label "EXIT" is user determined.</td>
</tr>
<tr>
<td>ending point</td>
<td>The (x,y) position at which the writing stylus micro switch is opened when terminating a stroke.</td>
</tr>
<tr>
<td>entry point</td>
<td>The place at which control resumes.</td>
</tr>
<tr>
<td>F</td>
<td>1) full computer word (32 bits); 2) formal (input/output) parameter.</td>
</tr>
<tr>
<td>feature</td>
<td>A computed attribute of a symbol which is used for identification.</td>
</tr>
<tr>
<td>formal parameter</td>
<td>An input/output data location provided a process by its parent.</td>
</tr>
<tr>
<td>FPARAM</td>
<td>In a call to a process, refers to the formal (input/output) parameter PARAM of the calling (parent) process; the label "PARAM" is user determined.</td>
</tr>
<tr>
<td>geometric corner</td>
<td>A detected sharp change (90° or more) in the direction of the writing stylus motion.</td>
</tr>
<tr>
<td>GPARAM</td>
<td>A reference to the parameter PARAM in a call to a process. G = F for a formal (input or output) parameter of the calling process; G = I for an informal (local) parameter; the label "PARAM" is user determined.</td>
</tr>
<tr>
<td>H</td>
<td>Computer halfword (16 bits).</td>
</tr>
<tr>
<td>informal parameter</td>
<td>Temporary or constant data defined within a process.</td>
</tr>
<tr>
<td>ink</td>
<td>1) same as "ink track"; 2) the action of generating an ink track.</td>
</tr>
<tr>
<td>ink track</td>
<td>A displayed string of vectors that approximates the writing stylus motion.</td>
</tr>
<tr>
<td>instance</td>
<td>The appearance of a calling sequence to a process in the program.</td>
</tr>
<tr>
<td>IPARAM</td>
<td>In a call to a process, refers to the informal (local) parameter PARAM of</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>NAMEA</td>
<td>In a call to process NAME, a read-only link to NAME; the label "NAMEA" is user determined.</td>
</tr>
<tr>
<td>no character</td>
<td>A sequence of input coordinates not interpretable as one of the allowable symbols; same as "cannot interpret."</td>
</tr>
<tr>
<td>parameter</td>
<td>Temporary or constant data.</td>
</tr>
<tr>
<td>parallel task</td>
<td>An instruction sequence initiating two lines of control within the program.</td>
</tr>
<tr>
<td>parent process</td>
<td>The process that called a daughter process.</td>
</tr>
<tr>
<td>pen</td>
<td>The writing instrument that is moved on the Tablet writing surface; same as "stylus."</td>
</tr>
<tr>
<td>pendown</td>
<td>Closure of the writing stylus micro switch due to a downward force.</td>
</tr>
<tr>
<td>penup</td>
<td>Opening of the writing stylus micro switch by release of a downward force.</td>
</tr>
<tr>
<td>PSG</td>
<td>Program Status Group, a GRAIL conceptual entity used for parallel task synchronization.</td>
</tr>
<tr>
<td>process</td>
<td>A computer program segment, somewhat akin to a subroutine, accessed by a formal call (see "reentrant process").</td>
</tr>
<tr>
<td>raster unit</td>
<td>1/1024 of the Tablet or display surface dimension--0.01 in. in the case of a standard 10.24 by 10.24-in. Tablet.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>raw data point</td>
<td>A writing stylus coordinate pair as received from the input device.</td>
</tr>
<tr>
<td>read-only</td>
<td>Computer storage that is read (and executed if code) but not modified.</td>
</tr>
<tr>
<td>reentrant process</td>
<td>A process requiring separate linkage and data storage blocks for each usage, but only a single storage block of read-only code. When executed, the code is not modified and therefore may be re-used even if the process has been suspended before completion.</td>
</tr>
<tr>
<td>RCS</td>
<td>Remote code sequence.</td>
</tr>
<tr>
<td>remote code sequence</td>
<td>A process with general-purpose register input/output operating in the environment of the calling (parent) process context; has no context but is reentrant.</td>
</tr>
<tr>
<td>starting point</td>
<td>The x,y position at which the writing stylus micro switch is closed when initiating a stroke.</td>
</tr>
<tr>
<td>stroke</td>
<td>The sequence of x,y coordinates between closing and opening the writing stylus micro switch.</td>
</tr>
<tr>
<td>stylus</td>
<td>The writing instrument that is moved on the tablet writing surface; same as "pen."</td>
</tr>
<tr>
<td>subcharacter</td>
<td>A set of x,y coordinates encoded internally by the program, but which may not be a complete character and has not been outputted by the program.</td>
</tr>
</tbody>
</table>
symbol: A sequence of input coordinates encoded as an entity by this program; same as "character" (see The Symbols Recognized, in Sec. II).

tablet: An input device comprising a pen-like writing instrument and a writing surface [4]; as the stylus is moved over the surface its x,y coordinates are sent to the computer for processing.

task: A sequence of instructions initiating lines of control (see "parallel task").

time-pause corner: A detected deceleration-acceleration of the writing stylus motion.

track: 1) same as "ink track"; 2) the action of generating an ink track.

vector: A line segment described by its length $(2, 4, 6, \text{or} 8 \text{ raster units})$ and direction $(1 \text{ of } 16 \text{ in } 22.5^\circ \text{ increments})$.

x: The writing surface horizontal coordinate.

X (or any other non-blank character in column 72): A continuation indicator.

y: The writing surface vertical coordinate.
II. GENERAL DESCRIPTION OF THE PROGRAM

THE SYMBOLS RECOGNIZED

Upper-case Latin alphabet.

Numbers: 0 through 9.

Lower-case (script) Latin alphabet: these characters are not recognized very accurately in the present program. A lower-case character output code may be changed to the corresponding upper-case output code by a one instruction change in CHAREC.

Punctuation marks: + - = / () * $. , ' #

Left bracket, right bracket, less than, greater than, karat, tilda (tilda is not fully implemented--see TILDT, p. 155).

Geometric symbols (must be single stroke and larger in one dimension than twice the normally expected character height): Rectangle, circle, triangle (one side horizontal, the other two of approximately equal length), ellipse, diamond, trapezoid.

Erasure (scrubbing action).

Cannot interpret.

FEATURE EXTRACTION

The on-line nature of this program enables processing of the data point-by-point as the stylus is moved across the writing surface. In order to minimize time and storage requirements, therefore, CHAREC (together with its RCS's) extracts features as the data arrive. These features are:

The sequence of directions (right, left, up, or down) of stylus motion.

The number and relative (to character extents) positions of geometrically determined corners.
The number of pause-in-time determined corners.
The number and relative positions of relative maxima and minima in y (the vertical direction).
The number and relative positions of stroke starting and ending points.
The absolute size of the character in raster units (1 raster unit = 0.01 inch).
The ratio of height to width of the character.
The absolute position of the center of the character on the writing surface.

The first process in feature extraction is data reduction (thinning). When a data point arrives, its position is compared with that of the most recently accepted data point. It is accepted (used in further analysis) if these two points are sufficiently far apart; otherwise it is rejected. When this thinning distance is set to 0.02 in., data are reduced by a factor of about seven without losing any significant information about a 1/4-in.-high handprinted character. (The number of raw data points between thinned data points is required, however, for detecting pause-in-time corners.) Upon the acceptance of each new data point, tests are made for stylus direction, corners, and relative maxima and minima.

CHARREC is called into action when the stylus is placed on the writing surface (micro switch closed), and is notified (via an indicator) when it is lifted (micro switch opened). CHARREC is thus informed about the starting and ending of each stroke. When a stroke is completed, tests are made to determine if it is part of the same character as the previous stroke set (previous subcharacter). If so, the character extents are updated, the positions of various features are computed relative to these character extents, and this subcharacter is identified. Otherwise, the
previous subcharacter is outputted as a character, this
stroke treated as a new subcharacter, relative positions
computed, and the stroke identified.

CHARACTER SEPARATION

CHAREC groups sets of strokes into characters by con-
sidering timing, and the geometric extents and identifica-
tions of the strokes. If a prespecified time elapses
following the end of the most recent stroke, a character
is considered completed regardless of what follows. This
between-character time delay must be greater than the
maximum expected delay between two strokes belonging to
the same character--0.3 sec has proven optimum for ex-
perienced users. A set of strokes is considered to be a
completed character if it cannot be combined with the
following stroke to form an allowable character. Some
stroke sets (e.g., those that form 8, Q, A, and E) cannot
be combined with any other stroke to form an allowable
character. Some other stroke sets (e.g., 0, 2, 3, T, and F)
can be combined with some strokes but not with others.
Strokes written in quick succession, which can be combined
to form an allowable character, are tested for overlapping
or adjacency--thus separating groups of strokes too far
apart to form a character of the normally expected size.

CHARACTER IDENTIFICATION

REC (together with INTERP and RCS's) uses the set of
features generated by CHAREC (and its RCS's) to decide what
character was written. Individual strokes are identified,
as they are drawn, via a data-dependent sequence of tests.
The first test groups stroke descriptions according to the
first four stylus directions. This test reduces the number
of stroke possibilities--typically, to one or two. Any
further test depends on the set of possible stroke
identifications, and on previously tested features. The program thus has a tree structure as outlined in Fig. 2.

The recognition of a multiple-stroke symbol is based on the identities of the constituent strokes and on their relative positions—it is independent of stroke order. In most cases, each constituent stroke requires only a general, rather than a precise, identification (which is a code in P or PAD). For example, a stroke recognized as a 1,) , (, or / if standing alone, need only be considered as a vertical (P=1) if part of a multiple-stroke symbol. This simplifies decision making.

REC performs a few simple tests, but mostly acts as a link between CHAREC and the testing procedures (INTERP and the RCS's), or between INTERP and the RCS's. INTERP performs sequences of tests on encoded 1-byte parameters, thereby including nearly all of the decision-making tree structure. Most of the RCS's perform complicated tests to discriminate among a particular set of characters.

The following comments may be useful when adding or deleting a character description. To add a description, write the character, observe its description (set of features calculated by CHAREC) either visually or in computer memory, and note the character code(s) outputted by the decision-making routines. If multiple characters are outputted, or if a single character with fewer strokes than the written character is outputted, then either this particular stroke combination is not allowed and must now be added to CHECK, or a new PAD code and a new PAD table (see INTERP, p. 116) entry must be added. If this problem does not occur, find the direction sequence (as encoded by ANG4) entry into INTERP; then follow through the tests, eventually reaching the test resulting in the outputted character. At this place, enter a feature test that will consistently distinguish between the written character and the outputted character. If no such feature (or set of features) exists,
INPUT:

STROKE DESCRIPTION

FIRST 4 DIRECTIONS

FURTHER DIRECTIONS CORNERS ENDPOINT ... SIZE

OUTPUT: 2 3 [c 0 6 1

Fig. 2—Outline of tree structure for character identification
it will be necessary to add a new CHAREC RCS to extract some new feature from the raw data. If this decision point occurs in the middle of a sequence of tests, it may be necessary to introduce a new PAD code and table entry. If strokes may be added to this character to generate new multi-stroke character descriptions, it must be added to CHECK. To delete a character description, follow through the tests as above, but delete the test(s) that result in this character. There may also be corresponding deletions from CHECK and the PAD codes and table entries.

A modification of the recognition program has been written that recognizes the mathematical symbols square root, infinity, integral, summation, and diagonal (upper-left to lower-right) in addition to the current symbols (except apostrophe and the geometric symbols). In order to allow any symbol to be written any size and at any position, the section of CHAREC that separates characters according to size and position (see CHAREC, p. 41) and the call (in REC, p. 93) to SYMT (which recognizes large single-stroke symbols as geometric symbols) were deleted. The tests for apostrophe were deleted from PSTEST so that a comma can be recognized when written in any position. The only new multi-stroke symbol—infinity comprised of the same strokes (2 o-like strokes) as a description of the number 8—did not require a change in CHECK or a new PAD code. The new symbols were added, however, to certain places in CHECK so that they can be combined with additional strokes to form multi-stroke symbols—e.g., if diagonal were not added to the vertical stroke section of CHECK, the letter x could not be written as a diagonal followed by a vertical. Since one of the first-4-direction descriptions (right-down-up-right) was previously a unique description (recognized as a script v), but could now also be a description of square root, a new code in ANG4 and a corresponding new entry into INTERP were added. All other changes—either feature tests
or setting character codes--were made in INTERP. For example, a stroke with the direction sequence up-down-up--starting point not in the lower quarter of the stroke, and ending point in the lower half of the stroke--was recognized as the number 2; but now, in addition, it could be the symbol integral. At the place where these tests result in a branch to set the character code to 2 (see SNLCl in INTERP, p. 111), this branch was replaced by a 2 versus integral test. This new test results in a branch to set character code to 2 if the stroke starting point is in the left half of the stroke; otherwise, it results in a branch to set character code to integral.

USER OPTIONS

Controls

CHAREC normally provides an ink track (constructed of vectors of user-specified length), and outputs character codes along with some character size and position information. The ink track for a handprinted character is deleted upon recognition of that character. The user may control the operation of CHAREC by specifying no-track and/or no-recognize, or halt with each group of data points (including during mid-stroke).

No-Track. CHAREC continues to process the data normally and recognize characters, but does not store an ink track. Any existing ink track is deleted.

No-Recognize. CHAREC continues to process the data normally and generate an ink track, but waits for more data when it would usually (with the recognize option) take a character or no-character (cannot interpret) exit.

Halt. CHAREC deletes any existing ink track and takes the halt exit. This allows the user to ignore the character recognizer when taking a control action not involving printing.
Vector Length

The user specifies the vector length to be 2, 4, 6, or 8 raster units, where 1 raster unit = 0.01 in. CHAREC generates (and stores in an ink buffer) a string of vectors of this length to approximate the raw data-point track--this is the ink track. The thinning distance used for data reduction is set equal to the vector length. If the vector length is 8 raster units, the between-character time delay is set to zero. The vector codes generated by CHAREC are for a particular CRT display and are not generally compatible with other displays.

Character Size

The user specifies the normally expected character height and width. This information is used for distinguishing between large and small symbols (e.g., geometric symbol versus not-geometric,) versus ', upper-case c versus lower-case c, etc.), and for character separation. Character separation by position is based on the distance (relative to the normally expected character width) between strokes, and on the positions of strokes within character spaces. Comma and apostrophe are distinguished by the position of the stroke within a character space. CHAREC assumes that the writing surface is divided into a grid of character spaces the size of a normal character. Each such character space's left (or bottom) edge is an integer number of character widths (or heights) from the writing surface's left (or bottom) edge.

Between-Character Time Delay

The user cannot set this delay which is used for separating characters. It is presently a CHAREC parameter (see CHAREC Read-Only Constants, p. 24). However, this time should become a user option by adding it to the list of
CHAREC inputs and changing CHAREC accordingly. This change does not alter the call for CHAREC, but does alter the parent routine's block of data for CHAREC.
III. FUNCTIONAL AND PROCEDURAL DESCRIPTIONS OF
THE PROCESSES AND RCS'S

CHAREC Function

CHAREC IS GIVEN THE TIME-SEQUENCE OF PEN-DOWNS, STYLIST COORDINATES, AND PEN-UPS. IT PERFORMS THREE PRIMARY FUNCTIONS.

1. GENERATE A VECTOR-INK TRACK (SPECIFIED VECTOR SIZE).

2. CALCULATE A SET OF FEATURES FROM THE STYLIST COORDINATE SEQUENCE. THESE FEATURES ARE PRESENTED TO THE ROUTINE 'REC' EACH TIME A STROKE IS COMPLETED, AND 'REC' TRANSLATES THEM INTO A SUBCHARACTER CODE.

THE FEATURES ARE:

* FOR THE CURRENT STROKE:
 STYLIST DIRECTION SEQUENCE (QUANTIZED TO EAST, NORTH, WEST, SOUTH FOR CHARACTERS, QUANTIZED TO 16 DIRECTIONS FOR INK AND GEOMETRIC FIGURES).*
 THE NO. AND POSITION OF GEOMETRIC CORNERS.
 THE NO. OF TIME-PAUSE CORNERS.
 THE NO. AND POSITIONS OF RELATIVE MAXIMA AND MINIMA IN Y.
* FOR EACH STROKE:
 THE POSITIONS OF THE PENDOWN(STARTING) AND PENUP(ENDING) PTS.
* FOR THE CHARACTER:
 THE BOUNDS.
* THE NO. OF STROKES.
 QUANTIZATION OF DIRECTIONS TO 1 OF 4 PREVENTS THE GENERATION OF TOO MANY DESCRIPTIONS OF THE SAME CHARACTER WHILE, WITH THE OTHER FEATURES, IS SUFFICIENT FOR DISCRIMINATION.
 MOST FEATURES ARE REPRESENTED AS 1-BYTE NUMBERS TO EASE TESTING.
 FEATURE POSITIONS ARE INDEPENDENT OF WHERE THE CHARACTER IS DRAWN ON THE TABLET BECAUSE THEY ARE CALCULATED RELATIVE TO CHARACTER BOUNDS.*
*3. DETERMINE WHEN A CHARACTER IS COMPLETE AND SEND THE CURRENT SUB-
* CHARACTER CODE (ALONG WITH SOME GEOMETRIC INFORMATION—SEE OUTPUTS
* LIST) TO THE USER.
*
*CHAREC HAS NO INK-TRACK, NO RECOGNIZE, HALT, AND SUPPRESS TABLET
*OPTIONS. NO TRACK, AND NO RECOGNIZE ARE INDEPENDENT.

CHAREC Call

* INST ACHRC,CHRCA,GDATA,GCHPSG,GINDEX,EFINX,ENCHARX,EXCHARX,EXTX
* TN,EXTC
*
*WHERE ALL THE LABELS ARE SELECTED BY THE USER
* ACHRC IS A LINKAGE BETWEEN THE CALLING PROCESS CONTEXT AND CHAREC'S
* CONTEXT
* CHRCA IS A LINK TO CHAREC
* DATA IS THE ADDRESS OF THE INPUTS-OUTPUTS DATA BANK (SEE 'CHAREC
* INPUTS, OUTPUTS')
* CHPNSG IS CHAREC'S PSG, 3F
* INDEX IS THE DATA/TIME EXPIRATION INDEX (0 = DATA, 1 = TIME), 1F
* EXITS FINX, NCHARX, CHARX, XTN, XTC ARE DESCRIBED UNDER 'CHAREC
* EXITS'

CHAREC Inputs

*ICP A(INK CCW), NO. OF BYTES DISPLAYED IS IN POSITION 6
*MCH A(MATCH DATA), NOT USED
*KEYB A(KEYBOARD DATA), EQU MCH, NOT USED
*PENU A(PEN UP DATA), EQU MCH, NOT USED
*INPB A(INPUT BUFFER), TIME SEQUENCE OF 12-BIT X, 12-BIT Y
* WHEN EACH IS 10-BIT NO. OF RASTER UNITS, THEN THE 2 LEAST SIGN-
* NIFICANT BITS ARE 00. THE NO. OF COORDINATE PAIRS IS VARIABLE
* IT IS GIVEN IN 'INPL'.
*INKB A(INK BUFFER), INK DESCRIPTION IS PLACED HERE WITH BYTE SEQ-
* UENCE 00, LX,X,LX,Y,Y,4S,V1,V2,V3,...,00 WHERE EACH SYMBOL
* BETWEEN COMMAS IS 1 BYTE, (LX,X) IS LOAD X, (LY,Y) IS LCAC Y
* AND JUMP TO NEW (X,Y), 4S IS ENTER VECTOR MODE WITH VECTOR
* LENGTH CODE S (SEE 'IND') AND THE VI'S ARE VECTOR DIRECTION
* CODES.
*INPL INPUT BUFFER LENGTH, THE NUMBER OF STYLUS COORDINATE PAIRS
* A GROUP OF 7 DATA POINTS ARRIVING IN 30 MS HAS BEEN FOUND CON-
* VENIENT. HALF WORD
*INKL INPUT BUFFER LENGTH, THE MAXIMUM ALLOWABLE NO. OF BYTES IN THE
* INK DESCRIPTION
* HALF WORD
*IND INDICATORS. A 1 IN THE FOLLOWING BIT POSITIONS INDICATES POS-
* ITIVE ACTIONS. 0=TRACK, 1=RECOGNIZE, 2=PENUP, 3=HALT, 4 AND 5=
* CCCE FOR SIZE OF INK VECTORS (00=2 RASTERS, 01=4 RASTERS, 10=6
 * RASTERS, 11=8 RASTERS), 6, 7=NOT ASSIGNED
*BOX EXPECTED CHARACTER WIDTH, HEIGHT: 12-BIT DX, 12-BIT DY
* WHEN EACH IS 10-BIT NO. OF RASTER UNITS, THEN THE 2 LEAST SIG-
 * NIFICANT BITS ARE 00.

CHAREC Outputs (Set in CHAREC or REC)

 * STROKE IN THE CHARACTER. 12-BIT X, 12-BIT Y, 12-BIT X, 12-BIT
 * Y. (END OF CHAREC)
*CET GEOMETRIC CENTER OF THE CHARACTER: 12-BIT X, 12-BIT Y
 * (END OF CHAREC)
*SIZE ACTUAL CHARACTER WIDTH, HEIGHT: 12-BIT DX, 12-BIT DY
 * (END OF CHAREC)
*CHARA CHARACTER CODE--SEE 'RAND CHARACTER CODES' (REC OR CHAREC)
*AR 1-BYTE NO. OF GEOMETRIC CORNERS, 1-BYTE ASPECT RATIO =
 * 4 HEIGHT/WIDTH. (END OF CHAREC)

CHAREC Exits

*FINX HALT EXIT
*NCHARX NO CHARACTER EXIT, MORE DATA PENDING (PARALLEL TASK)
*CHARX CHARACTER EXIT, MORE DATA PENDING (PARALLEL TASK)
*XTN TERMINAL NO CHAR EXIT, NO MORE DATA
*XTCX TERMINAL CHAR EXIT, NO MORE DATA

CHAREC Parameters

*EACH X OR Y COORDINATE IS A 12-BIT NO. RIGHT JUSTIFIED IN A HALF-WORD
*
*ALL PARAMETERS ARE REFERENCED IN CHAREC. OTHER REFERENCES ARE GIVEN
*IN PARENTHESES. (REC) REFERS TO A REFERENCE IN ANY REC RCS (EXCEPT
*INTERP) IN ADDITION TO REC ITSELF. (ANGLE) REFERS TO THE IN-LINE CODE
*SECTION OF CHAREC CALLED ANGLE.
*
*I1 TOP OF DATA BANK. ALSO TRANSLATION OF 'CODE' (ANG4,CHECK)
*PAD CONTAINS THE ADDRESS OF A PLACE IN 'INTERP' (REC,INTERP)
*CODE SEQUENCE OF STYLUS DIRECTIONS--EACH 2 BITS IS A DIRECTION
 * 00=E, 01=N, 10=W, 11=S (ANGLE,Fn56,ANG4,REC,INTERP)
*XS,YS X,Y COORDINATES OF A SMOOTHED DATA POINT
*XT,YT X,Y COORDINATES OF A THINNED DATA POINT (MxMxNS,RELM)
X, Y DISTANCES BETWEEN 2 PTS IN A THINNED TRACK (RELM)
ABSOLUTE VALUES OF DX, DY
CODE (SEE CODE) FOR PREVIOUS DIRECTION IN THE TRACK (ANGLE, TURNER, RELM)
CODE (SEE CODE) FOR PREVIOUS ACCEPTED DIRECTION (ANGLE, TURNER)
NO. DIRECTIONS IN THE LAST STROKE (ANGLE, FN56, ANG4, REC, INTERP)
TOTAL NO. OF STROKES (CHECK, DELTAS, REC, INTERP)
CHARACTER INDICATOR. BYTE 0 NOT USED. 1 IN THE FOLLOWING BIT
POSITIONS OF BYTE 1 INDICATE POSITIVE ACTIONS: 0, 1 = NOT USEC
2 = REQUEST FOR REC, 3 = 2 CHARACTERS, 4 = PEN-UP-DELAY HAS HAPPENED
5 = CLCK HAS BEEN CALLED, 6 = TAKE HALT EXIT, 7 = NOT FIRST PEN DOWN
NO. BYTES OF INK
CODE (NE = 00, NW = 01, SW = 10, SE = 11) FOR QUADRANT OF PREVIOUS DIRECTION (ANGLE)
INDEX BASED ON DIRECTIONS 5 AND 6, VALUES 0-16 (FN56, INTERP)
X, Y EXTREMES OF CHARACTER (MMXNC, REC)
RIGHT, LEFT EXTREMES OF CHARACTER (DELTAS, MMXNC, REC)
TOP, BOTTOM EXTREMES OF CHAR. (DELTAS, QMM, MMXNC, BSRRM, BHITE)
ASPECT RATIO = 4*CYC/DXC (INTERP)
NO. OF THINNED POINTS (TCNR)
NO. CF TIME-CORNER OCCURRED (TCNR)
NO. OF BYTES OF INK IN THE FIRST CHARACTER
SEQUENCE OF POSITIONS OF END, START POINTS OF STROKES -- 1/2 WORD FOR EACH STROKE ENDPT, STARTPT. (DELTAS, REC, INTERP)
YTC
XLC
YBC
EXPECTED NORMAL CHARACTER WIDTH, HEIGHT -- SEE BOX IN INPUTS LIST (PSTEST)
Y COORDINATE OF CENTER OF PREVIOUSLY OUTPUTED CHARACTER
CODE FOR PREVIOUSLY OUTPUTED CHARACTER
TEMPORARY STORAGE (TCNR, REC, INTERP)
NO. GEOMETRIC CORNERS (INTERP)
NO. RAW DATA PTS. SINCE LAST THINNED PT. (TCNR)
MINIMUM X OR Y DISTANCE BETWEEN THINNED POINTS (DERIVED FROM INC -- SEE INPLTS). (RELM)
CODE INDICATING TYPE OF PREVIOUS STROKE OR STROKES. 1 = DOWN VERT, 2 = HORIZ, 3 = 7-LIKE, 4 = V-LIKE, 5 = C-LIKE, 6 = O-LIKE, 7 = U-LIKE, 8 = 2 HORIZ., 9 = UP VERT, 10 = 1 VERT AND 1 HORIZ, 11 = 2 VERTS. (REC, INTERP)
CHARACTER CODE (SEE CHARA IN LIST OF OUTPUTS) (REC, DCT, INTERP)
TEMPORARY STORAGE (REC, INTERP)
NOT USED
X, Y COORDINATES OF SEQUENCE OF STARTING PTS. OF STROKES -- 1/2 WORD EACH (DELTAS, BSVM)
X, Y COORDINATES OF SEQUENCE OF ENDING PTS. OF STROKES -- 1/2 WORD EACH. (DELTAS, REC)
*ALXYJ 7 BYTES CONTAINING CO,LX,X,LYJ,Y,ENTER VECTOR MODE,00. GCES
 INTO INK BUFFER(SEE INKB IN LIST OF INPUTS)
*XL,YL RAW DATA POINT COORDINATES
*XLC,YLO XL,YL USED BY TRAVEC (CORNER)
*AX,AX1,AX2,AX3 16-DIRECTIONS USED FOR GEOMETRIC CORNERS (CORNER)
*AXO1,AXO2,AX12,AX23 DIFFERENCES BETWEEN 16-DIRECTIONS (CORNER)
*NC NO. GEOMETRIC CORNERS (CORNER)
*C INTERNAL CORNER PARAMETER (CORNER)
*DYM 3/2 EXPECTED NORMAL CHARACTER HEIGHT--SEE BXH IN INPUTS LIST
 *(BHTE,PTEST,TLID)
*DXS,DYS X,Y EXTENTS OF CURRENT STROKE (XMNS)
*XRS,XLS X RIGHT,LEFT EXTREMES OF CURRENT STROKE (XMNC,XMNS)
*YTS,YBS TYP,BOTTOM EXTREMES OF CURRENT STROKE (XMNC,XMNS)
*CENT X CENTER,Y CENTER--SEE CET IN OUTPUT LIST (RAZE,PTEST)
*MVC ADJUSTABLE MVC INSTRUCTION
*TTURN CODED(SEE CODE) FOR A SINGLE DIRECTION TURN (TURNER)
*TURN CODED(SEE CODE) SEQUENCE OF SINGLE DIRECTION TURNS (INTERP)
*XC,YC SEQUENCE OF X,Y COORDINATES OF GEOMETRIC CORNERS (CORNER)
 *(XC=RSSM, YC=BSRPRM)
*DO THRU D15 NO. OF OCCURANCES OF DIRECTIONS 0 THRU 15 (SYMT)
*DN SUM OF DO THRU D15 (SYMT)
*NTCUSP NO. OF TIME CORNERS (TCRNR,REC,INTERP)
*PNPTS PREVIOUS NPTS (TCRNR)
*PYMAX,PYMIN Y LOCATION OF PREVIOUS RELATIVE Y MAX,MIN (RELM)
*NXMAX,NXMIN NO. OF RELATIVE Y MAX,MIN (RELM,REC,INTERP)
*YMAY,YMIM SEQUENCE OF Y LOCATIONS OF RELATIVE Y MAX,MIN FOR THE
 CURRENT STROKE--1/2 WORD EACH (QMM,RELM,INTERP)
*CQMAX,CQMIN SEQUENCE OF CODED(YC,CO,01,02,03,YBC) QUANTIZED YMAX,
 * YMIN--1 BYTE EACH (QMM,REC,INTERP)
 * ALSO USED AS AN INDICATOR(RELM)
*PYMAXX,PYMAXX X LOCATION OF PREVIOUS RELATIVE Y MAX,MIN (RELM)
*YMAXX,YMINX SEQUENCE OF X LOCATIONS OF RELATIVE Y MAX,MIN FOR THE
 CURRENT STROKE--1/2 WORD EACH (RELM,INTERP,BSMNW,BTEST3)

CHAREC Read-Only Constants

*TIME PEN-UP-DELAY TIME FOR CLOCK, F"0100" = 0.1 SECOND
*LXYJ LOAD X, CO, LOAD AND JUMP TO Y,CO
*COOT THE CHARACTER CODE FOR A POINT
*HEX10 THE DECIMAL EQUIVALENT OF HEX 10
*HEX90 THE DECIMAL EQUIVALENT OF HEX 90

CHAREC Sequence of Information Processing

****START****
*
*GO TO NEW CHARACTER ENTRY , THEN CONTINUE
*
****NEW CHARACTER ENTRY****
*
*INITIALIZE
*RETURN
*
****NEW DATA POINT ENTRY****
*
*IF HALT DESIRED, GO TO FINISH ENTRY 1
*IF PEN UP, GO TO PEN UP SIGNAL ENTRY
*IF NOT FIRST PEN DOWN, GO TO MIDSTROKE NEW DATA POINT ENTRY
*
****NEW STROKE ENTRY****
*
*INITIALIZE
*SET NOT FIRST PEN DOWN INDICATOR
*SET UP STARTING POINT AND INK-VECTOR SIZE IN INK BUFFER
*SET UP THINNING DISTANCE
*IF INK DESIRED, SET DISPLAY COUNT
*
****MIDSTROKE NEW DATA POINT ENTRY****
*
THIN DETERMINES IF THE CURRENT DATA PT. IS SUFFICIENTLY FAR FROM THE
* PREVIOUS THINNED PT.
* NO, GO TO ANGLE SECTION-END
TCRNRM DETERMINES IF A TIME-PAUSE CORNER HAS OCCURRED
*CALCULATE INCREMENT BETWEEN NEW AND OLD THINNED POINTS
TRAVEC CALCULATES 16-DIRECTION FOR INK
*IF NO INK-TRACK DESIRED, ZERO (SET TO 2) DISPLAYED INK COUNT, THEN
* SKIP TO "CORNER" CALL
*STORE INK IF NEW THINNED PT. IS SUFFICIENTLY FAR FROM THE LAST PT. IN
* THE INK TRACK.
CORNER DETERMINES IF A GEOMETRIC CORNER HAS OCCURRED AND CALCULATES
* ITS POSITION.
MXMNS UPDATES STROKE BOUNDS
RELM UPDATES RELATIVE MAXIMA AND MINIMA
*
****ANGLE SECTION-START****
*
*DETERMINE QUADRANT OF DIRECTION
HYST MODIFIES DIRECTION FOR HYSTERESIS ZONE
*DETERMINE WHETHER EAST, NORTH, WEST, OR SOUTH
*IF NOT THE SAME AS THE PREVIOUS DIRECTION, "TURNER" DETERMINES IF THIS
* WAS A 180 DEGREE TURN, THEN GO TO WAIT FOR NEXT DATA POINT
*IF THE SAME, PLACE IN DIRECTION SEQUENCE
*
****ANGLE SECTION-END****
*
*UPDATE THE DATA POINT COUNTER
*IF ALL DATA POINTS IN THE INPUT BUFFER HAVE NOT BEEN EXAMINED, GO TO *
* MIDSTROKE NEW DATA POINT ENTRY
*OTHERWISE WAIT FOR NEXT DATA POINT GROUP
*
****WAIT FOR NEXT DATA POINT GROUP****
*
*(WAITING FOR A DATA POINT GROUP DOES NOT TIE UP THE CPU)
*WHEN NEW DATA POINT GROUP ARRIVES, THEN
*IF HALT DESIRED, GO TO FINISH ENTRY 3
*SET UP INK-VECTOR SIZE AND THINNING DISTANCE
*NEGATE REC REQUEST, 2 CHARACTERS, AND PEN-UP-DELAY INDICATORS
*GO TO NEW DATA POINT ENTRY
*
****PEN UP SIGNAL ENTRY****
*
*NEGATE NOT FIRST PENDOWN INDICATOR
*IF STROKE IS A DOT, 'DOT' CHECKS FOR POSSIBLE SCRIPT I OR J
* IF YES, GO TO MULTI-STROKES ENTRY
*IF THIS IS THE ONLY STROKE, GO TO MULTI-STROKES ENTRY
*IF THE PREVIOUS SUBCHARACTER CANNOT BE COMBINED WITH ANY STROKE, GC TO
* THE MULTI-STROKES ENTRY
**ANG4' AND 'CHECK' DETERMINE IF THE PREVIOUS SUBCHARACTER CAN BE
* COMBINED WITH THIS STROKE
* IF NOT, GO TO THE MULTI-CHARACTERS ENTRY
*IF CURRENT STROKE IS A COMMA, GO TO MULTI-CHARACTERS ENTRY
*IF CURRENT STROKE AND PREVIOUS SUBCHARACTER ARE NOT GEOMETRICALLY
* CLOSE ENOUGH TO BE COMBINED AS A CHARACTER, GO TO MULTI-CHARACTERS
* ENTRY. (IF IT IS NOT DESIRED TO SEPARATE CHARACTERS BASED ON THEIR
* POSITIONS, REPLACE 'PTEST LA R7,1 WITH 'PTEST EQU *' AND DELETE ALL
* THE FOLLOWING CODE UP TO, BUT NOT INCLUDING, THE LINE LABELLED
* 'CASE1').
*
****MULTI-STROKES ENTRY****
*
**MXMNC' UPDATES CHARACTER BOUNDS
*
****NEW CHARACTER PARAMETERS ENTRY****
*
*SET FIRST CHARACTERS INK COUNT TO TOTAL INK COUNT
**DELTAS' QUANTIZES STARTING PT. AND ENDING PT. LOCATIONS
**QMM' QUANTIZES RELATIVE Y MAX AND Y MIN LOCATIONS
**ANG4' TRANSLATES FIRST 4 DIRECTIONS TO A 1-BYTE CODE CORRESPONDING TO
* A SET OF CHARACTERS
**FN56' TRANSLATES DIRECTIONS 5 AND 6 TO A 4-BIT CODE
*COMPUTE ASPECT RATIO
*STORE NO. GEOM-CORNERS, AND NO. TIME-CORNERS
*COMPUTE CENTER
*IF NO. OF STROKES IS NOT 2, SKIPE AROUND TESTS FOR SCRIPT I AND J
*IF PREV. SUBCHARACTER IS SCRIPT I, GO TO REC EXIT
*IF PREV. SUBCHARACTER IS SCRIPT J, 'RAZE' INCREASES Y CENTER
*IF NO. DIRECTIONS GTR 15, CHAR IS SCRUB, GO TO REC EXIT
*IF NO. DIRECTIONS NCT GTR 8 GO TO REC CALL
*IF NO. DIRECTIONS GTR 12, OR CHARACTER IS LARGE, SET CHAR=SCRUB, GC TO
* REC EXIT
*
****REC CALL****
*
*CALL REC, THEN GO TO REC EXIT
*
****MULTI-CHARACTERS ENTRY****
*
*IF FIRST CHARACTER INK COUNT=TOTAL INK COUNT, I.E. IF THERE IS ONLY 1
* CHARACTER PENDING, GO TO RESTORE INK COUNT ENTRY
*SET INK COUNT TO INK COUNT LESS FIRST CHARACTER INK COUNT, I.E. TO 2ND
* CHARACTER INK COUNT
*ZERO (SET TO 2) DISPLAYED INK COUNT, AND SAVE PREVIOUS DISPLAYED INK
* COUNT.
*MOVE 2ND CHARACTER INK TO THE HEAD OF THE INK BUFFER.
*IF NO TRACK DESIRED, GC TO ZERO INK COUNT ENTRY
*CHARACTER INK COUNT, I.E. TO 2ND CHARACTER INK COUNT.
*
****ZERO INK COUNT ENTRY****
*
*SET TOTAL INK COUNT TO ZERO
*
****DON'T RESTORE ENTRY****
*
*SET REC REQUEST AND 2 CHARACTERS INDICATORS
*
****2 CHARACTERS ENTRY****
*
*IF NO RECOGNITION IS DESIRED, GO TO WAIT FOR NEXT DATA POINT GROUP.
*IF CHARACTER IS NOT RECOGNIZABLE, GO TO NO CHARACTER ENTRY
*IF REC HAS NOT BEEN REQUESTED, GC TO TERMINAL CHARACTER ENTRY
*INITIATE PARALLEL PROCESS. HIGH PRIORITY TAKES CHARACTER EXIT. LOW
* PRIORITY GOES TO RESET FOR NEW CHARACTER ENTRY
*
****RESET FOR NEW CHARACTER ENTRY****
*
*RESET CHAR SIZE, STARTING AND ENDING POINT LOCATIONS, CENTER, ETC.
*GO TO NEW CHARACTER PARAMETERS ENTRY
*
****REC EXIT****
*
*IF NO. DIRECTIONS GTR 8, AND CHARACTER IS NOT SCRIPT, SET CHAR=SCRUB
*NEGATE REC REQUEST AND 2 CHARACTERS INDICATORS
*SET TIME/DATA EXPIRATION INDEX TO TIME
*IF DESIRED INK-VECTOR SIZE IS 8 RASTERS, GC TO CLOCK EXPIRED ENTRY
*SET CLOCK HAS BEEN CALLED INDICATOR
*CALL CLOCK, THEN GO TO CLOCK TURNED OFF OR CLOCK EXPIRED
*
****CLOCK EXPIRED (DUE TO RUNNING LONGER THAN 'TIME') ENTRY****
* TURN OFF CLOCK (SET)
* PAUSE, THEN GO TO CLOCK TURNED OFF ENTRY
*
* ****CLOCK TURNED OFF (DUE TOPENDOWN) ENTRY****
*
* IF HALT DESIRED, GO TO FINISH ENTRY 3
* NEGATE CLOCK CALLED INDICATOR
* IF TAKE FINISH EXIT INDICATOR IS SET, GO TO FINISH ENTRY 2
* GO TO SET UP OUTPUTS ENTRY, THEN RETURN HERE
* IF 2 CHARACTERS INDICATOR IS SET, GO TO 2 CHARACTERS ENTRY
* IF TIME/DATA EXPIRATION INDEX IS SET TO DATA, GO TO NEW DATA PT. ENTRY
* RESET ALL INTERNAL INDICATORS
* GO TO 2 CHARACTERS ENTRY
*
* ****FINISH ENTRY 1****
*
* IF CLOCK HAS BEEN CALLED, GO TO FINISH ENTRY 2
* SET TAKE FINISH EXIT INDICATOR
* GO TO CLOCK EXPIRED ENTRY
*
* ****SET UP OUTPUTS ENTRY****
*
* MOVE APPROPRIATE INTERNAL VALUES TO OUTPUTS
* RETURN
*
* ****NO CHARACTER ENTRY****
*
* IF REC HAS NOT BEEN REQUESTED, GO TO TERMINAL NO CHAR ENTRY
* INITIATE PARALLEL PROCESS. HIGH PRIORITY TAKES NO CHAR EXIT. LOW
* PRIORITY GOES TO RESET FOR NEW CHARACTER ENTRY
*
* ****FINISH ENTRY 2****
*
* GO TO SET UP OUTPUTS ENTRY, THEN RETURN HERE
*
* ****FINISH ENTRY 3****
*
* GO TO SET UP INK ENTRY, THEN RETURN HERE
* TAKE HALT EXIT
*
* ****TERMINAL CHARACTER ENTRY****
*
* GO TO SET UP INK ENTRY, THEN RETURN HERE
* TAKE TERMINAL CHARACTER EXIT
*
* ****TERMINAL NO CHAR ENTRY****
*
* GO TO SET UP INK ENTRY, THEN RETURN HERE
* TAKE TERMINAL NO CHAR EXIT
*
*
****SET UP INK ENTRY****

*IF DESIRED INK-VECTOR SIZE IS 8 RASTERS, RETURN
*ZERO (SET TO 2) DISPLAYED INK COUNT
*RETURN
*
****END OF CHAREC****

CHAREC Program Listing

USING XR1,R1
USING XR3,R3
USING XR4,R4
SVCS
REGS
CD1 DSECT
XR1 DS 3F
AREC DS 1F
CLK1 CS 1F
DATA DS 1F
WAITBX CS 1F
INDEX CS 1F
FINX EQU 0
NCHARX EQU 4
CHARX EQU 8
XTN EQU 12
XTC EQU 16
CD4 DSECT
XR4 DS 0F
ICP DS 1F
MCH CS 1F
KEYB EQU MCH
PENU EQU MCH
INPB DS 1F
INKB DS 1F
INPL CS 1H
INKL CS 1H
EP DS 2F
CET DS 1F
SIZE CS 1F
IND CS 1G
CHARA DS 1G
AR DS 1H
BCX CS 1F
LU3 DSECT
XR3 DS 0F
IL DS 1F
PAD DS 1F
CODE CS 1F
XS DS 1H
YS CS 1H
XT CS 1H
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>YT</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>DX</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>CY</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>MDX</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>MDY</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>PANG</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>PACANG</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>N</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>SN</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>PUP</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>INKIND</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>PQUAD</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>BR56</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>DXC</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>DYC</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>XRC</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>XLC</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>YTC</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>YBC</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>ASPR</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>NT</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>NTC</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>INKC</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>XYE</td>
<td>CS</td>
<td>10C</td>
</tr>
<tr>
<td>XYS</td>
<td>DS</td>
<td>10C</td>
</tr>
<tr>
<td>WIDTH</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>YCENT</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>PCHAR</td>
<td>CS</td>
<td>1C</td>
</tr>
<tr>
<td>CUSP</td>
<td>CS</td>
<td>1C</td>
</tr>
<tr>
<td>NCUSP</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>NPTS</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>CEL</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>P</td>
<td>CS</td>
<td>1C</td>
</tr>
<tr>
<td>CHAR</td>
<td>DS</td>
<td>1C</td>
</tr>
<tr>
<td>TEMP</td>
<td>CS</td>
<td>1C</td>
</tr>
<tr>
<td>TINK</td>
<td>CS</td>
<td>5C</td>
</tr>
<tr>
<td>XSP</td>
<td>DS</td>
<td>10C</td>
</tr>
<tr>
<td>YSP</td>
<td>CS</td>
<td>10C</td>
</tr>
<tr>
<td>XEP</td>
<td>CS</td>
<td>10C</td>
</tr>
<tr>
<td>YEP</td>
<td>CS</td>
<td>10C</td>
</tr>
<tr>
<td>ALXYJ</td>
<td>CS</td>
<td>8C</td>
</tr>
<tr>
<td>XL</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>YL</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>XLO</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>YLO</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>AX3</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>AX2</td>
<td>DS</td>
<td>1H</td>
</tr>
<tr>
<td>AX1</td>
<td>CS</td>
<td>1H</td>
</tr>
<tr>
<td>AX</td>
<td>CS</td>
<td>1H</td>
</tr>
</tbody>
</table>
AX23 CS 1H
AX12 CS 1H
AXO1 DS 1H
AXO2 DS 1H
NC CS 1H
C CS 1H
CYM DS 1H
DXS CS 1H
CYS CS 1H
XRS CS 1H
XLS CS 1H
YTS CS 1H
YBS CS 1H
CENT DS 1F
MVC CS 6C
TTURN DS 1H
TURN DS 1F
XC CS 1OC
YC CS 1OC
DO DS 1H
D1 DS 1H
D2 CS 1H
D3 CS 1H
D4 CS 1H
D5 CS 1H
D6 CS 1H
D7 CS 1H
D8 CS 1H
D9 CS 1H
D10 DS 1H
D11 DS 1H
D12 DS 1H
D13 DS 1H
D14 DS 1H
D15 DS 1H
CN CS 1H
NTCUSP DS 1H
PNPTS DS 1H
PYMAX CS 1H
PYMIN DS 1H
NYMAX DS 1H
NYMIN DS 1H
YM0AX DS 10H
YM01N EQU YM0AX+10
CY0MAX CS 1OC
CY0MIN EQU CY0MAX+5
PYMXX DS 1H
PYMNX DS 1H
YM0AXX DS 10H
YMINX EQU YM0AXX+10
CHAREC PROCS CLEAR=5,CNTX=9,AUTO=86,PRCLG=XCHR,X,ID=9000021F
TIME CC F'030C'
LXYJ DC X'54066000'
CDOT DC X'80'
HEX10 DC F'16'
HEX90 DC F'144'
MOVER MVC O(C,R6),O(R7)
ANG56 CC V(FN56)
ANG4A DC V(ANG4)
DELT CC V(CELTAS)
RECA CC V(RECA)
SMTH DC X'800CC1C'
THINN DC V(TIN)
MAXMNS DC V(MAXMNS)
HYSTR DC V(HYSTR)
CLK2 DC V(CLOCK)
MAXMNC DC V(MAXMNC)
TRAVC DC V(TRAVC)
CORNR DC V(CORNER)
TURNA DC V(TURNA)
CHECKA DC V(CHECK)
RELMA DC V(RELMA)
QMA DC V(QMM)
COTA DC V(DDOT)
TCRNRA DC V(TCRNR)
RAZE DC V(RAZE)
XCHR X PROLG

****START****

****NEW CHARACTER ENTRY****

TOP XC II(4),II
XC PAD(4),PAD
XC SN(2),SN
XC INKIND(2),INKIND
XC INKC(2),INKC
XC PUP(2),PUP
XC XRC(2),XRC
XC YTC(2),YTC
XC CHAR(1),CHAR
XC P(1),P
XC TTUR(2),TTUR
XC D0(32),DO
XC DN(2),DN
LA R6,1024
SLL R6,2
STH R6,XLC
STH R6,YBC
L R4,DATA
L R7,CE
STH R7,YCENT
L R4,DATA
MVC PCHAR(1),CHAR
L R4,DATA
L R7,BCX
LR R8,R
STH R8,HEIGHT
SRL R8,16
STH R8,WIDTH
LR R8,R7
SRL R8,1
AR R7,R8
STH R7,DYM
BR R15

* *
*****NEW DATA POINT****
* *
WAITZ L R4,DATA
TM IN0,X'10'
BC 1,FIN
TM IN0,X'20'
BC 1,IND
LH R12,INKIND
TM PUP+1,X'01'
BC 1,PENDWN

* *
*****NEW STROKE****
* *
LH R6,SN
LA R8,5
CR R6,R8
BC 4,SNLSS5
SR R6,R6
SNLSS5 LR R8,R6
SLL R8,1
LA R6,1(R6)
STH R6,SN

*INITIALIZATION

XC NC(4),NC
LA R6,16
STH R6,AX1
STH R6,AX
MVC AX3(4),AX1
XC NTCUSP(2),NTCUSP
XC NPTS(2),NPTS
XC NT(2),NT
XC NTC(2),NTC

LA R7,20
STH R7,PNPTS
XC NYMAX(2),NYMAX
XC NYMIN(2),NYMIN
XC N(2),N
XC C(2),C
MVI QYM,01
MVI QYM,01
LA R6,4

STH R6,PANG
STH R6,PACANG
STH R6,PCUAD
XC XRS(2),XRS
XC YTS(2),YTS
LA R6,1C24
SLL R6,2
STH R6,0L
STH R6,YBS
I PUP+1,X01
L R4,DATA
L R1O,INPB
LH R7,0(R1O)
STH R7,XS
STH R7,XT
STH R7,XSP(R8)
STH R7,XL
STH R7,PMXX
STH R7,PMNX
LH R7,2(R1O)
STH R7,YS
STH R7,YT
STH R7,YSP(R8)
STH R7,YL
STH R7,PMAX
STH R7,PMIN

LA R13,4
B REBUFF
CLNBUF L R4,DATA

INITIALIZATION

TIME CORNERS
PTS BET. THIN PTS

PREV NPTS
REL MAX
REL MIN
ANGLES
CORNER INDEX

PREV ANG =4
PREV ACC ANG =4
PREV QUADRANT =4

1ST XRAW
1ST SMOOTH X
1ST X THIN
X STARTING POINT

X CF POT. YMAX
X CF POT YMIN

1ST Y RAW
1ST Y SMOOTH
1ST Y THIN
Y STARTING POINT

POTENTIAL Y MAX
POTENTIAL Y MIN

LA R13,4
B REBUFF
CLNBUF L R4,DATA
L R7,ICP
LA R8,2
STH R8,6(R7)
REBUFF L R4,DATA
LH R15,INKL
LA R6,7(R12)
CR R6,R15
BC 4,INKLOK
SR R12,R12
B CLNBUF
INKLOK LH R6,XL
SRL R6,2
LH R7,YL
SRL R7,2
SLL R6,16
CR R6,R7
C R6,LXYJ
ST R6,TEMP
MVC ALXYJ+1(4),TEMP
L R4,DATA
IC R15,INC
LA R14,12
NR R15,R14
LA R14,64
LR R6,R15
LA R6,4(R6)
SLL R6,1
STH R6,DEL
CR R15,R14
STC R15,ALXYJ+5
L R15,INKB
LA R15,0(R12,R15)
MVC 0(7,R15),ALXYJ
SR R6,R6
STC R6,7(R15)
L R4,DATA
*TEST FOR NO INKING
TM IND,X*80*
BC 8,ENTER1
L R7,ICP
LH R15,6(R7)
LA R15,6(R15)
LA R12,6(R12)
LA R6,2(R12)
CR R15,R6
BC 2,R15GTR
LA R15,1(R15)
R15GTR STH R15,6(R7)
B ENTER
*
*
****MIDSTRCKE NEW DATA POINT****
*
PENDWRN SR R13,R13
ENTER SR R6,R6
CR R12,R6
BC 8,CLNBUF
ENTERL L R4,DATA
L R10,INPB
LH R6,0(R13,R10)
STH R6,XS
LA R13,2(R13)
LH R6,0(R13,R10)
STH R6,YS
LH R8,NPTS
LA R8,1(C,R8)
STH R8,NPTS
LH R7,YT
LH R8,DEL
RCS THINN,E**4
CH R7,YT
BC 8,YSMALL
B OK

YSMALL LH R6,XS
LH R7,XT
LH R8,DEL
RCS THINN,E**4
CH R7,XT
BC 8,SMALL

*HERE IF NEW POINT ACCEPTED IN THIN TRACK
CK EQU *
RCS TCRNRA,III,E**4
LH R11,YS
LH R10,YT
STH R11,YT
SR R11,R10
STH R11,DY
LPR R11,R11
STH R11,MDY
ST DELTA Y
LH R11,XS
LH R7,XT
STH R11,XT
SR R11,R7
STH R11,DX
LPR R11,R11
STH R11,MDX
ST MAG(DELTA X)
NUINK LH R7,XT
LH R9,YT
LH R10,XL
LH R11,YL
STH R10,XLO

SMOOTH TRACK
Y THIN THIN TRACK
MIN THIN DIFF
X SMOOTH
X THIN
MIN THIN DIFF
ST MAG(DELTA Y)
ST DELTA X
STORE NEW INK
STH R11,YLO
L R4,DATA
L R15,INC
SRL R15,26
LA R14,3
NR R15,R14
LA R15,1(R15)
RCS TRAVC,E*+4
C R0,HEX10
BC 8,INKST
LR R8,RC
SLL R8,1
LH R7,DC(R8)
LA R7,1(R7)
STH R7,DC(R8)
LH R7,DN
LA R7,1(R7)
STH R7,DN
STH R0,AX
STH R10,XL
STH R11,YL
L R4,DATA
LH R15,INKL
BCT R15,A1
A1 L R4,DATA
TM INC,X*80'
BC 1,STOINK
L R4,DATA
L R7,ICP
LA R8,2
STH R8,6(R7)
SR R12,R12
B NOSTO
STOINK EQU *
L R4,DATA
L R7,ICP
LH R8,6(R7)
LA R8,1(R8)
STH R8,6(R7)
L R4,DATA
C R0,HEX90
L R6,INK8
STC R0,0(R12,R6)
SRL R0,8
LA R12,1(R12)
STC R0,1(R6,R12)
NCSTC EQU *
*GEOMETRIC CORNER DETECTOR
LH R7,AX
SH R7,AX1
LPR R7,R7
STROKE BOX SIZE AND LOCATION

UPDATE RELATIVE MAX AND MINS

ANGLE SECTION START**

DETERMINE QUADRANT

- **MEASURE ANGLE=ANG**
 - Measure the angle.

- **DX POS, TEST SIGN DY**
 - Test the sign of the Y coordinate.

- **DX NEG, TEST SIGN OF DY**
 - Test the sign of the Y coordinate.

- **DX, DY NEG, QUAD=3**
 - Determine quadrant 3.

- **DX, DY NEG, QUAD=2**
 - Determine quadrant 2.

DETERMINE DIRECTION

AND CHECK FOR 2 EQUAL SUCCESSIVE ANGLES

- **B I F QUAD=PREVQC**
 - Check if the quadrant is equal to the previous.

- **SET PQUAD=QUAD**
 - Set the previous quadrant.

- **B I F MDX LESS THAN MDY**
 - Check if MDX is less than MDY.

- **ANG EVEN, TEST SIGN(DX)**
 - Test the sign of DX when the angle is even.
BC 4, ANG2
SR R6, R6
B PRVANG

ANG2
LA R6, 2
B PRVANG

ODDANG
LA R6, 6
TR R6, R6
B 4, ANG3
LA R6, 1
B PRVANG

ANG3
LA R6, 3
B PRVANG

QEPQ
STH R6, PQUAD
LA R6, PANG
LA R7, 1
NR R6, R7
BC 8, EVPANG

PREV ANGLE ODD
LH R6, MDX
LH R7, MDY
RCS HYSRY, E**4
BC 2, EVANG
B PRVTST

EVPANG
LH R6, MDY
LH R7, MDX
RCS HYSRY, E**4
BC 2, ODDANG
B PRVTST

PRVANG
CH R6, PANG
BC 8, PRVTST
LR R9, R6
RCS TURN, II, E**4
LR R6, R9
STH R6, PANG
B SMALL

PRVTST
EQU *
LH R6, PANG
CH R6, PACANG
BC 8, SMALL
STH R6, PACANG

ANGLES OVERFLOW TEST
LH R7, N
LA R8, 15
CR R7, R8
BC 4, NLLOW
MVI CHAR, X'72'
SR R7, R7

NLLOW
L R10, CODE
LH R9, TTURR
L R11, TURN
LA R8, 16

DX PCS, ANG=0 RIGHT
DX NEG, ANG=2 LEFT
ANG ODD, TEST SIGN(DY)
DY NEG, ANG=3 DOWN
QUAD=PREV QUAD, HYSTERESIS
AND PANG WITH 1
B IF PREV ANG EVEN
B IF 3/4 MDY GTR MDY
PREV ANGLE EVEN
B IF 3/4 MDY GTR MDX
DCES ANG=PREV ANG
B IF ANG=PANG
SET PANG=ANG
ANG=PREVANG
OF ANGLES
N LESS THAN 15
CHAR IS A SCRUB
SR R8,R7
SHFT SRL R10,2
 SRL R11,2
 BCT R8,SHFT
 SLL R10,2
 SLL R11,2
 LH R6,PANG
 CR R10,R6
 CR R11,R9
 LA R8,15
 SR R8,R7
SHFT1 SLL R10,2
 SLL R11,2
 BCT R8,SHFT1
 ST R10,CCDE
 ST R11,TURN
 MVI TTURN+1,X'00'
 LA R7,1(R7)
 STH R7,N
 INC N
 B SMALL

****ANGLE SECTION END****
*
*
SMALL LA R13,2(C,R13) HERE PROCESSING OF NEW RAW COMP
L R4,DATA
LH R10,INPL
CR R13,R10
BC 4,ENTER GET NEXT POINT
 STH R12,INKIND KEEP INK BUFF IND

****WAIT FOR NEXT DATA POINT GROUP****
*
*
WATR1 WATE PSG=WAITBX,CNTX=F
L R4,DATA
TM INC,X'10'
BC 1,GOFINX
L R6,INKB
IC R15,INC
LA R14,X'0C'
NR R15,R14
LA R14,64
CR R14,R15
STC R14,5(R6)
LA R15,4(R15)
SLL R15,1
STH R15,DEL
NOFIN NI PUP+1,X'C7'
B WAITZ

****PEN UP SIGNAL****

*IND2 NI PUP+1,X*FE' HERE CN PU TRAP
LH R7, DN TEST FOR INK
LTR R7, R7 /
BC 8, NOSANG NO INK
CLI N+1, X*CO' TEST FOR PERIOD
BC 6, PTEST NCT PERIOD

*TEST FOR SINGLE ANGLE
LA R7, 4
CH R7, PANG
BC 8, NOSANG
LA R7, 1
STH R7, N
LH R10, PANG
LH R11, PANG
LA R8, 3

SHFT2 SLL R10, 2
AR R10, R11
BCT R8, SHFT2
SLL R10, 8
ST R10, CCDE
BC 15, PTEST

UPDATE STROKE SIZE TO PREPARE FOR CENTER, ETC.
NCSANG LH R6, XS
STH R6, XLS
STH R6, XRS
LH R6, YS
STH R6, YTS
STH R6, YBS

*STROKE IS A DOT
*IS THIS THE 2ND STROKE OF A SCRIPT I OR J
CLI SN+1, X*C2'
BC 6, PTEST
RCS DOTA, III, ECASE1, E*PTEST

*MAKE POSITION DECISION HERE, 1ST CHECK FOR SINGLE STROKE
PTEST LA R7, 1
CH R7, SN
BC 10, CASE1 ONLY 1 STROKE

*CAN OLD CHAR BE COMBINED WITH ANY STROKE, I.E. IS THERE A P AND/OR PAD
L R7, PAD
LTR R7, R7
BC 6, NOTDK
CLI P, X*CC'
BC 8, TOBIG

*CAN OLD CHAR BE COMBINED WITH STROKE
NCTCK RCS ANG4A, III, E*+4
RCS CHECKA,III,ETOBIG,ECOMBOK

*OLD CHAR CAN BE COMBINED WITH THIS STROKE, TEST FOR COMMA

COMBK
CLN N+1,X*1'
BC 6,COMOK1 NOT 1 ANG
TM CODE,X*0'
BC 8,COMOK1 RIGHT HORIZ
BC 4,COMOK2 UP OR LEFT HORIZ.
LH R15,DYM
SRL R15,2
LH R7,YTS
SH R7,YBS
CR R7,R15
BC 10,COMOK1 NOT SHORT

*SHORT VERTICAL, IS IT AT THE BOTTOM
LH R7,YBS
CH R7,YBC
BC 2,COMOK1 NO

*YES, DOES IT SLANT TO THE LEFT, I.E. IS ENDPT TO LEFT OF STARTPT
LH R8,SN
BCT R8,SLFT
SLFT
SLL R8,1
LH R7,XSP(R8)
CH R7,XT
BC 4,COMOK1

*SPECIAL TEST FOR T, IS THE FIRST STROKE A MINUS?
CLN P,X*0'
BC 8,COMOK1
B TOBIG

*TEST FOR HORIZ. COMMA
COMOK2 TM CODE,X*80'
BC 8,COMOK1 UP

*LEFT HORIZ., IS IT AT THE BOTTOM
LH R7,YBS
CH R7,YBC
BC 2,COMOK1 NO
BC 12,TOBIG YES,COMMA

*STROKE NOT A COMMA
COMOK1 LH R7,XRC
CH R7,XLS
BC 4,CASE1C
CH R7,XRS
BC 4,CASE1B
LH R7,XLC
CH R7,XRS
BC 4,CASE1

CASE1C CLN SN+1,X*02'
NO. IS OLD CHAR VERTICAL
BC 6,TSTS2

CLN P,X*01'
BC 8,CASE1A

TSTS2 CLN N+1,X*01'
NO. IS NEW STROKE VERTICAL
BC 6,TOBIG
TM CODE, X'CC'
BC 12, TOBIG
CLI CHAR, X'CE'
YES, IS OLD CHR A PLUS
BC 8, CASE1E
CLI CHAR, X'D2'
NO, IS IT A K
BC 8, CASE1E
BC 6, TOBIG

*1ST STROKE IS A VERTICAL, IS IT A 1
CASE1A CLI CHAR, X'F1'
BC 8, CASE1B
CLI CHAR, X'E1'
NO, IS IT A SLASH
BC 8, CASE1B
CLI CHAR, X'CD'
NO, IS IT A R. PAREN.
BC 8, CASE1B
CLI CHAR, X'CD'
YES
BC 6, TOBIG

*TEST FOR SHORT VERT SECOND STROKE
CASE1B CLI N+1, X'01'
BC 6, CASE1D
TM CODE, X'CO'
BC 12, CASE1D
NOT SINGLE ANGLE
CASE1E LH R15, OYM
2ND VERT, IS IT SHORT
SRL R15, 2
LH R7, YTS
SH R7, YBS
CR R7, R15
BC 4, TOBIG

*NO, IS DIFF BETWEEN CENTERS GTR R RASTERS
*GET HERE WHEN
*FIRST STROKE VERT, SECOND NOT
*AND FIRST STROKE RIGHT CLOSE TO SECOND LEFT
*OR BOTH STROKES VERTICAL
CASE1F EQU *
LH R15, WICTH
LR R10, R15
SRL R10, 1
AR R15, R1C
R = 3/4 WIDTH
LH R7, XRC
AH R7, XLC
2 OLD CENTER
LH R8, XRS
AH R8, XLS
2 NEW CENT
LR R9, R8
SR R8, R7
LPR R8, R8
CR R8, R15
BC 12, CASE1

*YES, IS DIFF GTR R1(R1 GTR R) RASTERS
LH R15, WICTH
SLL R15, 1
R1 = WIDTH
CR R8, R15
BC 2, TOBIG
*IS NEW XCENT IN LEFTMOST 1/4 OF A GRID POS?

LH R15,WIDTH
SRL R15,3
SR R8,R8
SRL R9,3
DR R8,R15
LR R10,R15
SRL R10,2
CR R8,R10
BC 4,CASE1

*IS OLD X CENT IN RIGHTMOST 1/4 OF A GRID POS

SR R6,R6
SRL R7,3
DR R6,R15
SR R15,R10
CR R6,R15
LA R10,11
CR R6,R10
BC 2,CASE1
BC 12,TOBIG

*2ND STROKE IS NOT VERTICAL
*IS DIFF BETWEEN 2ND STROKE LEFT AND 1ST STROKE RIGHT GTR R RASTERS

CASE1D EQU *
LH R15,WIDTH
SRL R15,2
LR R10,R15
SRL R10,1
AR R15,R10
R = 3/8 WIDTH
LH R7,XLS
SR R7,R15
CH R7,XRC
BC 2,TOBIG
BC 12,CASE1F

****MULTI-STROKES****

****NEW CHARACTER PARAMETERS****

REINK LH R7,INKIND
STH R7,INKC
MORCHR LH R8,SN
BCT R8,REDR8
ENDPOINTS
REDR8 SLL R8,1
LH R6,XT
STH R6,XEP(R8)
LH R6,YT
STH R6,YEP(R8)
RCS DELT,II1,E**4

*QUANTIZE REL MAX AND MINS
RCS QMMA,II1,E**4

*SET UP II AS A TRANSLATION OF CODE
RCS ANG4A,II1,E**4
CLI II1+3,X*EF'
BC 6,ANG56X

EF13 MVI II1+3,X*13'
ANG56X RCS ANG56,II1,E**4

LH R7,DXC
LTR R7,R7
BC 8,ASPR3
SR R8,R8
LH R9,DYC
SLL R9,2
DR R8,R7
LR R7,R9
B ASPR2

ASPR3 LA R7,4095
SLL R7,4

ASPR2 STH R7,ASPR

LH R8,NC

NTC1 STH R8,NCUSP

NTX EQU *

*NO. OF TIME CORNERS
LH R8,NT
BCT R8,TNT1

TNT1 CH R8,NTC
BC 2,TNTX
LH R8,NTCUSP
BCT R8,TNTC1

TNTC1 STH R8,NTCUSP

TNTX EQU *
LH R7,YTC
AH R7,YBC
SRL R7,1
LH R8,XRC
AH R8,XLC
SRL R8,1
SLL R8,16
AR R7,R8
ST R7,CENT

*TEST FOR SPECIAL CHARACTERS
CLI SN+1,X*02*
BC 6,TSTSCB
CLI CHAR,X*89*
BC 8,RECRTN
CLI CHAR,X*91*
BC 6,TSTSCB

SCRIPT I
*SCRIPT J

RCS RAZEA,III,ERECRTN
TSTSCB EQU *
 CLI CHAR,X'72' TEST FOR SCRUB (N GTR 15)
 BC 8,ERECRTN
 CLI N+1,X'08'
 BC 12,CALREC

*N GTR 8, CHARACTER IS A POTENTIAL SCRUB
*IF N GTR 12, , OR CHARACTER IS LARGE, SET CHAR=SCRUB
*OTHERWISE ALLOW FOR A POSSIBLE SCRIPT CHARACTER
 CLI N+1,X'OC'
 BC 2,SCBX
 LH R8,DYM
 CH R8,DYC
 BC 4,SCBX
 CH R8,DXC
 BC 10,CALREC
SCBX EQU *
 MVI CHAR,X'72'
B RECRTN

****REC CALL****

CALREC INST AREC,RECA,III,III,ERECRTN

****MULTI-CHARACTERS****

TOBIG LH R7,INKC
 LH R8,INKIND
 CR R8,R7
 BNH OVR2
 SR R8,R7
 STH R8,INKIND
 L R4,DATA
 L R9,ICP
 LH R10,6(R9)
 SR R10,R7
 LA R11,2
 STH R11,6(R9)
 L R6,INKB

MOVINK STC R8,MVC+1
 LA R7,0(R7,R6)
 EX 0,MVC
 L R4,DATA
 TM INC,X'80'
 BE OVR21
 STH R10,6(R9)

DON'T UPDATE CCW COUNT IF NO INK
B OVR2

****ZERO INK COUNT****

OVR21 XC INKIND(2), INKIND

****DON'T RESTORE****

OVR2 CI PUP+1, X'30'

****2 CHARACTERS****

ALPHA L R4, DATA
TM IND, x'40'
BC 8, WATR1
CLI CHAR, X'E1'
BC 8, NCEXT
TM PUP+1, X'20'
BC 8, TCE
PARL CNTX=F, LGW=PHI, HIGH=CHARX

****RESET FOR NEW CHARACTER****

RESET CHAR SIZE, LOCATION, ETC.

PHI MVC DXC(12), DXS
LH R6, SN
BCT R6, DECR6

DECR6 SLL R6, 1
LH R7, XSP(R6)
STH R7, XSP
LH R7, YSP(R6)
STH R7, YSP
LA R6, 1
STH R6, SN
XC P(1), P
XC PAD(4), PAD
XC CHAR(1), CHAR
L R4, DATA
L R7, CET
STH R7, YCENT
MVC PCHAR(1), CHARA
B REINK
****REC EXIT****

* REC EXITS TO HERE

RECRTN EQU *

*IF N GTR 8 AND CHAR IS NOT A SCRIPT CHARACTER, SET CHAR=SCRUB
CLI CHAR,X'A9'
BC 2,SCBX2
CLI CHAR,X'81'
BC 10,SCRPT

SCBX2 EQU *
CLI N+1,X'08'
BC 12,RCRTN1
MVI CHAR,X'72'
B RCRTN1

SCRPT EQU *

*THIS IS A SCRIPT CHARACTER

* THE FOLLOWING CODE CONVERTS A LOWER CASE CHARACTER TO THE SAME
* UPPER CASE CHARACTER

OI CHAR,X'40'

RCRTN1 EQU *

NI PUP+1,X'CF'
L R4,INDEX
PRESET EXPIRATION = TIME
MVI 3(R4),X'01'

* SKIP AROUND THE CLOCK IF CHAR IS A GEOMETRIC SYMBOL, I.E. INK VECTOR
* SIZE IS 8 RASTERS

L R4,DATA
TM IND,X'0C'
BC 1,CLEXF

NOSKIP EQU *

GI PUP+1,X'04'
IND CLOCK RUNNING

RECX INST CLK1,CLK2,FWAITBX,ITIME,ECLEXP,ECLEXF

****CLOCK EXPIRED (DUE TO RUNNING LONGER THEN TIME)****

****CLOCK TURNED OFF (DUE TO PENDOWN)****

CLEXP EQU *
SETCK EQU *

SET PSG=WAITBX,CNTX=F TURN OFF CLOCK

PAWS

****CLOCK TURNED OFF (DUE TO PENDOWN)****

CLEXF EQU *
L R4,DATA
TM IND,X'10'
BC 1,GOFINX
NI PUP+1,X*FB*
TM PUP+1,X*02*
BC 1,FINISH
BAL R15,OUTPTS
TM PUP+1,X*10*
BC 1,ALPHA
L R4,INDEX
CLI 3(R4),X'00'
BC 8,WAITZ
MVI PUP+1,X'00'
B ALPHA

****FINISH ENTRY 1****

FIN TM PUP+1,X*04*
BC 8,FINISH
DI PUP+1,X*02*
BC 15,SETCK

****SET UP OUTPUTS****

CUTPTS L R4,DATA
MVC EP(2),XSP
MVC EP+2(2),YSP
MVC EP+4(2),XEP
MVC EP+6(2),YEP
L R4,DATA
MVC CHARA(1),CHAR
L R7,CENT
ST R7,CET
MVC AR(1),NCUSP+1
MVC AR+1(1),ASPR+1
MVC SIZE(2),DXC
MVC SIZE+2(2),DYC
BR R15

****NO CHARACTER****

NCEXT EQU *
TM PUP+1,X*20*
BC 8,TNE
PARL CNTX=F,LOW=PHI,HIGH=NCHARX
****FINISH ENTRY 2****
*
FINSH BAL R15,OUTPTS
*
****FINISH ENTRY 3****
*
GOFINX EQU *
 BAL R15,CUTINK
 EPLOG FINX
*
****TERMINAL CHARACTER****
*
TCE EQU *
 BAL R15,CUTINK
 EPLOG XTC
*
****TERMINAL NO CHAR****
*
TNE EQU *
 BAL R15,CUTINK
 EPLOG XTN
*
****SET UP INK****
*
CUTINK EQU *
 L R4,DATA
 TM INC,X'C' CC'
 BC 1,OUTSKP
 L R7,ICP
 LA R8,2
 STH R8,6(R7)
OUTSKP EQU *
 BR R15
*
****END OF CHAREC****
*
 END
CHARC RCS'S

ANG4

*FUNCTION
* TRANSLATES THE FIRST FOUR STYLUS DIRECTIONS (IN CODE) TO A 1-BYTE INDEX (IN I1+3) CORRESPONDING TO A SET OF POTENTIAL STROKES.
* FO=NOT ALLOWABLE, 13=DON'T KNOW
*
*
*CALL
* RCS ANG4A,II1,EEXIT
* WHERE II1 IS AT THE TCP OF CHARC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7,R8,R10
*
* USING XR6,R6
REGS
EXO EQU 0
C6 DSECT
XR6 CS 0F
I1 DS 1F
CCDE DS 1F
N CS 1F
ANG4 BOX
 LA R10,8
 SH R10,N
 BC 12,ANGOUT
 LH R7,CODE
 SRL R7,2
 BCT R10,SRGT
 LA R8,3
 NR R8,R7
 LA R10,8
SH R10,N
SLFT R7,2
CR R7,R8
BCT R10,SLFT
STH R7,CODE
ANGCUT MVC II+3(1),CODE
TR II+3(1),THET4
ANGE BEXIT EXO

THET4 DS OH
DC X'CC' CCCC SBARM
DC 15C'C' ILLEGAL
DC 2X'13' 0100-0101 DK
DC X'40' 0102 RSC
DC X'3F' 0103 SCRPT
DC C'O' C110 ILLEGAL
DC X'13' C111 DK
DC 2C'C' ILLEGAL
DC X'13' 0120 DK
DC X'21' 0121 S5
DC X'13' 0122 DK
DC X'3E' 0123 S09M
DC X'3D' 0130 S9LC1
DC X'41' 0131 SCPFP
DC X'43' 0132 RSS
DC X'42' 0133 SCPEL
DC 2X'0D' 0200,0201 S2MRZ
DC X'2A' 0202 S3SCRB
DC 2X'0F' 0203,0210 S3MBR
DC 3X'0D' 0211-0213 S2MRZ
DC 2C'C' ILLEGAL
DC X'2D' 0222 SLKRTM
DC C'O'
DC X'02' 0230 S23MB
DC X'0D' 0231 S2MRZ
DC X'OE' 0232 S3MB
DC X'14' 0233 S7MGK
DC X'0D' 0301 S8
DC X'OE' 0302 S3MB
DC X'OF' 0303 S3MBR
DC X'44' 0310 RSV
DC X'49' 0311 S8LCV
DC X'40' 0312 RSC
DC X'01' 0313 STPM
DC X'02' 0320 S23MB
DC X'38' 0321 S023MB
DC X'12' C322 SRPRM
DC X'0D' 0323 S2MRZ
DC 3C'O'
DC X'14' 0333 S7MGK
DC X'1E' 1000 SFE
<p>| CC | X'13' | 1010 DK |
| CC | X'13' | 1011 DK, POSSIBLY TILDA |
| CC | X'13' | 1012 DK |
| CC | X'13' | 1013 DK |
| CC | X'02' | 1020 S23MB |
| CC | X'C0' | 1021 S3MB |
| CC | X'13' | 1022 DK |
| CC | X'02' | 1023 S23MB |
| CC | X'0F' | 1030 S3MBR |
| CC | X'45' | 1031 SCPNRZ |
| CC | X'03' | 1032 S23MBP |
| CC | X'38' | 1033 SA7 |
| CC | 5C'0' | 1111 S1MAK |
| CC | 1OC'O' | 1200,1201 DK |
| CC | 2X'13' | 1202,1203 SSM |
| CC | 4X'13' | 1210-1213 DK |
| CC | 2C'0' | 1222 DK |
| CC | X'13' | 1230 SMC |
| CC | X'04' | 1231 S8 |
| CC | X'05' | 1232 SS8M |
| CC | X'15' | 1233 STPA |
| CC | X'11' | 1300 S24 |
| CC | X'17' | 1301 SNMA |
| CC | 2X'35' | 1302,1303 S3 |
| CC | X'00' | 1310 S2MRZ |
| CC | X'17' | 1311 SNMA |
| CC | X'36' | 1312 SASTAR |
| CC | X'18' | 1313 SMLC |
| CC | X'36' | 1320 SASTAR |
| CC | X'0D' | 1321 S2MRZ |
| CC | X'13' | 1322 DK |
| CC | X'46' | 1323 RSZ |
| CC | 3C'0' | 1333 SCOMAM |
| CC | X'1A' | 2000 SBARMAK |
| CC | X'33' | 2010 SG |
| CC | X'06' | 2011 SG069M |
| CC | X'08' | 2012 SG06M |
| CC | X'34' | 2013 S9 |
| CC | X'29' | 2020 SGSCRB |
| CC | X'18' | 2021 SSM |
| CC | X'30' | 2022 SG506M |
| CC | X'47' | 2023 SE |
| CC | X'4A' | 2030 SEQ |
| CC | X'48' | 2031 SCPGQ |</p>
<table>
<thead>
<tr>
<th>DC</th>
<th>X'05'</th>
<th>2032 SS8M</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>X'1C'</td>
<td>2033 SG9MK</td>
</tr>
<tr>
<td>DC</td>
<td>3X'13'</td>
<td>2100-2102 DK</td>
</tr>
<tr>
<td>DC</td>
<td>X'3C'</td>
<td>2103 S09</td>
</tr>
<tr>
<td>DC</td>
<td>C'0'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X'13'</td>
<td>2111 DK</td>
</tr>
<tr>
<td>DC</td>
<td>2C'0'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>8X'13'</td>
<td>212C-2133 DK</td>
</tr>
<tr>
<td>DC</td>
<td>10C'C'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X'0C'</td>
<td>2222 SBARM</td>
</tr>
<tr>
<td>DC</td>
<td>5C'C'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X'10'</td>
<td>2300 SCMEG</td>
</tr>
<tr>
<td>DC</td>
<td>X'06'</td>
<td>2301 SG69M</td>
</tr>
<tr>
<td>DC</td>
<td>X'2F'</td>
<td>2302 SGS</td>
</tr>
<tr>
<td>DC</td>
<td>X'07'</td>
<td>2303 SS589M</td>
</tr>
<tr>
<td>DC</td>
<td>X'22'</td>
<td>2310 STP5</td>
</tr>
<tr>
<td>DC</td>
<td>X'32'</td>
<td>2311 S8</td>
</tr>
<tr>
<td>DC</td>
<td>X'33'</td>
<td>2312 SG</td>
</tr>
<tr>
<td>DC</td>
<td>X'07'</td>
<td>2313 SS589M</td>
</tr>
<tr>
<td>DC</td>
<td>2X'32'</td>
<td>2320,2321 S8</td>
</tr>
<tr>
<td>DC</td>
<td>X'1B'</td>
<td>2322 SSM</td>
</tr>
<tr>
<td>DC</td>
<td>X'47'</td>
<td>2323 SE</td>
</tr>
<tr>
<td>DC</td>
<td>3C'O'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X'1E'</td>
<td>2333 SFE</td>
</tr>
<tr>
<td>DC</td>
<td>X'1F'</td>
<td>3000 SLMEK4</td>
</tr>
<tr>
<td>DC</td>
<td>3C'O'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X'3A'</td>
<td>3010 SG81</td>
</tr>
<tr>
<td>DC</td>
<td>X'20'</td>
<td>3011 SUMJU</td>
</tr>
<tr>
<td>DC</td>
<td>X'08'</td>
<td>3012 SG69M</td>
</tr>
<tr>
<td>DC</td>
<td>X'27'</td>
<td>3013 SUMAM</td>
</tr>
<tr>
<td>DC</td>
<td>2X'22'</td>
<td>3020,3021 STP5</td>
</tr>
<tr>
<td>DC</td>
<td>X'10'</td>
<td>3022 STP6</td>
</tr>
<tr>
<td>DC</td>
<td>3X'22'</td>
<td>3023-3031 STP5</td>
</tr>
<tr>
<td>DC</td>
<td>X'22'</td>
<td>3032 STP5</td>
</tr>
<tr>
<td>DC</td>
<td>X'23'</td>
<td>3033 SK5</td>
</tr>
<tr>
<td>DC</td>
<td>X'24'</td>
<td>3100 STPH</td>
</tr>
<tr>
<td>DC</td>
<td>X'13'</td>
<td>3101 DK</td>
</tr>
<tr>
<td>DC</td>
<td>X'2C'</td>
<td>3102 SBDPR1</td>
</tr>
<tr>
<td>DC</td>
<td>X'09'</td>
<td>3103 SBDPR</td>
</tr>
<tr>
<td>DC</td>
<td>C'O'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X'25'</td>
<td>3111 SVM</td>
</tr>
<tr>
<td>DC</td>
<td>2C'O'</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>2X'24'</td>
<td>3120,3121 STPH</td>
</tr>
<tr>
<td>DC</td>
<td>X'26'</td>
<td>3122 SDMH</td>
</tr>
<tr>
<td>DC</td>
<td>X'39'</td>
<td>3123 SCG</td>
</tr>
<tr>
<td>DC</td>
<td>X'2B'</td>
<td>3130 BR</td>
</tr>
<tr>
<td>DC</td>
<td>X'0A'</td>
<td>3131 SMNW</td>
</tr>
<tr>
<td>DC</td>
<td>X'2C'</td>
<td>3132 SBDPR1</td>
</tr>
<tr>
<td>DC</td>
<td>X'27'</td>
<td>3133 SUMAM</td>
</tr>
<tr>
<td>DC</td>
<td>4X'13'</td>
<td>3200-3203 DK</td>
</tr>
<tr>
<td>DC</td>
<td>X'3C'</td>
<td>3210 S09</td>
</tr>
</tbody>
</table>
CHECK

*FUNCTION
*
*CHECKS TO SEE IF THE PREVIOUS SUBCHARACTER (PREV. 'REC' OUTPUT) CAN BE
*COMBINED WITH THE CURRENT STROKE (AS ENCODED FROM THE FIRST FOUR
*DIRECTIONS BY 'ANG4') TO FORM ONE OF THE ALLOWABLE CHARACTERS.
*
*
*CALL
* RCS CHECKA,III,ENO,EYES
*WHERE II IS AT THE TOP OF CHARAC'S INTERNAL PARAMETER LIST
* II+3 CONTAINS THE STROKE CODE
* EXIT NO WHEN STROKE AND SUBCHARACTER CANNOT BE COMBINED
* EXIT YES WHEN STROKE AND SUBCHARACTER CAN BE COMBINED
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7 THRU R10
*
*
USING XR6,R6
EX0 EQU 0
EX4 EQU 4
REGS
D6 DSECT
XR6 DS 0F
II DS 1F
DS 2F
DS 11H
SN CS 1H
 CS 14H
 CS 20C
 CS 3F
 CS 1H
 CS 2C
 CS 3H

P CS 1C
CHAR CS 1C
CHECK BOX
 SR R8,R8
 IC R8,11+3
 BCT R8,MULT
MULT SLL R8,2
 4 TIMES (11-1)
 EX 0,CHKTAB(R8)
CK SR R8,R8
 IC R8,CHAR
*ALL VERTICALS TREATED THE SAME
 CLI SN+1,X'02'
 BC 6,CK2
 CLI P,X'01'
 BC 8,CK1
 CLI P,X'09'
 BC 6,CK2
*OLD CHAR IS VERT
*CHANGE CHAR CODE TO 1
CK1 LA R8,1
CK2 SR R9,R9
 SR R10,R10
CK3 IC R10,O(R7)
 CR R10,R9
 BC 8,CKX
 CR R10,R8
 BC 8,CKOK
 LA R7,1(R7)
 BC 15,CK3
*END OF POSSIBLE OLD-CHAR LIST
CKOK BEXIT EX4
CKX BEXIT EX0
CHKTAB DS OF
 LA R7,S1 B1
 LA R7,S2 B2
 LA R7,S2 B3
 LA R7,S10 B4
 LA R7,S4 B5
 LA R7,S10 B6
 LA R7,S4 B7
 LA R7,S10 B8
 LA R7,S3 B9
 LA R7,S4 B10
 LA R7,S12 B11
LA	R7, S13	B12
LA	R7, S3	B13
LA	R7, S1	B14
LA	R7, S1	B15
LA	R7, S2	B16
LA	R7, S7	B17(11)
LA	R7, S3	B18
LA	R7, S4	B19
LA	R7, S5	B20
LA	R7, S4	B21
LA	R7, S6	B22
LA	R7, S7	B23
LA	R7, S4	B24
LA	R7, S8	B25
LA	R7, S3	B26
LA	R7, S4	B27
LA	R7, S1	B28
LA	R7, S1	B29
LA	R7, S14	B30
LA	R7, S9	B31
LA	R7, S10	B32
LA	R7, S4	B33
LA	R7, S4	B34
LA	R7, S1	B35
LA	R7, S1	B36
LA	R7, S11	B37
LA	R7, S1	B38
LA	R7, S1	B39
LA	R7, S4	B40
LA	R7, S4	B41
LA	R7, S1	B42
LA	R7, S4	B43
LA	R7, S7	B44
LA	R7, S1	B45
LA	R7, S15	B46
LA	R7, S10	B47
LA	R7, S10	B48
LA	R7, S10	B49
LA	R7, S4	B50
LA	R7, S4	B51
LA	R7, S4	B52
LA	R7, S4	B53
LA	R7, S4	B54
LA	R7, S4	B55
LA	R7, S4	B56
LA	R7, S4	B57
LA	R7, S4	B58(3A)
LA	R7, S2	B59(3B)
LA	R7, S2	B60(3C)
LA	R7, S4	B61(3D)
LA	R7, S10	B62(3E)
LA	R7, S4	B63 (3F)
LA	R7, S4	B64 (40)
LA	R7, S4	B65 (41)
LA	R7, S4	B66 (42)
LA	R7, S4	B67 (43)
LA	R7, S4	B68 (44)
LA	R7, S4	B69 (45)
LA	R7, S4	B70 (46)
LA	R7, S4	B71 (47)
LA	R7, S4	B72 (48)
LA	R7, S4	B73 (49)
LA	R7, S4	B74 (4A)

S1
- DS OH
- DC X'01' 1

S2
- DS OH
- DC X'01' 1
- DC X'E0' 0
- DC X'F0' 0
- DC X'E4' 0
- DC X'C3' 0
- DC X'F6' 0
- DC X'C7' 0
- DC X'E2' 0
- DC X'F5' 0
- DC X'F8' 0
- DC X'00' 0

S3
- DS OH
- DC X'01' 1
- DC X'E0' 0
- DC X'00' 0

S4
- DS OH
- DC X'00' 0

S5
- DS OH
- DC X'01' 1
- DC X'E0' 0
- DC X'F0' 0
- DC X'F6' 0
- DC X'C3' 0
- DC X'C7' 0
- DC X'D2' 0
- DC X'E3' 0
- DC X'E5' 0
- DC X'E7' 0
- DC X'E8' 0
- DC X'CE' 0
- DC X'CD' 0
- DC X'E1' 0
- DC X'00' 0

S6
- DS OH
DC X'01'
DC X'EE'
DC X'E8'
DC X'ED'
DC X'EE'

S7
DC X'CO'
DC X'EO'

S8
DC X'EO'
DC X'01'

S9
DC X'CO'
DC X'EO'

S10
DC X'FO'

S11
DC X'CO'

*VERTICAL STROKE
S12
DC X'CO'
DC X'01'

CORNER

*FUNCTION

*DETECTS CORNERS BASED ON SHARP CHANGES IN DIRECTION, AND UPDATES NC.
*OF GEOMETRIC CORNERS (NC) AND THE ARRAY OF POSITIONS OF GEOMETRIC
*CORNERS (XC,YC).
*USES 16-DIRECTION SEQUENCE AX THRU AX3 AND DIFFERENCES.
*INDEX C=0 IS WAIT FOR CORNER, C=1 IS POTENTIAL CORNER, C=2 IS JUST GOT
*CORNER.

*CALL

RCS CORNERA,III,EXIT

*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST

*INPUT REGISTER. R6

*INTERNAL REGISTERS. R7 THRU R9

*USING XR6,R6

EXO EQU 0
REGS
D6 DSECT
XR6 DS 0F
CS 3F
CS 26H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H
CS 56C
CS 2H
XLO DS 1H
YLO DS 1H
AX2 DS 1H
AX DS 1H
AX23 DS 1H
AX12 CS 1H
AX01 DS 1H
AX02 DS 1H
NC CS 1H
C DS 1H
CS 7H
CS 1F
CS 6C
CS 1H
CS 1F
XC CS 10C
YC DS 10C
CORNER BOX
*CORNER DETECTOR
CLI C,X'02'
BC 8,COUT
CLI C,X'01'
BC 8,CEQ1
CLI AX01+1,X'04'
BC 4,AXP2
CLI AX01+1,X'OC'
BC 2,AXP2
AX1EQ2
LH R7,AX12
STH R7,AX02
BC 15,IEQJ
AXP2
LH R7,AX
SH R7,AX2
LPR R7,R7
STH R7,AX02
CLI AXC2+1,X'04'
BC 4,COUT
CLI AX02+1,X'OC'
BC 2,COUT
LH R7,AX23
STH R7,AX02
IEQJ
CLI AX02+1,X'01'
BC 12,SETC1
CLI AX02+1,X'OF'
BC 6,COUT
SETC1
CLI C,X'01'
BC 8,INCNC
MVI C,X'01'
**STORE POSITION OF POTENTIAL CUSP
LH R9,NC
LA R8,5
CR R9,R8
BC 4,NCLSS5
SR R9,R9
NCLSS5
SLL R9,1
LH R8,XLO
STH R8,XC(R9)
LH R8,YLO
STH R8,YC(R9)
BC 15,CEQ1
CEQ1
LH R7,AX01
STH R7,AX02
BC 15,IEQJ
INCNC
LH R7,NC
LA R7,1(R0,R7)
STH R7,NC
MVI C,X'02,'
BC 15,CEQ1
COUT
MVI C,X'00'
CEXIT
BEXIT EXO
END
DOT

*FUNCTION
*
*USED WHEN THE SECOND STROKE IS A DOT.
*DETERMINES IF THE FIRST STROKE RESULTS IN A SCRIPT I OR J.
*
*
*CALL
* RCS DOTA, 111, EYES, ENO
*WHERE 11 IS AT THE TOP OF CHARC'S INTERNAL PARAMETER LIST
*EXIT YES WHEN SCRIPT I OR J
*EXIT NO WHEN NOT SCRIPT I OR J
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7 THRU R10
*
*
USING XR6, R6
REGS
EX0 EQU 0
EX4 EQU 0
D6 DSECT
XR6 DS OF
DS 3F
DS 26H
DS 20C
DS 3F
DS 1H
DS 2C
DS 3H
DS 1C
CHAR DS 1C
DOT BX
*2ND STROKE IS A DOT
*DOES 1ST STROKE RESULT IN A SCRIPT I OR J
*IF YES, TAKE EX0, OTHERWISE EX4
SR R8, R8
IC R8, CHAR
SR R9, R9
SR R10,R1C
LA R7,ILIST
CKLIST EQU *
 IC R10,0(R7)
 CR R10,R9
 BC 8,NOX
 CR R10,R8
 BC 8,IJX
 LA R7,1(R7)
 B CKLIST
IJX LA R8,JLIST
 CR R7,R8
 BC 10,JX
IX MVI CHAR,X'89'
 B YESX
JX MVI CHAR,X'91'
YESX BEXIT EXC
NOX BEXIT EX4
ILIST DS OF
 DC X'89'
 DC X'85'
 CC X'A5'
 CC C'L'
 CC C'2'
 CC X'82'
 CC X'70'
 BKA KARAT
JLIST EQU *
 DC X'86'
 DC X'91'
 DC X'F8'
 DC X'E5'
 DC X'DD'
 DC X'CO'
END

DELTAS

*FUNCTION
*
*QUANTIZES THE STARTING POINT AND ENDING POINT LOCATIONS OF EACH STROKE
*BY CONSIDERING THE CHARACTER REGION AS A 4 X 4 GRID CODED AS
*
*YT C
 * 3 2 1 0
* XLC 7 6 5 4 XRC
* 11 10 9 8
* 15 14 13 12
*YBC
CALL RCS DELTASA,III,EEXIT
WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST

*INPUT REGISTER. R6
*INTERNAL REGISTERS. R7 THRU R14
*
* USING XR6,R6
REGS
EXO EQU 0
D6 DSECT
XR6 DS 0F
DS 3F
DS 11H
SN DS 1H
DS 6H
XRC DS 1H
XLC DS 1H
YTC DS 1H
YBC DS 1H
DS 4H
XYE DS 10C
XYS DS 10C
DS 3F
DS 1H
DS 2C
DS 3H
DS 8C
XSP DS 10C
YSP DS 10C
XEP DS 10C
YEP DS 10C
DELTAS BX
SR R7,R7
LA R8,2
LH R9,SN
SLL R9,1
BCT R9,DEL1
CELL LH R10,XRC
SH R10,XLC
SRL R10,2
LH R11,YTC
SH R11,YBC
DEC10
SRL R11,2
 LA R13,3
 LR R14,R13
 LH R12,XLC
DEL3
 AR R12,R10
 CH R12,XSP(R7)
 BC 2,DEL2
 BCT R13,DEL3
DEL2
 LH R12,YBC
DEL5
 AR R12,R11
 CH R12,YSP(R7)
 BC 2,DEL4
 BCT R14,DEL5
DEL4
 SLL R14,2
 OR R13,R14
 STH R13,XYS(R7)
 LA R13,3
 LR R14,R13
 LH R12,XLC
DEL6
 AR R12,R10
 CH R12,XEP(R7)
 BC 2,DEL7
 BCT R13,DEL6
DEL7
 LH R12,YBC
DEL8
 AR R12,R11
 CH R12,YEP(R7)
 BC 2,DEL9
 BCT R14,DEL8
DEL9
 SLL R14,2
 OR R13,R14
 STH R13,XYE(R7)
 BXLE R7,R8,DEL10
 BEXIT EX0
 END

FN56

*FUNCTION
*
*PRODUCES INDEX IN BR56 BASED ON NO. OF DIRECTIONS (N) AND DIRECTIONS 5 AND 6.
*N=4 GIVES BR56 = 16, OTHERWISE BR56 GETS BITS 8 THRU 11 OF CODE.
*
*
*
*CALL
* RCS FN56A,III,EEXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
* *
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7
*
* USING XR6,R6
REGS
EXO EQU 0
06 DSECT
XR6 DS 0F
DS 2F
CCDE DS 1F
DS 10H
N DS 1H
DS 4H
BR56 DS 1H
FN56 BCX
LA R7,16
STH R7,BR56
CLI N+1,X'05'
BC 4,FN56E
SR R7,R7
IC R7,CCDE+1
SRL R7,4
STH R7,BR56
FN56E BEXIT EXO
END

HYST

*FUNCTION
*
*TRANSFORMS STYLUS INCREMENTAL DISTANCE TO PROVIDE HYSTERESIS ZONES
WHEN COMPUTING STYLUS DIRECTION.
*
* *
*CALL
* RCS HYSTA,EEXIT
*
*INPUT REGISTERS
*
*C(R6) = SMALLER (EITHER X OR Y) INCREMENT
*C(R7) = LARGER (EITHER Y OR X) INCREMENT
*
*CUTPUT REGISTERS
*
*C(R8) = 3/4 LARGER INCREMENT - SMALLER INCREMENT
*
*INTERNAL REGISTERS. NONE OTHER THAN THE ABOVE
*
*
USING XR6,R6
REGS
EXO EQU 0
D6 DSECT
XR6 DS OF
HYST BOX
LR R8,R6
SRA R6,2
SR R8,R6
SR R8,R7
BEXIT EX0
END

MXMNC

*FUNCTION
*
*UPDATES THE X BOUNDS (XLC,XRC) AND Y BOUNDS (YTC,YBC) OF THE CHARACTER
*
*CALL
*
*RCS MXMNCA,II1,EEXIT
*WHERE II1 IS AT THE TOP OF CHARC+'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7
*
* USING XR6,R6
RECS
EXO EQU 0
D6 DSECT
XR6 DS OF
DS 3F
DS 16H
DXC DS 1H
CYC DS 1H
XRC DS 1H
XLC DS 1H
YTC DS 1H
YBC DS 1H
DS 4H
DS 20C
DS 3F
DS 1H
DS 2C
DS 3H
DS 56C
DS 17H
XRS DS 1H
XLS DS 1H
YTS DS 1H
YBS DS 1H
MXMNC BOX
LH R7,XRS
CH R7,XRC
BC 12,MAX1
STH R7,XRC
MAX1 LH R7,XLS
CH R7,XLC
BC 10,MAX2
STH R7,XLC
MAX2 LH R7,YTS
CH R7,YTC
BC 12,MAX3
STH R7,YTC
MAX3 LH R7,YBS
CH R7,YBC
BC 10,MAX4
STH R7,YBC
MAX4 LH R7,YTC
SH R7,YBC
STH R7,XYC
LH R7,XRC
SH R7,XLC
STH R7,DXC
FUNCTION

UPDATES THE X BOUNDS (XLS,XRS) AND Y BOUNDS (YTS,YBS) OF THE CURRENT STROKE

CALL

RCS MXMNSA,II,EEIX

WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST

INPUT REGISTER. R6

INTERNAL REGISTERS. R7

* USING XR6,R6

REGS

EXO EQU 0
D6 DSECT
XR6 DS 0F
 DS 3F
 DS 2H
XT DS 1H
YT DS 1H
 DS 22H
 DS 20C
 DS 3F
 DS 1H
 DS 2C
 DS 3H
 DS 56C
 DS 15H
CXS DS 1H
CYS DS 1H
XR5 DS 1H
XLS DS 1H
YTS DS 1H
YBS DS 1H
*FUNCTION
*QUANTIZES YMAX (THE Y COORDINATE OF A RELATIVE MAXIMUM) ARRAY TO QYMAX
*ARRAY, AND QUANTIZES YMIN TO QYMIN. THE QUANTIZATION INTERVAL IS 1/4
*CHARACTER HEIGHT WITH QYMAX = 0 IN THE TOP 1/4 OF THE CHARACTER, ETC.
*
*CALL
*RCS QMMA,II,EEXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*INPUT REGISTER. R6
*INTERNAL REGISTERS. R7 THRU R14
*USING XR6,R6
REGS
EXO EQU 0
D6 CSECT
XR6 CS 0F
CS 3F
CS 20H
YTC CS 1H
CS 1H
CS 4H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H
CS 56C
CS 21H
CS 1F
CS 6C
CS 1H
CS 1F
CS 20C
CS 23H
YMAX CS 10H
QYMAX CS 10C
QMM BOX

*NOTE THAT YMIN=YMAX+1C, QYMIN=QYMAX+5
SR R7, R7
LA R8, 2
LA R9, 20
LH R13, YTC
SH R13, YBC
SRL R13, 2
LH R16, YBC
AR R10, R13
LR R11, R10
AR R11, R13
LR R12, R11
AR R12, R13
ALF EQU *
LR R14, R7
SRL R14, 1
LA R14, QYMAX(R14)
CH R11, YMAX(R7)
BC 4, Q01
CH R10, YMAX(R7)
BC 4, Q2
C3 MVI 0(R14), X'03'
B BXLE
C2 MVI 0(R14), X'02'
B BXLE
Q01 CH R12, YMAX(R7)
RAZE

*FUNCTION
*
INCREASES THE Y COORDINATE OF THE CHARACTER CENTER BY (NORMAL CHARACTER HEIGHT/2) RASTERS SO THAT A CHARACTER WHICH STRADDLES A LINE WILL BE DISPLAYED IN THE PROPER POSITION.
*
*
*CALL
* RCS RAZEA,II1,EEXIT
*WHERE II1 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST .
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R8,R15
*
*
 USING XR6,R6
EXO EQU 0
REGS
D6 DSECT
XR6 DS 0F
 DS 3F
 DS 26H
 DS 20C
 DS 1H
HEIGHT DS 1H
 DS 2F
 DS 1H
 DS 2C
 DS 3H
 DS 56C
 DS 21H
CENT DS 1F
RAZE
BOX
BEXIT EX0
L R8,CENT
LH R15,HEIGHT
SRL R15,1
AR R8,R15
ST R8,CENT
BEXIT EX0
END

RELM

*FUNCTION
*
*UPDATES THE NO. AND POSITION OF RELATIVE Y MAXIMA AND Y MINIMA.
*A STARTING POINT CAN BE A MAX OR MIN, AN ENDING POINT CANNOT
*
*
*CALL
*
RCS RELMA,III,EEXIT
*WHERE III IS AT THE TOP OF CHARC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7,R8
*
*
USING XR6,R6
REGS
EX0 EQU 0
C6 DSECT
XR6 DS 0F
DS 3F
DS 2H
XT DS 1H
YT DS 1H
CX DS 1H
dY DS 1H
CS 3H
cS 17H
DS 20C
DS 3F
DS 1H
CS 2C
CS 2H
CEL DS 1H
DS 56C
DS 21H
CS 1F
CS 6C
DS 1H
DS 1F
CS 20C
DS 19H
PYMAX DS 1H
PYMIN DS 1H
NYMAX DS 1H
NYMIN DS 1H
YMAX DS 10H
YMIN EQU YMAX+1C
QYMAX DS 10C
QYMIN EQU QYMAX+5
PYMAX DS 1H
PYMIN DS 1H
NYMAX DS 10H
NYMIN EQU QYMAX+10
RELM BOX
LH R7, YT
CH R7, PYMAX
BNH NO
STH R7, PYMAX
MVC PYMAXX(2), XT
*UPWARD STYLUS MOTION
PMIN CLI QYMIN, X'01'
BNE EXIT
*A MAX HAS OCCURRED PREVIOUSLY
LH R7, YT
LH R8, PYMIN
SR R7, R8
LPR R7, R7
MAGYT-PYMIN
LH R8, DEL
SLL R8, 1
CR R7, R8
BNH EXIT
*A MINIMUM DETECTED
MVI QYMIN, X'00'
MVI QYMAX, X'01'
MVC PYMX(2), YT
MVC PYMX(2), XT
LH R7, NYMIN
LA R7, 1(R7)
LA R8, 5
CR R7, R8
BNH NXCK
SR R7,R7
NXCK
STH R7,NYMIN
BCTR R7,0
SLL R7,1
LH R8,PYMIN
STH R8,YMIN(R7)
LH R8,PYMNX
STH R8,YMINX(R7)
B EXIT
NC CH R7,PYMIN
 BNL PMXN
 STH R7,PYMIN
 MVC PYMNX(2),XT
 B PMAX
PMXN
 LH R7,DY
 LTR R7,R7
 BP PMIN
*DOWNWARD STYLUS MOTION
PMAX
 CLI QYMAX,X*01*
 BNE EXIT
*A MIN HAS OCCURRED PREVIOUSLY
 LH R7,YT
 LH R8,PYMAX
 SR R7,R8
 LPR R7,R7
 LH R8,DEL
 SLL R8,1
 CR R7,R8
 BNH EXIT
*A MAXIMUM DETECTED
 MVI QYMAX,X*00*
 MVI QYMIN,X*01*
 MVC PYMIN(2),YT
 MVC PYMNX(2),XT
 LH R7,NYMAX
 LA R7,1(R7)
 LA R8,5
 CR R7,R8
 BNH NNOK
 SR R7,R7
NNOK
 STH R7,NYMAX
 BCTR R7,0
 SLL R7,1
 LH R8,PYMAX
 STH R8,YMAX(R7)
 LH R8,PYMXX
 STH R8,YMAXX(R7)
EXI EXIT BEXIT
 EX0
END
SMOOTH

*FUNCTION
*
*COMPUTES NEW AVERAGED DATA PT. X OR Y COORDINATE FROM NEW RAW DATA PT.
*COORD. AND PREV. AVERAGED DATA PT. COORD.
*NEW = 3/4 PREV + 1/4 RAW
*
*
*CALL
* RCS SMOOTH ,EEXIT
*
*
*INPUT REGISTERS
*
*C(R6) = PREV AVERAGED X OR Y COORD.
*C(R7) = NEW RAW X OR Y COORD.
*
*
*OUTPUT REGISTERS
*
*C(R6) = NEW AVERAGED X OR Y COORD.
*
*
*INTERNAL REGISTERS. R8
*
*
USING XR6,R6
REGS
EXO EQU 0
D6 DSECT
XR6 DS 0F
SMOOTH BOX
LR R8,R6
SRA R8,2
SK R6,R8
SRA R7,2
AR R6,R7
BEXIT EXO
END
TCRNR

*FUNCTION
*
*DETECTS TIME-PAUSE CORNERS BASED ON NPTS, THE NO. OF RAW DATA POINTS
*WHICH HAVE OCCURRED SINCE THE LAST THINNED DATA POINT, AND UPDATES
*NTCUSP, THE NO. OF SUCH CORNERS
*INDEX CUSP=1 IS TIME-CORNER HAS JUST OCCURRED, OTHERWISE CUSP=0.
*
*
*CALL
*
* RCS TCRNRA,III,EEXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*
*INTERNAL REGISTERS. R8
*
*
USING XR6,R6
REGS

EX0 EQU 0
D6 DSECT
XR6 DS 0F
 DS 3F
 DS 23H

NT DS 1H
NTC DS 1H
 DS 1H
 DS 20C
 DS 3F
 DS 1H
 DS 1C

CUSP DS 1C
 DS 1H

NPTS DS 1H
 DS 1H
 DS 56C
 DS 21H
 DS 1F
 DS 6C
 DS 1H
 DS 1F
 DS 20C
 DS 17H
NTCusp CS 1H
PNpts CS 1H
TCRNr BOX

*TIME CORNER DETECTOR
LH R8,NT
LA R8,1(C,R8)
STH R8,NT
CLI NT+1,X*02*
BC 12,CUSPc
LH R8,PNpts
SLL R8,2
AH R8,PNpts
AH R8,PNpts
CH R8,NPTS
BC 10,CUSPID
CLI CUSP,X*cc*
BC 6,NOCUSP

*CUSP=0
LH R8,NTCUSP
LA R8,1(C,R8)
STH R8,NTCUSP
MVI CUSP,X*01*
LH R8,NT
STH R8,NTC
B NOCUSP
CUSPID MVI CUSP,X*CO*
NOCUSP LH R8,NPTS
CH R8,PNPTS
BC 10,NPTS0
STH R8,PNPTS
NPTS0 XC NPTS(2),NPTS
BEXIT EXC
END

THIN

*FUNCTION
*
*DETERMINES IF THE CURRENT DATA PT. X OR Y COORDINATE IS FARTHER FROM
*THE PREV. THINNED DATA PT. X OR Y COORD. THAN A DISTANCE DELTA.
*
*
*CALL
* RCS THINA,EEXIT
*
* * * INPUT REGISTERS *
* C(R6) = CURRENT COORD
* C(R7) = PREV THINNED COORD
* C(R8) = DELTA
* * * OUTPUT REGISTERS *
* C(R7) = NEW THINNED COORD = CURRENT DATA PT COORD, IF SUFFICIENTLY FAR
* C(R7) = PREV THINNED COORD IF NOT FAR
* * * INTERNAL REGISTERS. R8,R9
* *
 USING XR6,R6
 REGS
 EX0 EQU 0
 C6 DSECT
 XR6 DS OF
 THIN BOX
 LR R9,R6
 SR R9,R7 DIFF
 LPR R9,R9 MDIFF
 SR R9,R8
 BC 12,THIN1 EXIT IF MDIFF <,= DEL
 LR R7,R6 T(J)=S(I) IF > DEL
 THIN1 BEXIT EX0
 END

TURNER

*FUNCTION *
* DETECTS 180 DEGREE CHANGE IN STYLUS DIRECTION THAT OCCURS AFTER A *
* SINGLE THINNING DISTANCE *
* IF SUCH A TURN IS DETECTED, TTURN+1 = 1 FOR CLOCKWISE TURN, TTURN+1 =2 *
* FOR COUNTERCLOCKWISE TURN, OTHERWISE TTURN+1 = 0. *
* *
*CALL RCS TURNERA, I1, EEXIT
*WHERE 11 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTERS
*
*C(R6) = 11
*C(R9) = ANGLE (AS ENCODED BY 'CHAREC')
*
*
*INTERNAL REGISTERS. R7, R8
*
*
USING XR6, R6
EX0 ECU 0
REGS
D6 DSECT
XR6 CS 0F
DS 3F
DS 8H
PANG CS 1H
PACANG DS 1H
DS 16H
DS 20C
DS 3F
DS 1H
CS 2C
CS 3H
CS 56C
CS 21H
CS 1F
CS 6C
TTURN DS 1H
TURNER B0X
*ANG DC ES NCT EC PREV ANG
*TEST F CR 180 DEG TURN
*DOES P REV ANG=PREV ACCEPTED ANG?
 LH R7, PACANG
 CH R7, PANG
 BC 8, NOTURN
*NO
*DO ANG ? PACANG DIFFER BY 2?
 SR R7, R9
 LPR R7, R7
 LA R8, 2
 CR R7, R8
 BC 6, NOTURN
*YES
*IS DIR ECTION OF TURN CLKWISE?
*CR GUI NT ECTION OF TURN CCLKWISE?
LR R7,R9
SH R7,PANG
LTR R7,R7
BC 2,CCTURN

*POSSIB LY CLKWISE
*DOES P ANG EQ 0?
SR R7,R7
CH R7,PANG
BC 8,CCT1

CTURN MVI TTURN+1,X'O1'
BC 15,TURNX

*POSSIB LY CCLKWISE
*DOES A NG EQ 0?
CCTURN SR R7,R7
CR R7,R7
BC 8,CCT1

CCT1 MVI TTURN+1,X'O2'
BC 15,TURNX

*NOT A 180 DEG WITH SINGLE ANGLE
NOTURN MVI TTURN+1,X'O0'

*EXIT

TURNX BEXIT EX0
END

TRAVEC

*FUNCTION
*COMPUTES VECTOR DIRECTION (1 OF 16) IF STYLUS HAS MOVED A DISTANCE
*GREATER THAN DELTA (2, 4, 6, OR 8 RASTERS).
*
*
*
*CALL
*RCS TRAVECA,EXIT
*
*
*
*INPUT REGISTERS
*C(R7) = X COORD OF NEW DATA PT.
*C(R9) = Y COORD OF NEW DATA PT.
*C(R10) = X COORD OF END PT. OF CURRENT VECTOR TRACK
*C(R11) = Y COORD OF END PT. OF CURRENT VECTOR TRACK
*C(R15) = 1/2 DELTA
*
*
*CUTPUT REGISTERS
*
*IF STYLUS HAS MOVED X OR Y DISTANCE GREATER THAN DELTA
* C(R0) = DIRECTION CODE (X*'O'--X*'F')
* C(R10) = X ENC PT. OF UPDATED VECTOR TRACK
* C(R11) = Y ENC PT. OF UPDATED VECTOR TRACK
*OTHERWISE
* C(R0) = X*'O'
* C(R10), C(R11) NOT UPDATED
*
*
*INTERNAL REGISTERS R6, R8, R14
*
* USING XR6,R6
EX0 EQU 0
REGS
C6 DSECT
XR6 CS OF
TRAVEC BDX
 LA R0,16 RAST/DIR CONSTANT
 SR R14,R14 QUADRANT CODE
 SR R7,R10 X(I) - X(L)
 BC 10,TRAV1
 LA R14,4(R0,R14) QUAD 2 OR 3
 LPR R7,R7 ABS DX
 TRAV1 SR R9,R11 Y(I) - Y(L)
 BC 10,TRAV2
 LA R14,8(R0,R14) QUAD 3 CR 4
 LPR R9,R9 ABS DY
 TRAV2 LR R8,R7
 SR R6,R6
 LH R7,TRAST
 MR R6,R15
 LR R6,R7
 LR R7,R8
 CR R7,R6
 BC 11,TRAV3
 CR R9,R6
 BC 4,TRAV8
 TRAV3 CR R7,R9 ABS DX AND DY
 BC 8,TRAV4 EQUAL
 BC 4,TRAV5 DY > DX
 SLL R9,2 DX > DY
 SR R8,R8 4(ABS DY)
 CR R8,R7 4(ABS DY) / ABS DX
LA \text{R9,1(0,R9)} \quad \text{1/2 ROUND}
\text{SRL R9,1 \quad \text{RESULT/2}}
\text{BC 15,TRAV6}
\text{TRAV5 SLL R7,2 \quad 4(ABS \, DX)}
\text{SR R6,R6}
\text{CR R6,R9 \quad 4(ABS \, DX) / ABS \, DY}
\text{LA R7,1(0,R7) \quad \text{1/2 ROUND}}
\text{SRL R7,1 \quad \text{RESULT/2}}
\text{LNR R9,R7}
\text{A R9,TRAVK4}
\text{BC 15,TRAV6}
\text{TRAV4 LA R9,2}
\text{TRAV6 A R9,\text{TQUAD(R14)}}
\text{LPR R14,R9}
\text{CR R14,Rc}
\text{BC 4,TRAV7}
\text{SR R14,R14}
\text{TRAV7 LR R0,R14}
\text{SLL R14,1}
\text{SR R6,R6}
\text{LH R7,TXIN(R14)}
\text{MR R6,R15}
\text{AR R10,R7}
\text{SR R6,R6}
\text{LH R7,TY1N(R14)}
\text{MR R6,R15}
\text{AR R11,R7}
\text{TRAV8 BEXIT EX0}
\text{TRAVK4 CC F*4s}
\text{TQUAD DC F*0s}
\text{CC F*-8s}
\text{CC F*-16s}
\text{CC F*8s}
\text{TXIN CS \text{OH \quad \text{TABLE FOR 2 RAST VEC}}}
\text{CC H*8s}
\text{CC H*8s}
\text{CC H*8s}
\text{CC H*4s}
\text{CC H*0s}
\text{CC H*-4s}
\text{CC H*-8s}
\text{CC H*4s}
\text{CC H*0s}
\text{CC H*4s}
\text{CC H*8s}
\text{CC H*8s}
\text{TYIN CS \text{OH \quad \text{TABLE FOR 2 RAST VECTORS}}
REC

REC Function

"REC" PERFORMS A FEW SIMPLE TESTS, BUT MOSTLY ACTS AS A LINK BETWEEN "CHAREC" (WHICH CALCULATES A SET OF FEATURES) AND THE PROCEDURES /*"INTERP" AND OTHER RCS'S) WHICH TEST THESE FEATURES, OR BETWEEN /*"INTERP" (WHICH PERFORMS MOST OF THE TESTS) AND THE OTHER RCS'S. **REC** HAS AN ORDERED LIST OF THE FEATURES, AND IS GIVEN THE RELATIVE ADDRESS OF THE HEAD OF THE LIST. IT RETURNS A CHARACTER CODE TO **CHAREC**. THE ONLY PARAMETERS MODIFIED BY "REC" AND ITS RCS'S ARE "P" "PAD", AND (ONLY FOR COMMA AND SOME SCRIPT CHARACTERS) THE Y *COORDINATE OF THE CHARACTER CENTER.*

REC Call

* INST AREC,RECA,III,III,EXIT
*WHERE AREC IS A LINKAGE BETWEEN CHAREC'S CONTEXT AND REC'S CONTEXT
* RECA IS A LINK TO REC
* II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
* EXIT EXIT IS THE ONLY EXIT
*
REC Sequence of Information Processing

****TABLE RE-ENTRY****
*
*LIST OF 'INTERP' LABELS EQU'D TO CODES
*USED FOR ENTERING 'INTERP' RCS
*
****RETURNS****
*
*LIST OF BRANCHES TO 'REC' LABELS
*USED FOR RETURNING TO 'REC' FROM 'INTERP'
*
****INITIAL CODE****
*
*INITIALIZE
*IF PERICO, SET R8, GO TO CALL INTERP
*IF NOT SINGLE STROKE, GO TO SET-UP TABLE RE-ENTRY
*IF CHAR IS NOT LARGE, CALL 'TILDT' TO TEST FOR TILDA
* IF NOT TILDA, GO TO SET-UP TABLE RE-ENTRY
* IF TILDA, GO TO EXIT
*IF CHAR IS LARGE, CALL 'SYMT' TO TEST FOR AND RECOGNIZE GEOMETRIC SYM.
* IF NOT GEOMETRICAL SYMBOL, GO TO SET-UP TABLE RE-ENTRY
* IF GEOMETRICAL SYMBOL, GO TO EXIT
*
****COMPUTATIONAL SUBROUTINES****
*
*CALL ON AN RCS TO MAKE A TEST
*RETURN TO EXIT WITH A CHARACTER
* OR TO IN-LINE CODE
* OR TO SET-UP TABLE RE-ENTRY
*
****SET-UP TABLE RE-ENTRY****
*
*SET R8 TO ADDRESS OF TABLE RE-ENTRY LABEL
*GO TO CALL INTERP
*
****IN-LINE CODE****
*
*MAKE TESTS
*GO TO SOMEPLACE IN 'REC'
*
****CALL INTERP****
*
*STORE R8 IN CUSP
*SET UP R14, R15
*CALL 'INTERP'
* IF VALID EXIT, ENTER RETLNRS TABLE BASED ON INDEX = R8
* IF ERROR EXIT, GO TO CALL INTERP WITH R8 = ADDRESS OF 'DON'T KNOW'
* LABEL.
*
****EXIT****
*
*EXIT TO 'CHAREC'

PROGRAM Listing

USING XR1, R1
USING XR3, R3
USING XRX, R6
REGS
SVCS

DSECT1 DSECT
XR1 DS OF
REGS DS 3F
BANK DS 1F
INDEX DS 1F
EXIT EQU 0

DSECT3 DSECT
XR3 DS OF
SCRTCH DS 1F
SCRTCH DS OF
CCNC DS 1F
CCNC DS 1F
CATA DSECT
XRX DS 0F
II DS 1F
PAD DS 1F
CGDE DS 1F
XS DS 1H
YS DS 1H
XT DS 1H
YT DS 1H
CX DS 1H
CY DS 1H
MDX DS 1H
MDY DS 1H
PANG DS 1H
PACANG DS 1H
N DS 1H
SN DS 1H
PUP DS 1H
INKIND DS 1H
PGQUAD DS 1H
BR56 DS 1H
UXC DS 1H
CYC DS 1H
XRC DS 1H
XLC DS 1H
YTC DS 1H
YBC DS 1H
ASPR DS 1H
NT DS 1H
NTC DS 1H
INKC CS 1H
XYE CS 10C
XYS CS 10C
WIDTH DS 1H
HEIGHT DS 1H
YCENT DS 1H
PCHAR DS 1C
CUSP DS 1C
NCUSP DS 1H
NPTS DS 1H
DEL CS 1H
P CS 1C
CHAR CS 1C
TEMP CS 1C
TINK DS 5C
XSP DS 10C
YSP DS 10C
XEP DS 10C
YEP DS 10C
ALXYJ DS 8C
XL CS 1H
YL CS 1H
XLO DS 1H
YLC CS 1H

*AX3 THRU AX02 ARE USED AS NTCSUP, NYMAX, NYMIN, QYMAX, AND QYMIN BY REC
AX3 DS 1H
AX2 CS 1H
AX1 DS 1H
AX CS 1H
AX23 DS 1H
AX12 DS 1H
AX01 CS 1H
AX02 DS 1H
NC DS 1H
C DS 1H
CYM CS 1H
CXS CS 1H
CYS DS 1H
XRS CS 1H
XLS CS 1H
YTS CS 1H
YBS DS 1H
CENT CS 1F
MVC DS 6C
TTURN CS 1H
TURN DS 1F
XC CS 10C
YC CS 10C
CO CS 1H
D1 DS 1H
BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

C2 DS 1H
C3 CS 1H
C4 CS 1H
C5 DS 1H
C6 CS 1H
C7 DS 1H

BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

C8 DS 1H
C9 CS 1H
C10 CS 1H
C11 DS 1H
C12 CS 1H
C13 DS 1H
C14 DS 1H
C15 CS 1H
CN DS 1H

NTCUSP EQU AX3
NTCSP1 DS 1H
PNPTS CS 1H
PYMAX CS 1H
PYMIN DS 1H

NYMAX EQU AX2
NYMX1 DS 1H
NYMIN EQU AX1
NYMN1 CS 1H

YMAX CS 1OH
YMIN EQU YMAX+1C
QYMAX EQU AX
QYMIN EQU QYMAX+5
QYMX1 DS 10C
QYMN1 EQU QYMX1+5
PYMAXX DS 1H
PYMNX DS 1H

YMAXXX DS 1OH
YMNXX EQU YMAXX+10

BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

XYSP EQU XYS-DATA XYS DSECT(R6)
XYEP EQU XYE-DATA XYE DSECT(R6)

****TABLE RE-ENTRY****

*

SPER EQU 0
SXHBL EQU 1
S4 EQU 2
SK EQU 3
AAAA EQU 4
KVXYM EQU 5
PADEX EQU 6
TPLUSM EQU 7
SBM5 EQU 8
SJMU EQU 9
SUMJU1 EQU 10
SM1 EQU 11
SXMSTR EQU 12
SOMCQ8 EQU 13
SCPNU EQU 14
RSB EQU 15
RSC EQU 16
RSE EQU 17
RSF EQU 18
RSG EQU 19
RSI EQU 20
RSJ EQU 21
RSL EQU 22
RSM EQU 23
RSN EQU 24
RSD EQU 25
RSR EQU 26
RSS EQU 27
RSU EQU 28
RSW EQU 29
RSV EQU 30
RSY EQU 31
RSZ EQU 32
SA EQU 33
SG EQU 34
SM EQU 35
SNN EQU 36
SP EQU 37
SR EQU 38
SU EQU 39
SO EQU 40
SB EQU 41
SSTAR EQU 42
SSCRUB EQU 43
DK EQU 44
RSA EQU 45
SE EQU 46
REC PRCCE CLEAR=3,CNTX=6,AUTO=2,PROLG=SINS,ID=800021C
AHTEST DC V(AHSTRI)
KNYT DC V(KNYST)
KNIYT DC V(KNYIT)
KVXYTA DC V(KVXYT)
MWTDC V(MWT)
PTST DC V(PTEST)
SYMATA DC V(SYMT)
TILCTA CC V(TILCT)
TPXYA DC V(TPXY)
VERT DC V(Vertt)
VFI DC V(BFI)
VSDP DC V(BSDP)
VSMNW DC V(BSMNW)
VSRPRM CC V(BSRPRM)
VSSM DC V(BSSM)
VSVM DC V(BSVM)
VTEST1 DC V(BTEST1)
VTEST3 DC V(BTEST3)
VTERP CC V(INTERP)
WHITE DC V(BHITE)
VRAZE DC V(RAZE)

****RETURNS****

RETURNS EQU *
BC 15,XAHSTR
BC 15,XKNY
BC 15,XFI
BC 15,XXVXY
BC 15,XMW
BC 15,XMWIN
BC 15,XMW1
BC 15,XPOST
BC 15,XRECD
BC 15,XSDP
BC 15,XSMNW
BC 15,XSMIM
BC 15,XSRPRM
BC 15,XSSM
BC 15,XSVM
BC 15,XTEST1
BC 15,XTEST3
BC 15,XTPLUS
BC 15,XSTRLC
BC 15,XSALCS
BC 15,XSG8LC
BC 15,XSMLCN
BC 15,XSCBDU
BC 15,XSNLC
BC 15,XSPLC
BC 15,XSR1C
BC 15,XS8LC
BC 15,XSULC
BC 15,XS4LC
BC 15,XSCPEL
BC 15,XSCPMD
BC 15,XSCPYZ
BC 15,XSCPBS
BC 15,XSBVMN
BC 15,XRAZE
BC 15,XS8LCV
BC 15,XSULC1
BC 15,XS4MK1
BC 15,XSELCA

****INITIAL CODE****

SINS PROLG

L R6,BANK

MOVE DATA USED BY TABLE MACROS ABOVE FF IN DATA BANK

MVC NTCSUP(2),NTCSPI
MVC NMAX(2),NYMX1
MVC NYMIN(2),NYMN1
MVC QYMAX(10),QYMX1

CLI N+1,X'CC'
BC 7,SYMC
LA R8,SPER
BC 15,START

SYM0 EQU *
CLI SN+1,X'01'
BC 7,REENTR

TILTST EQU *
LH R15,HEIGHT
SLL R15,1
CH R15,DYC
BC 12,LARGE
CH R15,DXC
BC 12,LARGE

*CHARAC TER IS NOT LARGE

*TEST FOR TILDA
RCS TILDTA,EREENTR,EXRECD

*POSSIBLY A FLOW CHART SYMBOL

*IS IT AT LEAST 2?

LARGE CLI N+1,X'02'
BC 4,REENTR

*RECOGNIZE FLOW CHART SYMBOL
RCS SYMTA,EREENTR,EXRECD

****COMPUTATIONAL SUBROUTINES****

*AHSTR RCS AHTEST,EXRECD
XFI EQU *
RCS VFI,EXRECD
XKNY RCS KNYT,EXRECD
XKNY1 RCS KNYITA,EXRECD
XKVXY RCS KVXYTA,EXRECD
XMWIN RCS MWTA,EXRECD
XPOST EQU * RCS PTST,EXRECD
XSDP EQU * RCS VSDP,EXRECD
XSM1M EQU * RCS VERT,EXSM1,EXKXYM,EXPLUSM,EXPADEX
XSRPRM EQU * RCS VSRPRM,EXRECD,EXSDP,EXPOST
XSSM EQU * RCS VSSM,EXRECD
XSVM EQU * RCS VSVM,EXRECC,EXSMJU,EXMW1,EXKNY1,EXSOMG,EXSMJU1
XTEST1 EQU * RCS VTEST1,EX8LCG,EXSSM
XTEST3 EQU * RCS VTEST3,EX8LCG,EXSSMM5
XTPLUS EQU * RCS TPXYA,EXRECD
XSCPEL EQU * RCS VWHITE,EXLEU,EXHLO
XSMLCN EQU * RCS VWHITE,EXSCPNU,EXSM
XSCPMW EQU * RCS VWHITE,EXLMW,EXSSCRB
XSALCS EQU * RCS VWHITE,EXRSS,EXSA
XSCPBS EQU * RCS VWHITE,EXRSS,EXRSB
XMLC EQU * RCS VWHITE,EXLMW,EXHMY
XSNLC EQU * RCS VWHITE,EXLOV,EXHBJN
XSMNW EQU * RCS VSMNW,EXRECD,EXMLC,EXRAZE
XSRLC EQU * RCS VWHITE,EXRSN,EXSR
XSPLC EQU * RCS VWHITE,EXRSS,EXRPP
XSULC1 EQU * RCS VWHITE,EXRSU,EXSU
XS4LC EQU * RCS VWHITE,EXRSE,EXRL
XS8LC EQU * RCS VWHITE,EXLVO,EXSB
XSULC EQU * RCS VWHITE,EXRSN,EXHRU
XS2RLC EQU * RCS VWHITE,EXCS,EXSSTAR
XS8VMN EQU * RCS VWHITE,EXLMNV,EXHBL
XSBCOU EQU * RCS VWHITE,EXLOU,EXHBM
XSG8LC EQU *
RCS WHITE,EXRSO,EXSG8

XSBLCV EQU *
RCS WHITE,EXRSV,EXSB

XSELCA EQU *
RCS WHITE,EXRSA,EXSE

XRAZE EQU *
RCS VRAZE,EXREC

****SET-UP TABLE RE-ENTRY****

REENTR EQU *
L R4,INDEX
L R7,0(R4)
STC R7,TEMP
LA R8,AAAA
BC 15,START

XKVXYM EQU *
LA R8,KVXYM
BC 15,START

XPACEX EQU *
LA R8,PADEX
BC 15,START

XPLUSM EQU *
LA R8,TPLUSM
BC 15,START

XSBM5 EQU *
LA R8,SBM5
B START

XSJMU EQU *
LA R8,SJMU
B START

XSJMUI EQU *
LA R8,SJMUI
B START

XSML EQU *
LA R8,SM1
BC 15,START

XSXMST LA R8,SXMSTR
B START

XSOMQ EQU *
LA R8,SCMQQ8
B START

XHBL LA R8,SXHBL
B START

XSCPNU LA R8,SCPNU
B START

XRSA LA R8,RSA
B START
XRSB LA R8,RSB
B START
XRSC LA R8,RSC
B START
XRSC LA R8,RSE
B START
XRSF LA R8,RSF
B START
XRSG LA R8,RSG
B START
XRSI LA R8,RSI
B START
XRSJ LA R8,RSJ
B START
XRSL LA R8,RSL
B START
XRSM LA R8,RSM
B START
XRSN LA R8,RSN
B START
XRSO LA R8,RSO
B START
XSR LA R8,SR
B START
XSS LA R8,RSS
B START
XSU LA R8,RSS
B START
XRV LA R8,RSV
B START
XSW LA R8,RSW
B START
XSY LA R8,RSY
B START
XSZ LA R8,RSZ
B START
XSA LA R8,SA
B START
XSE LA R8,SE
B START
XSG LA R8,SG
B START
XSM LA R8,SM
B START
XSNN LA R8,SNN
B START
XSPP LA R8,SP
B START
XSR LA R8,SR
B START
XSU LA R8,SU
B START
XSO LA R8,SO
B START
XSB LA R8,S8
B START
XSSTAR LA R8,STAR
B START
XSSCRB LA R8,SCRUB
B START

****IN-LINE CCDE****

XMW EGU *
 LA R13,3
 B XMW
XMW1 EGU *
 LA R13,2
 B XMW
XS4MK1 SR R15,R15
 LA R13,2
K4 LA R7,0(R6,R15)
 TM XYEP+1(R7),X'C3'
 BC 1,XSKX
 BXLE R15,R13,K4
 LA R8,S4
 B START
XSKX TM XYSP+1(R7),X'CF'
 BC 8,XSMST
 LA R8,SK
 B START
XHBM EGU *
 TM XYEP+1,X'OC'
 BC 1,XSM
 B XRSB
XLMW TM XYEP+1,X'OC'
 BC 8,XRSW
 B XRSM
XHMY TM XYEP+1,X'OC'
 BC 12,XRSY
 B XSM
XCOV LH R7,XRC
 SH R7,XLC
SRL R7,2 1/4 CHAR WIDTH
 LH R8,XEP
 SH R8,YMAXX
LPR R8,R8
CR R8,R7
BC 4,XRSO
 B XRSV
XHBJN TM XYS+1,X*OC*
BC 12,XRSF
TM XYE+1,X*OC*
BC 5,XRSB
B XSNN
XHLG TM XYE+1,X*03*
BC 8,XRSL
B XSQ
XHRU EQU *
*U IF 2ND MAX IN RIGHT 1/2, OTHERWISE R
LH R8,XC
SRL R8,1
LH R7,XRC
SR R7,R8
CH R7,YMAXX+2
BC 2,XSR
B XSU
XSCPYZ EQU *
LH R7,YMINX+2
CH R7,YMAXX
BC 4,XRSZ
B XRSY
XCS EQU *
*C IF 2ND OR 3RD ANGLE IS 0
TM CODE,X*3C*
BC 8,XRSC
TM CODE,X*OC*
BC 8,XRSC
B XRSS
X8LCG CLI CODE,X*B7*
BC 8,XRSG
B XRECD
XLEU CLI N+1,X*C5*
BC 2,XRSU
B XRSU
XLMNV EQU *
CLI N+1,X*C5*
BC 8,XN
BC 4,XRSE
CLI N+1,X*C6*
BC 2,XRSM
B XSCPNU
XNV TM XYE+1,X*08*
BC 1,XSCPNU
B XRSV
XLCT TM XYE+1,X*08*
BC 8,XRSL
B XRSU
XLVC TM CODE,X*08*
BC 1,XRSC
B XRSV
CALL INTERP

* **THIS IS THE INTERPRETER** R8 IS THE 'INSTRUCTION COUNTER'
 COND CONTAINS THE 'CONDITION CODE'
* **START** EQU *
 STC R8,CUSP
 LA R14,COND
 LA R15,SCRTCH
 RCS VTERP,EE0X,EE1 CALL THE INTERPRETER

EX0 EQU *
 ST R8,SCRTCH
 SWTCH INDEX=SCRTCH, TABLE=RETURNS

EX1 EQU *
 LA R8,DK
 BC 15,START SIGNAL NOT UNDERSTOOD

EXIT*

XRECD EQU *
 EPLOG EXIT
 END

INTERP

INTERP Function

* 'INTERP' PERFORMS SEQUENCES OF TESTS ON ENCODED 1-BYTE FEATURES
 THEREBY INCLUDING NEARLY ALL OF THE DECISION-MAKING TREE STRUCTURE.
* 'INTERP' IS ENTERED VIA 'REC' AND CALLS RCS'S (WHICH PERFORM THE MORE
 COMPLICATED TESTS) VIA 'REC'. A 'TABLE' MACRO (DESCRIPTED BELOW) IS
 USED TO PERFORM THE TESTS.

INTERP Call
* RCS INTERPA,EVALIC,ERROR
* WHERE INTERPA IS A LINK TO INTERP
* EXIT VALIC IS THE NORMAL EXIT
* EXIT ERROR IS THE ERROR EXIT

INTERP Sequence of Information Processing

****INTERPRETER****
*
*INTERPRETER FOR "TABLE" MACRO
*
****TABLE EXITS****
*
*LIST OF *REC* LABELS EQU'D TO CODES
*USED FOR RETURNING TO *REC* ROUTINE
*
****TABLE TESTS****
*
*CALLS ON THE "TABLE" MACRO TO PERFORM SEQUENCES OF TESTS ON (OR MOD-
*IFICATIONS OF) ENCODED 1-BYTE FEATURES. THE CALL HAS THE FOLLOWING
*FCRM:
*LABEL TABLE /OPI,P1,C1/,C11,L11,C12,L12,...,C1K,L1K,/OP2,P2,C2/,C21,X
* L21,C22,...
*WHERE CONTINUATION TO NEXT CARD IS INDICATED BY A NON-BLANK COLUMN 72
* OPI IS AN ABBREVIATED OP CODE
* TM = TEST UNDER MASK
* MV = MOVE IMMEDIATE
* NI = AND IMMEDIATE
* CL = COMPARE LOGICAL IMMEDIATE
* CI = OR IMMEDIATE
* X2 = EXCLUSIVE OR IMMEDIATE
* TR = TRANSLATE
* SS = SWITCH
* EX = EXIT FROM TABLE
*
*IF CPI = TR
* PI = THE TRANSLATION INDEX
* CI = 0C
* CIJ = C
* L1J = START OF A LIST OF DC'S
*
*IF CPI = SS
* PI = TEMP
* CI = 0C
* CIJ = C
* L1J = START OF LIST OF BRANCHES
*
*IF CPI = EX
* PI = A 'REC' LABEL
* CI = 0
* CIJ,L1J ARE OMITTED
* OTHERWISE
* PI = THE FEATURE TO BE TESTED OR MODIFIED (ONLY 'P', 'PAD', OR
* 'CHAR' MAY BE MODIFIED)
* CI = THE 2 CHARACTER 1-BYTE NUMBER WHICH PI IS TESTED AGAINST OR
* MODIFIED BY
* CIJ = THE CONDITION CODE UNDER WHICH THE SEQUENCE OF CONTROL
* BRANCHES TO LABEL LIJ
*
****SET-UP CHARACTER CODE****
*
* MOVE CHARACTER CODE INTO 'CHAR'
* BRANCH TO THE SET OF ESCAPES
*
****PAD TABLE****
*
* LIST OF BRANCHES TO 'INTERP' LABELS
* USED FOR ENTERING 'INTERP' BASED ON VALUE OF 'PAD'
*
****DIRECTION TABLE****
*
* LIST OF BRANCHES TO 'INTERP' LABELS
* USED FOR ENTERING 'INTERP' BASED ON THE VALUES ON THE FIRST FOUR
* DIRECTIONS IN THE DIRECTION SEQUENCE AS ENCODED BY 'ANG4'
*
****SET OF ESCAPES****
*
* EXITS FROM 'INTERP' TO 'REC'
*
****ENTRY SWITCH****
*
* LIST OF BRANCHES TO 'INTERP' LABELS
* USED FOR ENTERING 'INTERP' FROM 'REC'

INTERP Program Listing

USING XRX,R6
REGS

TM EQU X'91' TEST UNDER MASK
MV EQU X'92' MOVE IMMEDIATE
NI EQU X'94' AND IMMEDIATE
CL EQU X'95' COMPARE LOGICAL IMMEDIATE
CI EQU X'96' OR IMMEDIATE
X2 EQU X'97' EXCLUSIVE OR IMMEDIATE
TR EQU X'99' TRANSLATE
SS EQU X'9A' SWITCH
EX EQU X'9B' EXIT THE TABLE

CATA CSECT
XRX DS 0F
I1 DS 1F
PAD DS 1F
CDE DS 1F
XS DS 1H
YS DS 1H
XT CS 1H
YT CS 1H
XN CS 1H
YN CS 1H
PUP CS 1H
INKIND CS 1H
PGUAD CS 1H
BR56 CS 1H
dxCS 1H
dYCS 1H
XRCS 1H
XLC CS 1H
YTC CS 1H
YBCS 1H
ASPR CS 1H
NT CS 1H
NTCS 1H
INKCS 1H
XYE CS 10C
XYS CS 10C
WIDTH CS 1H
HEIGHT CS 1H
YCENT CS 1H
PCHAR CS 1C
CUSP CS 1C
NCUSP CS 1H
NPTS CS 1H
CEL CS 1H
PCS 1C
CHAR CS 1C
TEMP CS 1C
TINK CS 5C
XSP CS 10C
YSPO CS 10C
XEP CS 10C
YEP CS 10C
ALXYJ CS 8C
XL CS 1H
YL CS 1H
XLO CS 1H
YLC 1H
*AX3 THRU AX02 ARE USED AS NTCUSP, ETC. BY REC
AX3 CS 1H
AX2 CS 1H
AX1 DS 1H
AX DS 1H
AX23 DS 1H
AX12 DS 1H
AX01 DS 1H
AX02 DS 1H
NC DS 1H
C DS 1H
cYM DS 1H
cXS DS 1H
cYS DS 1H
XR5 DS 1H
XL5 DS 1H
YTS DS 1H
YBS DS 1H
CENT DS 1F
MVC DS 6C
TTURN DS 1H
TURN DS 1F
XC DS 10C
YC DS 10C
DO DS 1H
c1 DS 1H
c2 DS 1H
c3 DS 1H
c4 DS 1H
c5 DS 1H
c6 DS 1H
c7 DS 1H
*BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS
c8 DS 1H
c9 DS 1H
c10 DS 1H
c11 DS 1H
c12 DS 1H
c13 DS 1H
c14 DS 1H
c15 DS 1H
cN DS 1H
NTCUSP EQU AX3
NTCSP1 DS 1H
PNPTS DS 1H
PYMAX DS 1H
PYMIN DS 1H
NYMAX EQU AX2
NYMX1 DS 1H
NYMIN EQU AX1
NYMN1 DS 1H
YMAX DS 10H
YMIN EQU YMAX+1C
GYMAX EQU AX
C:YMX1 DS 10C
CYMIXN EQU QYMAX+5
PYMXX DS 1H
PYMNX DS 1H
YMAXX DS 10H
YMINX EQU YMAXX+10

*BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

XYSP EQU XYS-DATA
XYEP EQU XYE-DATA
EXO EQU 0
EX1 EQU 4

INTERPRETER

START BOX
LA R7,BASE
LA R8,GPSw
MVI O(R14),X'00'
AGAIN EQU *
CLI O(R8),X'90'
BC 4,BRANCH
CLI O(R8),X'9F'
BC 2,BRANCH
MAGIC EQU *
CLI O(R8),X'98'
BC 2,T99
COMM EQU *
MVC O(2,R15),O(R8)
SR R9,R9
IC R9,2(R8)
LA R9,DATAR9
MVC 2(2,R15),OPER
EX 0,O(R15)
LA R8,3(R8)
BAL R10,COMMI
COMMI EQU *
ST R10,0(R14)
BC 15,AGAIN
T99 EQU *
CLI O(R8),X'9F'
BC 2,BRANCH
CLI O(R8),X'99'
BC 7,T9A
MVC O(2,R15),3(R8)
LH R9,0(R15)
LA R9,0(R7,R9)
SR R10,R1C
IC R10,2(R8)
LA R10, DATA(R10) FIND THE DATA
MVC TEMP(1), 0(R10)
TR TEMP(1), 0(R9)
LA R8, 5(R8) ADVANCE THE IC
BC 15, AGAIN

T9A
EQU *
CLI 0(R8), X*9A'
BC 7, T9B
SR R9, R9 MUST BE A SWITCH
IC R9, 2(R8)
LA R10, DATA(R9)
IC R9, 0(R10)
SLL R9, 1
MVC 0(R15), 3(R8)
LA R10, 0(R7, R10)
LA R10, 0(R9, R10)
MVC 2(R15), 0(R10)
BC 15, AGREE

T9B
EQU *
CLI 0(R8), X*9B'
BC 7, ERROR
MVI 0(R15), X*C0'
MVC 1(R15), 1(R8)
LA R10, 0(R15)
BEXIT EXO MUST BE A EXIT

BRANCH
EQU *
MVC 0(R15), 0(R14)
NI 0(R15), X*30'
MVC 2(R15), 0(R8)
MVC 1(R15), 2(R15)
NI 1(R15), X*FO'
SR R10, R1C
IC R10, 0(R15)
SRL R1C, 2
LA R10, TESTM(R10)
EX 0, 0(R1C)
BC 1, AGREE
LA R8, 2(R8)
BC 15, AGAIN

AGREE
EQU *
NI 2(R15), X*0F'
LA R9, 2(R15)
LH R9, 2(R15)
LA R8, 0(R7, R9)
BC 15, AGAIN

ERROR
EQU *
BEXIT EX1

TESTM
EQU *
TM 1(R15), X*80'
TM 1(R15), X*40'
TM 1(R15), X*20'
TM 1(R15),X'10'
 OPER CC X'9CCC'

****TABLE EXITS****

* TABLE EXITS
XAHSTR EQU 0
XKNY EQU 1
XFI EQU 2
XKVX EQU 3
XMW EQU 4
XMWIN EQU 5
XMW1 EQU 6
XPOST EQU 7
XRECD EQU 8
XSDP EQU 9
XSMNW EQU 10
XSM1M EQU 11
XSRPRM EQU 12
XSSM EQU 13
XSVM EQU 14
XTEST1 EQU 15
XTEST3 EQU 16
XTPLUS EQU 17
XSTRLC EQU 18
XSALCS EQU 19
XSGBLC EQU 20
XSMLCN EQU 21
XSCBOU EQU 22
XSNLCEQU 23
XSPLCEQU 24
XRSLCEQU 25
XSBLCEQU 26
XSULCEQU 27
XS4LC EQU 28
XSCPHEL EQU 29
XSCPMW EQU 30
XSCPYZ EQU 31
XSCPBS EQU 32
XSBN MN EQU 33
XRAZE EQU 34
XS8LCEQU 35
XSULC1 EQU 36
XS4MK1 EQU 37
XSELCA EQU 38

****TABLE TESTS****

*
* BASE EQU *
AHSTR TABLE /MV,PAC+3,3A/,15,AHSTR
BR TABLE /TM,COCE+1,80/,1,TEST3,/TM,COCE+1,10/,8,TEST3,/CL,N+1,05X
FIME TABLE /MV,P,00/,15,FIME
FIME1 TABLE /CL,P,02/,8,SE,/CL,P,01/,8,SPOUND,/MV,PA0+3,23/,15,FI
G6ETST TABLE /TR,P,CO/,0,PBB;/SS,TEMP,00/,0,PBBX
PBB DS OH
DC X*03*
DC X*CC*
DC X*03*
DC X*02*
DC X*03*
PBBX TABLE 15,0Q
TABLE 15,SQ
TABLE 15,S8
TABLE 15,SG6X
KNYM TABLE /MV,P,CO/
KNYM1 TABLE /CL,P,C1/,8,MW,/MV,PAD+3,24/,15,KNY
KVXYM TABLE /CL,P,C1/,8,KNYM,/CL,P,02/,8,AHSTR,/MV,PAD+3,06/,/MV,P,OX
LPRSLA TABLE /CL,XYE+1,0F/,8,SSLASH,15,SLPAR
MK TABLE /MV,P,C0/,/TM,XYS+3,02/,1,SM,15,SK
*M P IF SECOND STROKE IS NOT SINGLE ANGLE OR DOUBLE ANGLE
CQ TABLE /CL,N+1,02/,2,SP;/TM,XYS+3,0C/,5,SQ;/TM,XYS+3,03/,1,SQ,1X
PADEX TABLE /SS,PAC+3,00/,0,PA
PARSLA TABLE /CL,XYS+1,00/,8,LPRSLA;/TM,XYS+1,02/,8,SLPAR,1,SRPAR
PGTR2 TABLE /MV,P,C2/,15,PADEX
TEST5 TABLE /MV,PAC+3,1E/,15,SVM
TPLUSM TABLE /CL,P,C1/,8,AHSTR;/CL,P,02/,8,FIME;/MV,PAD+3,36/,/MV,P,OX
XMK TABLE /MV,P,CO/,15,XMK
XMK1 TABLE /CL,P,C1/,8,SK;/CL,P,02/,8,AHSTR;/MV,PAD+3,18/,/TM,XYS+1X
SASTAR TABLE /TM,XYE+1,0C/,12,SALC;/EX,XSTRLC,0/
SALC TABLE /TM,XYS+1,0C/,12,RSF;/TM,XYE+1,0C/,8,RSV;/TM,CCDE,08/,1,X
SALCF TABLE /TM,XYS+1,0C/,1,SA;/MV,CHAR,86/,15,RECD
SALCS TABLE /EX,XSALCS,0/
SAMSTR TABLE /MV,P,CO/,15,SAMST1
SAMST1 TABLE /CL,P,C1/,8,SSTAR;/MV,PAD+3,15/,15,SA
SAT TABLE /CL,P,C2/,8,SA;/MV,PAD+3,37/,15,S7
SBARM TABLE /CL,P,02/,8,SETEQM,2,PGTR2;/CL,P,01/,8,STTPLS;/CL,SN+1,0X
SBARMK TABLE /CL,P,01/,8,4MK;/CL,P,02/,8,SETEQM,2,PGTR2;/MV,PAD+3,0DX
/15,SCRRKT
TABLE /TR, BR56+1, 00/, 0, II, /SS, TEMP, 00/, 0, III
 CS OH
 CC X'00'
 CC 4X'00'
 CC X'01'
 CC 4X'00'
 CC X'01'
 DC X'03'
 DC X'02'

TABLE /TR, BR56+1, 00/, 0, KK, /SS, TEMP, 00/, 0, KKK
 DS OH
 CC X'03'
 CC X'01'
 DC 2X'04'
 CC X'00'
 CC X'01'
 DC X'04'
 DC 4X'00'
 CC X'03'
 CC X'01'
 CC X'02'
 CC X'03'
 DC X'00'

TABLE 15, SDP
TABLE 15, DK
TABLE 15, SB
TABLE 15, TEST3
TABLE 15, SBR1

TABLE 15, TEST3
TABLE 15, SDP
TABLE 15, SBDPR

TABLE /MV, P, CC/, 15, SBM51
TABLE /CL, P, C2/, 8, S5, /MV, PAD+3, 26/, 15, SB
TABLE /CL, N+1, 06/, 12, SR, /TM, CODE+1, CC/, 12, SB, /CL, N+1, 07/, 8, SR, X
TABLE 15, SB

TABLE /CL, N+1, 05/, 2, SG, 12, SCLC
TABLE /CL, CYMIN+03/, 8, RSD, 15, SCC
TABLE /CL, NTCUSP+1, 01/, 10, SLBRAC, /CL, ASPR+1, 05/, 2, SLBRAC, 15, SCX
TABLE /CL, P, C1/, 8, SK, /CL, P, 02/, 8, SE, /CL, P, 03/, 8, SG, /MV, PAD+3, 1X
TABLE /CL, P, 05/, /CL, NCUSP+1, 01/, 2, SLBRAC, 8, SCLBRC, /CL, ASPR+X
TABLE /CL, P, C0/, 0, PAA, /SS, TEMP, 00/, 0, PAAA

TABLE /TR, P, CO/, 0, PAA, /SS, TEMP, 00/, 0, PAAA

CS OH
DC 2X'02'
CC 2X'00'
CC X'02'
DC 3X'01'
DC 4X'02'
<table>
<thead>
<tr>
<th>TABLE</th>
<th>15, S8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG6X</td>
<td>TABLE /MV, PAC+3,0A/, /MV, P, 06/, /CL, NTCUSP+1,01/, 10, SG, /TM, XYE+1X</td>
</tr>
<tr>
<td></td>
<td>,02/, 1, S6/, /TM, XYE+1,01/, 0, OC/, 1, S6, 15, SG</td>
</tr>
<tr>
<td>SGB</td>
<td>TABLE /TM, XYE+1,0C/, 5, SG, /EX, XSG8LC, 0/</td>
</tr>
<tr>
<td>SG81</td>
<td>TABLE /TM, XYE+1,0C/, 1, SG, 15, S8</td>
</tr>
<tr>
<td>SJM0</td>
<td>TABLE /MV, P, 0C/, 15, SUMXX</td>
</tr>
<tr>
<td>SUMXX</td>
<td>TABLE /CL, P, 02/, 8, SL/, /MV, PAD+3, 27/, 15, SJ</td>
</tr>
<tr>
<td>SK5</td>
<td>TABLE /CL, P, 01/, 8, SK/, /MV, PAD+3, 28/, 15, S5</td>
</tr>
<tr>
<td>SLKRTM</td>
<td>TABLE /MV, PAC+3, 0/, /CL, P, 00/, 8, SLKRT, 2, SRPRM</td>
</tr>
<tr>
<td>SLMEK4</td>
<td>TABLE /TR, P, 00/, PEE, /SS, TEMP, 00/, 0, PEEE</td>
</tr>
<tr>
<td>PEE</td>
<td>CS 0H</td>
</tr>
<tr>
<td></td>
<td>CC X'03'</td>
</tr>
<tr>
<td></td>
<td>CC X'00'</td>
</tr>
<tr>
<td></td>
<td>CC X'05'</td>
</tr>
<tr>
<td></td>
<td>CC 3X'03'</td>
</tr>
<tr>
<td></td>
<td>CC X'04'</td>
</tr>
<tr>
<td></td>
<td>CC X'03'</td>
</tr>
<tr>
<td></td>
<td>CC X'01'</td>
</tr>
<tr>
<td></td>
<td>CC 2X'03'</td>
</tr>
<tr>
<td></td>
<td>DC X'02'</td>
</tr>
<tr>
<td>PEEE</td>
<td>TABLE 15, S4Y</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, STPE</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SK</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SLX</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SG</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SXME</td>
</tr>
<tr>
<td>SLX</td>
<td>TABLE /MV, PAC+3,1A/, /CL, ASPR+1,08/, 2, SLPAR, 12, SL</td>
</tr>
<tr>
<td>SMC</td>
<td>TABLE /TR, BR56+1,00/, 0, DD/, /SS, TEMP, 00/, 0, DDD</td>
</tr>
<tr>
<td>CC</td>
<td>CS 0H</td>
</tr>
<tr>
<td></td>
<td>CC 4X'02'</td>
</tr>
<tr>
<td></td>
<td>CC X'00'</td>
</tr>
<tr>
<td></td>
<td>CC X'01'</td>
</tr>
<tr>
<td></td>
<td>CC X'04'</td>
</tr>
<tr>
<td></td>
<td>CC X'03'</td>
</tr>
<tr>
<td></td>
<td>CC X'02'</td>
</tr>
<tr>
<td></td>
<td>CC X'05'</td>
</tr>
<tr>
<td></td>
<td>CC X'06'</td>
</tr>
<tr>
<td></td>
<td>CC 3X'02'</td>
</tr>
<tr>
<td></td>
<td>CC X'04'</td>
</tr>
<tr>
<td></td>
<td>CC X'01'</td>
</tr>
<tr>
<td>CCC</td>
<td>TABLE 15, SG</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SCMG</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SSM</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SEG06M</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, S9MG</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, S6S</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SE</td>
</tr>
<tr>
<td>SMLC</td>
<td>TABLE /CL, N+1, 05/, 2, SCPMWK, /TM, XYS+1, 08/, 8, SCPYYZ, /CL, CYMAX+1, X</td>
</tr>
<tr>
<td></td>
<td>00/, 2, SCPBH, /EX, XSMLCN, 0/</td>
</tr>
<tr>
<td>SM1</td>
<td>TABLE /CL,ASPR+1,20/,2,S1,/CL,ASPR+1,OC/,12,PARSLA,/TM,XYS+1,OX 2/,1,SIRPAR,/TM,XYE+1,02/,1,S1,8,SLPAR,15,S1RPAR</td>
</tr>
<tr>
<td>SNMA</td>
<td>TABLE /CL,P,C2/,8,SA,/CL,P,01/,8,RSX,/MV,PAD+3,29/,/TM,CODE,OCX 1/,1,SNLC,4,SNLC1,/TM,XYS+1,0C/,12,52LCY,/EX,XSCBCU,0/</td>
</tr>
<tr>
<td>SNLC</td>
<td>TABLE /EX,XSNLC,0/</td>
</tr>
<tr>
<td>SNLC1</td>
<td>TABLE /TM,CODE,08/,1,SNLC,/TM,XYS+1,0C/,1,SNLC,/TM,XYE+1,08/,1X 52,15,SNLC</td>
</tr>
<tr>
<td>SPRMA</td>
<td>TABLE /MV,PAC+3,OC/,/CL,P,01/,8,SM,/CL,P,02/,8,SA,/TM,XYE+1,OCX 12,12,SLC,/TM,XYE+1,02/,1,SD,15,SLC</td>
</tr>
<tr>
<td>SPLC</td>
<td>TABLE /EX,XSPLC,0/</td>
</tr>
<tr>
<td>SRLC</td>
<td>TABLE /CL,QYMAX+1,00/,8,SRLCX,/CL,N+1,05/,2,RSK,15,RSH</td>
</tr>
<tr>
<td>SRPRMJ</td>
<td>TABLE /CL,P,C2/,8,SA,/CL,P,06/,8,SC,/MV,PAD+3,2A/,15,SRPAR</td>
</tr>
<tr>
<td>SS589</td>
<td>TABLE /TR,BR56+1,00/,0,GG,SS,TEMP,00/,0,GGG</td>
</tr>
</tbody>
</table>

GG	DS 0H
CC	X'05'
CC	2X'06'
CC	X'01'
CC	X'07'
CC	X'04'
CC	2X'01'
CC	X'01'
CC	X'03'
CC	X'04'
CC	X'01'
CC	X'02'
DC	X'00'

| GGG | TABLE 15,SSMG |
| TABLE 15,DK |
| TABLE 15,SSM |
| TABLE 15,58 |
| TABLE 15,TEST1 |
| TABLE 15,5E |
| TABLE 15,RSQ |
| TABLE 15,RSG |

| SS8M | TABLE /TR,BR56+1,00/,0,HH,/SS,TEMP,00/,0,HH |

F	DS 0H
CC	5X'01'
CC	X'03'
CC	4X'01'
CC	X'02'
CC	4X'01'
CC	X'02'
CC	X'00'

| F | TABLE 15,SSM |
| TABLE 15,58 |
| TABLE 15,DK |
| TABLE 15,TEST1 |

STPA	TABLE /MV,P,CO/,/MV,PAD+3,2B/,15,SALCF		
STPE	TABLE	/MV,P,CC/3, /MV,PAD+3,2C/1,15,SE	
STPHB	TABLE	/CL,P,CI/8,SH, /CL,P,02/8,SF, /MV,PAD+3,2D/1,15,S8LC	
S8LC	TABLE	/EX,XS8LC/0	
STPK	TABLE	/CL,P,CL/8,KVXY/15,STPK1	
STPK1	TABLE	/MV,P,CO/3, /MV,PAD+3,2E/1,15,SK	
STPJ	TABLE	/MV,PAD+3,2F/1,15,ST	
STPM	TABLE	/CL,P,CI/8,SM, /MV,PAD+3,30/15,SYLC	
SYLC	TABLE	/CL,N+1,05/2,RSM, /CL,QYMIN/3,8,RSN,15,SY	
STP5	TABLE	/CL,PAD+3,03/8,S5, /CL,P,02/8,S5, /MV,PAD+3,03/1,10,XYE+X	
STP6	TABLE	/MV,PAD+3,02/1,CL,P,01/8,SO, /CL,P,02/8,S5, /CL,P,06/8,X	
STTPLS	TABLE	/MV,P,CO/15,STPLUS	
SUMAM	TABLE	/MV,PAD+3,0F/1,CL,P,CI/8,MK, /CL,P,02/8,SA, /CL,N+1,05/2,SH	
SULC	TABLE	/CL,QYMAX+1,05/2,RSH, /TM,XYE+1,0C/12,RSR, /EX,XSULC/0	
SULC1	TABLE	/CL,QYMIN+3/4,RSY, /EX,XSULC1/0	
SUMJU	TABLE	/CL,P,CI/8,SJMU, /CL,P,01/8,SY, /CL,P,07/8,SO, /MV,TEMP/0X	
SUMJUL	TABLE	/MV,P,C7/1, /MV,PAD+3,31/15,SU	
SXHBL	TABLE	/CL,N+1,04/8,RSL, /CL,QYMAX+1,01/12,RSB, /CL,N+1,07/2,RX	
SXME	TABLE	/MV,PAD+3,1B/1, /MV,P,CC/1, /CL,CODE/0X, /MV,PAD+3,32/15,SK	
SXMSTR	TABLE	/MV,P,CC/15, /CL,N+1,07/2, /TM,XYE+X	
SXMST1	TABLE	/CL,P,C2/8,STSTAR, /MV,PAD+3,32/15,SO	
EJECT	TABLE	/TR,P,CO/0, /SS,TEMP/00/O, /PBBB	
PBBB	TABLE	15,0Q	
SOX	TABLE	/MV,PAD+3,09/1, /MV,P,06/1, /TM,CODE/1, /S0D+15,0Q	
SOD	TABLE	/CL,N+1,01/10, /SO,15,0Q	
S023MB	TABLE	/TM,XYE+1,08/1, /S023MB/15, /SOMOQ8	
S09	TABLE	/TM,XYE+1,0C/1, /S9,15, /SOMQC8	
S09M	TABLE	/CL,N+1,05/2, /S023MB/15, /S9LC1	
SLMAK	TABLE	/TR,P,CC/0, /PCC, /SS,TEMP/00/O, /PCCC	
PCC	DS	0H	
PCCC	TABLE	15,STPA	
SLMAKX	TABLE	/MV,PAD+3,19/1, /MV,P,09/15,S1	
SLRPAR	TABLE	/TM,XYE+1,02/1, /SRPAR/15,51	
S2MRZ	TABLE	/CL,P,C2/8, /SZ, /CL,P,01/8, /TEST3, /TM,XYS+1,0C/1, /SASTAR/5	
/CL, COCE, 3B/, 6, N0323, /CL, CGDE+1, AA/, 8, S3MB, /CL, CGDE+1, 3AX
/, 8, S3MB, 15, N0323
N0323 TABLE /MV, PAC+3, 0B/, 15, S2LC
S2LC TABLE /TM, XYE+1, 08/, 1, S2, /CL, N+1, 04/, 2, RSP, 15, RSF
S2LC1 TABLE /MV, PAC+3, 0B/, /TM, XYS+1, 08/, 8, S2MRZ, /CL, CODE, 24/, 8, RSS, 1X
5, RSR
S2LCY TABLE /CL, N+1, 04/, 8, S2, 15, RSY
S2LCCZ TABLE /CL, N+1, 04/, 8, S2, 15, RSZ
S23MB TABLE /CL, N+1, 04/, 2, S23MB1, /CL, CODE, 39/, 8, SOMCQ8, 15, S23MB1
S23MB1 TABLE /TR, BR56+1, 00/, 0, BB, /SS, TEMP, 00/, 0, BBB
BB DS OH
 DC X*00*
 CC 4X*02*
 CC X*02*
 CC 4X*02*
 CC X*02*
 CC 4X*02*
 CC X*02*
 CC X*00*
 CC X*01*
S23MBP EQU *
 TABLE /TM, XYS+1, 0C/, 1, TEST3, /CL, PAD+3, 0E/, 8, S3MB, /CL, N+1, 07/, 2X
 , S3MB, /TR, BR56+1, 00/, 0, CC, /SS, TEMP, 00/, 0, BBB
CC DS OH
 DC X*00*
 CC 3X*02*
 CC 10X*CC*
 CC X*02*
 CC X*00*
 CC X*01*
BBB TABLE 15, S2MRZ
 TABLE 15, SOMCQ8
 TABLE 15, S3MB
S24 TABLE /TM, XYS+1, 0C/, 1, S4LC, /MV, PAD+3, 0B/, 15, S2
S4LC TABLE /TM, XYS+1, 03/, 12, S4/, /MV, PAD+3, 38/, /EX, X54LC, 0/
S3MB TABLE /CL, P, C1/, 8, TEST3, /MV, PAD+3, 0E/, 15, S3LC
S3LC TABLE /TM, XYE+1, 08/, 8, RSZ, /TM, XYS+1, OC/, 1, RSR, 15, S3
S3LC1 TABLE /TM, XYZ+1, 08/, 8, RSZ, /TM, XYS+1, OC/, 1, RSR, 15, RSA
S3MBR TABLE /CL, PAD+3, 04/, 8, S3MBR1, /TM, CODE, 03/, 1, S3MBR1, /CL, N+1, 04/X
 5, S2LC1, 15, S3MBR1
S3MBR1 TABLE /CL, P, C1/, 8, BR, /MV, PAD+3, 04/, 15, S3LC
S3SCR0 TABLE /CL, N+1, 04/, 2, SSCR0B, 12, S3MB
S4MK TABLE /MV, P, 00/, 15, S4MK
S4MK1 TABLE /CL, P, C1/, 8, SK, /MV, PAD+3, 33/, 15, S4MK1X
S4Y TABLE /CL, N+1, 01/, 12, S4Y1, 2, S4MK
*2ND STROKE HAS ONLY 1 ANGLE, 1ST STROKE IS L
*DOES THE 1ST STROKE L HAVE ITS ENDPT IN RIGHT 1/4
S4Y1 TABLE /TM, XYE+1, 03/, 8, S4MK, 15, SY
S6S TABLE /TM, TURN+1, 40/, 1, SSM, 15, STP6
S65 TABLE /TM, TURN, 01/, 1, SSM, 15, STP6
S7MK TABLE /CL, PAC+3, 18/, 8, XMK1, /TR, P, 00/, 0, PDD, /SS, TEMP, 00/, 0, PDDD
PDD DS OH
<table>
<thead>
<tr>
<th></th>
<th>TABLE /MV,CHAR,C1/,15,RECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>TABLE /MV,CHAR,C2/,15,RECD</td>
</tr>
<tr>
<td>SCC</td>
<td>TABLE /MV,CHAR,C3/,15,RECD</td>
</tr>
<tr>
<td>SD</td>
<td>TABLE /MV,CHAR,C4/,15,RECD</td>
</tr>
<tr>
<td>SE</td>
<td>TABLE /MV,CHAR,C5/,15,RECD</td>
</tr>
<tr>
<td>SF</td>
<td>TABLE /MV,CHAR,C6/,15,RECD</td>
</tr>
<tr>
<td>SG</td>
<td>TABLE /MV,CHAR,C7/,15,RECD</td>
</tr>
<tr>
<td>SH</td>
<td>TABLE /MV,CHAR,C8/,15,RECD</td>
</tr>
<tr>
<td>SJ</td>
<td>TABLE /MV,CHAR,D0/,15,RECD</td>
</tr>
<tr>
<td>SK</td>
<td>TABLE /MV,CHAR,D2/,15,RECD</td>
</tr>
<tr>
<td>SL</td>
<td>TABLE /MV,CHAR,D3/,15,RECD</td>
</tr>
<tr>
<td>SM</td>
<td>TABLE /MV,CHAR,D4/,15,RECD</td>
</tr>
<tr>
<td>SN</td>
<td>TABLE /MV,CHAR,D5/,15,RECD</td>
</tr>
<tr>
<td>SC</td>
<td>TABLE /MV,CHAR,D6/,15,RECD</td>
</tr>
<tr>
<td>SP</td>
<td>TABLE /MV,CHAR,D7/,15,RECD</td>
</tr>
<tr>
<td>SQ</td>
<td>TABLE /MV,CHAR,D8/,15,RECD</td>
</tr>
<tr>
<td>SR</td>
<td>TABLE /MV,CHAR,D9/,15,RECD</td>
</tr>
<tr>
<td>ST</td>
<td>TABLE /MV,CHAR,E3/,15,RECD</td>
</tr>
<tr>
<td>SU</td>
<td>TABLE /MV,CHAR,E4/,15,RECD</td>
</tr>
<tr>
<td>SV</td>
<td>TABLE /MV,CHAR,E5/,15,RECD</td>
</tr>
<tr>
<td>SW</td>
<td>TABLE /MV,CHAR,E6/,15,RECD</td>
</tr>
<tr>
<td>SX</td>
<td>TABLE /MV,CHAR,E7/,15,RECD</td>
</tr>
<tr>
<td>SY</td>
<td>TABLE /MV,CHAR,E8/,15,RECD</td>
</tr>
<tr>
<td>SZ</td>
<td>TABLE /MV,CHAR,E9/,15,RECD</td>
</tr>
<tr>
<td>SO</td>
<td>TABLE /MV,CHAR,F0/,15,RECD</td>
</tr>
<tr>
<td>S1</td>
<td>TABLE /MV,CHAR,F1/,15,POSTST</td>
</tr>
<tr>
<td>S2</td>
<td>TABLE /MV,CHAR,F2/,15,RECD</td>
</tr>
<tr>
<td>S3</td>
<td>TABLE /MV,CHAR,F3/,15,RECD</td>
</tr>
<tr>
<td>S4</td>
<td>TABLE /MV,CHAR,F4/,15,RECD</td>
</tr>
<tr>
<td>S5</td>
<td>TABLE /MV,CHAR,F5/,15,RECD</td>
</tr>
<tr>
<td>S6</td>
<td>TABLE /MV,CHAR,F6/,15,RECD</td>
</tr>
<tr>
<td>S7</td>
<td>TABLE /MV,CHAR,F7/,15,RECD</td>
</tr>
<tr>
<td>S8</td>
<td>TABLE /MV,CHAR,F8/,15,RECD</td>
</tr>
<tr>
<td>S9</td>
<td>TABLE /MV,CHAR,F9/,15,RECD</td>
</tr>
<tr>
<td>SACL</td>
<td>TABLE /MV,CHAR,FE/,15,RECD</td>
</tr>
<tr>
<td>SKARAT</td>
<td>TABLE /MV,CHAR,70/,15,RECD</td>
</tr>
<tr>
<td>SLBRAC</td>
<td>TABLE /MV,CHAR,CF/,15,RECD</td>
</tr>
<tr>
<td>SLKRT</td>
<td>TABLE /MV,CHAR,EE/,15,RECD</td>
</tr>
<tr>
<td>SLPAR</td>
<td>TABLE /MV,CHAR,CD/,15,POSTST</td>
</tr>
<tr>
<td>SMINUS</td>
<td>TABLE /MV,CHAR,E0/,15,RECD</td>
</tr>
<tr>
<td>SPER</td>
<td>TABLE /MV,CHAR,CB/,15,RECD</td>
</tr>
<tr>
<td>SPLUS</td>
<td>TABLE /MV,CHAR,CE/,15,RECD</td>
</tr>
<tr>
<td>SPOUND</td>
<td>TABLE /MV,CHAR,FB/,15,RECD</td>
</tr>
<tr>
<td>SBRAC</td>
<td>TABLE /MV,CHAR,DF/,15,RECD</td>
</tr>
<tr>
<td>SRKRT</td>
<td>TABLE /MV,CHAR,CC/,15,RECD</td>
</tr>
<tr>
<td>SRPAR</td>
<td>TABLE /MV,CHAR,DD/,15,POSTST</td>
</tr>
<tr>
<td>SSCRUB</td>
<td>TABLE /MV,CHAR,72/,15,RECD</td>
</tr>
<tr>
<td>SSLASH</td>
<td>TABLE /MV,CHAR,E1/,15,POSTST</td>
</tr>
<tr>
<td>SSTAR</td>
<td>TABLE /MV,CHAR,DC/,15,RECD</td>
</tr>
<tr>
<td>STILCA</td>
<td>TABLE /MV,CHAR,DO/,15,RECD</td>
</tr>
<tr>
<td>Variable</td>
<td>Table Format</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>CK</td>
<td>MV, CHAR, EF/, 15, RECD</td>
</tr>
<tr>
<td>SBOX</td>
<td>MV, CHAR, 73/, 15, RECD</td>
</tr>
<tr>
<td>SCIRC</td>
<td>MV, CHAR, 74/, 15, RECD</td>
</tr>
<tr>
<td>SELIPS</td>
<td>MV, CHAR, 76/, 15, RECD</td>
</tr>
<tr>
<td>SPBX</td>
<td>MV, CHAR, 77/, 15, RECD</td>
</tr>
<tr>
<td>STRAP</td>
<td>MV, CHAR, 78/, 15, RECD</td>
</tr>
<tr>
<td>STRI</td>
<td>MV, CHAR, 75/, 15, RECD</td>
</tr>
<tr>
<td>RSA</td>
<td>MV, CHAR, 81/, 15, RECD</td>
</tr>
<tr>
<td>RSB</td>
<td>MV, CHAR, 82/, 15, RECD</td>
</tr>
<tr>
<td>RSC</td>
<td>MV, CHAR, 83/, 15, RECD</td>
</tr>
<tr>
<td>RSD</td>
<td>MV, CHAR, 84/, 15, RECD</td>
</tr>
<tr>
<td>RSE</td>
<td>MV, CHAR, 85/, 15, RECD</td>
</tr>
<tr>
<td>RSF</td>
<td>MV, CHAR, 86/, 15, RAZER</td>
</tr>
<tr>
<td>RSG</td>
<td>MV, CHAR, 87/, 15, RAZER</td>
</tr>
<tr>
<td>RSH</td>
<td>MV, CHAR, 88/, 15, RECD</td>
</tr>
<tr>
<td>RSI</td>
<td>MV, CHAR, 89/, 15, RECD</td>
</tr>
<tr>
<td>RSJ</td>
<td>MV, CHAR, 91/, 15, RAZER</td>
</tr>
<tr>
<td>RSK</td>
<td>MV, CHAR, 92/, 15, RECD</td>
</tr>
<tr>
<td>RSL</td>
<td>MV, CHAR, 93/, 15, RECD</td>
</tr>
<tr>
<td>RSM</td>
<td>MV, CHAR, 94/, 15, RECD</td>
</tr>
<tr>
<td>RSN</td>
<td>MV, CHAR, 95/, 15, RECD</td>
</tr>
<tr>
<td>RSG</td>
<td>MV, CHAR, 96/, 15, RECD</td>
</tr>
<tr>
<td>RSP</td>
<td>MV, CHAR, 97/, 15, RAZER</td>
</tr>
<tr>
<td>RSQ</td>
<td>MV, CHAR, 98/, 15, RAZER</td>
</tr>
<tr>
<td>RSR</td>
<td>MV, CHAR, 99/, 15, RECD</td>
</tr>
<tr>
<td>RSS</td>
<td>MV, CHAR, A2/, 15, RECD</td>
</tr>
<tr>
<td>RST</td>
<td>MV, CHAR, A3/, 15, RECD</td>
</tr>
<tr>
<td>RSU</td>
<td>MV, CHAR, A4/, 15, RECD</td>
</tr>
<tr>
<td>RSV</td>
<td>MV, CHAR, A5/, 15, RECD</td>
</tr>
<tr>
<td>RSW</td>
<td>MV, CHAR, A6/, 15, RECD</td>
</tr>
<tr>
<td>RSX</td>
<td>MV, CHAR, A7/, 15, RECD</td>
</tr>
<tr>
<td>RSY</td>
<td>MV, CHAR, A8/, 15, RAZER</td>
</tr>
<tr>
<td>RSZ</td>
<td>MV, CHAR, A9/, 15, RAZER</td>
</tr>
</tbody>
</table>

* *

****PAD TABLE****
*
*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Table Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADT</td>
<td>EQU</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, DK</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SDP</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, STP6</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, STP5</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, S3MBR1</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SCMG</td>
</tr>
<tr>
<td></td>
<td>TABLE 15,KVXYM</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SETXX</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SEGCG6M</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, SOMCQ8</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, G6ETST</td>
</tr>
<tr>
<td></td>
<td>TABLE 15, S2MRZ</td>
</tr>
<tr>
<td>TABLE 15,SPRMA</td>
<td>0C</td>
</tr>
<tr>
<td>TABLE 15,SBARMK</td>
<td>0D</td>
</tr>
<tr>
<td>TABLE 15,S3MB</td>
<td>0E</td>
</tr>
<tr>
<td>TABLE 15,SUMAM</td>
<td>0F</td>
</tr>
<tr>
<td>TABLE 15,SRPRM</td>
<td>10</td>
</tr>
<tr>
<td>TABLE 15,SRPRMJ</td>
<td>12</td>
</tr>
<tr>
<td>TABLE 15,SSM</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 15,SCOMAM</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 15,SAMST1</td>
<td>16</td>
</tr>
<tr>
<td>TABLE 15,SCMEG</td>
<td>17</td>
</tr>
<tr>
<td>TABLE 15,S7MGK</td>
<td>18</td>
</tr>
<tr>
<td>TABLE 15,XMK1</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 15,S1MAK</td>
<td>1A</td>
</tr>
<tr>
<td>TABLE 15,SLMEK4</td>
<td>1B</td>
</tr>
<tr>
<td>TABLE 15,STPE</td>
<td>1C</td>
</tr>
<tr>
<td>TABLE 15,SVM</td>
<td>1E</td>
</tr>
<tr>
<td>TABLE 15,TEST5</td>
<td>1F</td>
</tr>
<tr>
<td>TABLE 15,SFE</td>
<td>20</td>
</tr>
<tr>
<td>TABLE 15,SFME1</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 15,OQ</td>
<td>22</td>
</tr>
<tr>
<td>TABLE 15,DCM</td>
<td>23</td>
</tr>
<tr>
<td>TABLE 15,FIME1</td>
<td>24</td>
</tr>
<tr>
<td>TABLE 15,KNYM1</td>
<td>25</td>
</tr>
<tr>
<td>TABLE 15,AHSTR</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 15,SBM51</td>
<td>27</td>
</tr>
<tr>
<td>TABLE 15,SUMXX</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 15,SK5</td>
<td>29</td>
</tr>
<tr>
<td>TABLE 15,SNMA</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 15,SRPRMJ</td>
<td>3A</td>
</tr>
<tr>
<td>TABLE 15,STPA</td>
<td>3B</td>
</tr>
<tr>
<td>TABLE 15,SE</td>
<td>3C</td>
</tr>
<tr>
<td>TABLE 15,STPH8</td>
<td>3D</td>
</tr>
<tr>
<td>TABLE 15,STPK1</td>
<td>3E</td>
</tr>
<tr>
<td>TABLE 15,SJ</td>
<td>3F</td>
</tr>
<tr>
<td>TABLE 15,STPM</td>
<td>3G</td>
</tr>
<tr>
<td>TABLE 15,SUMJU</td>
<td>3H</td>
</tr>
<tr>
<td>TABLE 15,SMST1</td>
<td>3I</td>
</tr>
<tr>
<td>TABLE 15,S4MK1</td>
<td>3J</td>
</tr>
<tr>
<td>TABLE 15,S9MG</td>
<td>3K</td>
</tr>
<tr>
<td>TABLE 15,S9MK</td>
<td>3L</td>
</tr>
<tr>
<td>TABLE 15,TPLUSM</td>
<td>3M</td>
</tr>
<tr>
<td>TABLE 15,SA7</td>
<td>3N</td>
</tr>
<tr>
<td>TABLE 15,SCPTX</td>
<td>3O</td>
</tr>
<tr>
<td>TABLE 15,RSX</td>
<td>3P</td>
</tr>
<tr>
<td>TABLE 15,SPOUND</td>
<td>3Q</td>
</tr>
</tbody>
</table>

* * *

****4 DIRECTION TABLE****
* * **
TABLE /SS, TEMP, CO/, C, AAA
EQU *
TABLE 15, RECD
TABLE 15, STPM
TABLE 15, S23MB
TABLE 15, S23MBP
TABLE 15, SMC
TABLE 15, SS8M
TABLE 15, SG069M
TABLE 15, SS589M
TABLE 15, SGO6M
TABLE 15, SBOPR
TABLE 15, SMNw
TABLE 15, SM1M
TABLE 15, SBARM
TABLE 15, S2MRZ
TABLE 15, S3MB
TABLE 15, S3MBR
TABLE 15, STP6
TABLE 15, S24
TABLE 15, SRPRM
TABLE 15, DlK
TABLE 15, S7MGK
TABLE 15, STPA
TABLE 15, S1MAK
TABLE 15, SNMA
TABLE 15, SMLC
TABLE 15, SCCMAM
TABLE 15, SBARMK
TABLE 15, SS5M
TABLE 15, S9MK
TABLE 15, SCMEG
TABLE 15, SFE
TABLE 15, SLMEK4
TABLE 15, SUMJU
TABLE 15, S5
TABLE 15, STP5
TABLE 15, SK5
TABLE 15, STPH8
TABLE 15, SVM
TABLE 15, SDMH
TABLE 15, SUMAM
TABLE 15, STPJ
TABLE 15, SGSCR8
TABLE 15, S3SCR8
TABLE 15, BR
TABLE 15, SBOPRL
TABLE 15, SLKRTM
TABLE 15, SRPRMJ 2E
TABLE 15, SGS
TABLE 15,SGSG6M
TABLE 15,SCMQQ8
TABLE 15,S8 32
TABLE 15,SG 33
TABLE 15,S9 34
TABLE 15,S3 35
TABLE 15,SASTAR 36
TABLE 15,SCC 37
TABLE 15,SA7 38
TABLE 15,SCG 39
TABLE 15,SG81 3A
TABLE 15,SO23MB 3B
TABLE 15,SO9 3C
TABLE 15,SLC1 3D
TABLE 15,SO9M 3E
TABLE 15,SCRPT 3F
TABLE 15,RSC 40
TABLE 15,SCPF 41
TABLE 15,SCPEL 42
TABLE 15,RS 43
TABLE 15,RSV 44
TABLE 15,SCPNSZ 45
TABLE 15,RSZ 46
TABLE 15,SE 47
TABLE 15,SCPNRZ 48
TABLE 15,SLCV 49
TABLE 15,SEQ 4A

* *

****SET OF ESCAPES****

* *

AHSTRX TABLE /EX,XAHSTR,0/
KNY TABLE /EX,XKNY,0/
FI TABLE /EX,XFI,G/
KVXY TABLE /EX,XKVXY,Y/
MW TABLE /EX,XMW,0/
MWIN TABLE /EX,XMWIN,0/
M1 TABLE /EX,XM1,0/
PCSTST TABLE /EX,XPOST,0/
RAZER TABLE /EX,XRAZE,0/
RECD TABLE /EX,XRECD,0/
SCP TABLE /EX,XSCP,0/
SMNW TABLE /EX,XSMNW,0/
SM1M TABLE /EX,XSM1M,0/
SRPRM TABLE /EX,XSRPRM,0/
SSM TABLE /EX,XSSM,0/
SVM TABLE /EX,XSVM,0/
TEST1 TABLE /EX,XTEST1,0/
TEST3 TABLE /EX,XTEST3,0/
TPLUS TABLE /EX,XTPLUS,0/
S8LCVX TABLE /EX,XS8LCV,0/
SRLCX TABLE /EX,XSRLC,0/
S4MK1X TABLE /EX,XS4MK1,0/
*
* ****ENTRY SWITCH****
* *
GPSW TABLE /SS,CUSP,CO/,O,GPSWTCH

GPSWTCH EQU *
TABLE 15,SPER
TABLE 15,SXHBL
TABLE 15,S4
TABLE 15,SK
TABLE 15,AAAA
TABLE 15,KVXYM
TABLE 15,PADEX
TABLE 15,TPLUSM
TABLE 15,BM5
TABLE 15,SJMU
TABLE 15,S1M1U1
TABLE 15,SM1
TABLE 15,SXMSTR
TABLE 15,SCMCQ8
TABLE 15,SCPNU
TABLE 15,RSB
TABLE 15,RSC
TABLE 15,RSE
TABLE 15,RSF
TABLE 15,RSG
TABLE 15,RSI
TABLE 15,RSJ
TABLE 15,RSL
TABLE 15,RSM
TABLE 15,RSN
TABLE 15,RSO
TABLE 15,RSR
TABLE 15,RSU
TABLE 15,RSV
TABLE 15,RSW
TABLE 15,RSY
TABLE 15,RSZ
TABLE 15,SA
TABLE 15,SG
TABLE 15,SM
TABLE 15,SNN
TABLE 15,SP
TABLE 15,SR
TABLE 15,SU
TABLE 15,SG
RECORD RCS'S

FUNCTION

* DISTINGUISHES AMONG 3-STROKE A, H, K, AND * BASED ON POSITIONS OF
* STARTING AND ENDING POINTS
*
*
* CALL
* RCS AHSTRI1,ECHAR
* EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
* INPUT REGISTER. R6
*
* INTERNAL REGISTERS. R7, R9-R14
*
*
USING XR6,R6

EX0 EQU C
REGS
D6 DSECT
XR6 CS OF
XYEP EQU X'401
XYSP EQU X'4A1
XSPI EQU X'721
YSPI EQU X'7C1
XEPI EQU X'86'
YEPI EQU X'90'
CS 3F
cs OS
CS 26H
cs OS
CS 20C
cs OS
CS 3F
CS 1H
cs OS
CS 2C
CS 3H
P CS 1C
CHAR CS 1C
AHSTRI BCX

*R10 IS FIRST VERTICAL STROKE REF
*R11 IS SECOND VERTICAL STROKE REF
*R12 IS HORIZONTAL STROKE REF

*IS THIRD STROKE HORIZONTAL?
CLI P,X'C2'
BC 8,H3

*NO, IS FIRST HORIZONTAL?
LA R11,4(R6)
LH R7,XEPI(R6)
SH R7,XSPI(R6)
LPR R7,R7
LH R9,YEPI(R6)
SH R9,YSPI(R6)

*NO, SECOND STROKE IS THE HORIZONTAL
LA R12,2(R6)
LA R10,0(R6)
B HOONE

*THIRD STROKE IS THE HORIZ
H3
LA R12,4(R6)
LA R11,2(R6)
LA R10,0(R6)
B HOONE

*FIRST STROKE IS THE HORIZ
H1
LA R12,0(R6)
LA R10,0(R6)
HOONE EQU *

*TEST FOR K

*ARE BOTH VERT ENDPNTS AT THE LEFT
TM XEYP+1(R10),X'03'
BC 12,NOTK
TM XEYP+1(R11),X'03'
BC 1,SKX
TM XYSPI+1(R10),X'03'
BC 12,NOTK

*IS HORIZ START OR ENC POINT IN UPPER RIGHT?
CLI XEYP+1(R12),X'C0'
BC 8,ETCP
CLI XYPEP+1(R12),X'01'
BC 8,ETOP
CLI XYSPP+1(R12),X'00'
BC 8,STOP
CLI XYSPP+1(R12),X'01'
BC 6,NOTK

*IS TOP,RIGHT PART OF HORIZ ABOVE TOP OF SECOND VERT?

STOP EQU *
 LH R13,YSPI(R12)
 B ETOP1
ETCP EQU *
 LH R13,YEPI(R12)
ETOP1 EQU *
 CH R13,YSPI(R11)
 BC 2,SKX
NOTK EQU *
*NOT K, TEST FOR A,H, OR *

*ARE START PTS CLOSE COMPARED TO ENDPts
 LH R13,XEPI(R10)
 SH R13,XEPI(R11)
 LPR R13,R13
 SRL R13,2
 LH R14,XSPI(R10)
 SH R14,XSPI(R11)
 LPR R14,R14
 CR R14,R13
 BC 4,SAX

*NG, DO VERTICAL STROKES CROSS?
 LH R13,XEPI(R10)
 CH R13,XEPI(R11)
 BC 2,END1R
 LH R13,XSPI(R10)
 CH R13,XSPI(R11)
 BC 2,SSTARX
 B SHX
END1R EQU *
 LH R13,XSPI(R10)
 CH R13,XSPI(R11)
 BC 4,SSTARX
 B SHX
SAX EQU *
 MVI CHAR,C'A'
 BC 15,BEXIT1
SHX EQU *
 MVI CHAR,C'H'
 BC 15,BEXIT1
SKX EQU *
 MVI CHAR,C'K'
 BC 15,BEXIT1
SSTARX EQU *
*FUNCTION
* DISTINGUISHES AMONG 3-STROKE F, I, AND * BASED ON POSITIONS OF STARTING POINTS
* *
* CALL
* RCS BFIA,ECHAR
* EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
* *
* INPUT REGISTER. R6
*
* INTERNAL REGISTERS. R7, R12, R13, R15
*
* USING XR6,R6
REGS
EXO EQU 0
D6 DSECT
XR6 CS 0F
XYS P EQU X'4A' XYS (R6)
DS 3F
DS 3F
DS 3F
DS 3F
DS 3F
DS 3F
DS 1H
DS 1H
DS 1C
DS 1C
CHAR CS 1C
BFI BX
F1 SK R15,R15
LA R12,2
LA R13,4
FII LA R7,0(R6,R15)
TM XYS+1(R7),X'03'
FUNCTION

CALL RCS BHITEA, ESHORT, ETALL

EXIT SHORT WHEN THE CHARACTER IS SHORT
EXIT TALL WHEN THE CHARACTER IS TALL

INPUT REGISTER. R6

INTERNAL REGISTERS. R7, R8

USING XR6, R6

REGS

EX0 EQU 0
EX4 EQU 4
C6 DSECT
XR6 CS 0F
DS 3F
DS 20H
YTC CS 1H
YBC DS 1H
DS 4H
DS 20C
DS 3F
DS 1H
FUNCTION

DISTINGUISHES AMONG 'O', 'P', 'S', AND SCRIPT 'B' BASED ON THE POSITION OF THE LAST STROKE ENDPOINT, THE POSITION OF THE 2ND REL. Y MAX. IN THIS STROKE, AND THE NO. OF STROKES

CALL
RCS BSCPA, ECHAR
EXIT CHAR WHEN A CHARACTER IS RECOGNIZED

INPUT REGISTER. R6

INTERNAL REGISTERS. R7, R15

USING XR6, R6 REGS

EXO EQU 0
D6 DSECT
XR6 DS 0F
XYE P EQU X'40'
 XYE (R6)
PAD CS 1F
DS 1F
SN
CS 11H
CS 1H
CS 14H
CS 20C
OS 3F
CS 1H
CS 2C
CS 3H
P
CS 1C
CHAR
CS 1C
CS 54C
CS 21H
CS 1F
CS 6C
CS 1H
CS 1F
CS 20C
CS 33H
GYMAX
CS 10C
BSDP
BOX
CLI PAD+3,X'01'
BC 8,SDM51
MVI PAD+3,X'01'
SDP
LH R15,SN
BCT R15,SDP1
SDP1
SLL R15,1
LA R7,0(R6,R15)
TM XYEP+1(R7),X*0C'
MVI CHAR,C*P'
BC 12,SDPX
SDM5
MVI P,X*00'
MVI CHAR,C*C'
CLI SN+1,X*02'
BC 8,SDSD
CLI QYMAX+1,X*00'
BC 8,SDSD
MVI CHAR,X*82'
B SDPX
SDM51
CLI P,X*02'
MVI CHAR,C*5'
BC 8,SDPX
MVI CHAR,C*D'
SDSC
EQU *
SDPX
BEXIT EXO
END
FUNCTION
* Distinguishes among SCRUB, N, W, SCRIPT Y, and a character group (M, SCRIPT M, SCRIPT W, SCRIPT Y) based on no. of directions, aspect ratio and the position of the first rel. Y min.
*
*
CALL
* RCS BSMNW, ECHAR, EGROUP, ERAZE
* Exit char when a character is recognized
* Exit group when the character is M, or script M, W, or Y
* Exit Raze when the char. is recognized as a script Y, and the char. center must be raised
*
*
INPUT REGISTER. R6
*
* INTERNAL REGISTERS. R7, R8
*
USING XR6, R6
REGS
EX0 EQU 0
EX4 EQU 4
EX8 EQU 8
D6 CSECT
XR6 CS 0F
 DS 3F
 DS 10H
N CS 1H
 DS 5H
XSC CS 1H
 DS 5H
ASPR CS 1H
 DS 3H
 DS 20C
 DS 3F
 DS 1H
 DS 2C
 DS 3H
 DS 1C
CHAR CS 1C
 DS 6C
XSP DS 10C
 DS 38C
 DS 21H
 DS 1F
CS 6C
CS 1H
CS 1F
CS 20C
CS 33H
QYMAX CS 10C
QYMIN EQU QYMAX+5
CS 2H
YMAXX CS 10H
BSMNW BOX
SMNW CLI N+1,X'C5'
BC 4,TEST4
BC 8,SMLCX
MVI CHAR,X'72' SCRUB
B SMNWX
TEST4 CLI ASPR+1,X'04'
MVI CHAR,C'~'
BC 4,SMNWX
*N IF A SP RATIO GTR THAN 2
CLI ASPR+1,X'08'
BC 2,SNLCY
*ARE THE SP AND 2ND MAX CLOSER THAN
*3/8 CHARACTER WIDTH
LH R7,DXC
SRL R7,2 1/4 DELTA X
LR R8,R7
SRL R8,1
AR R7,R8 3/8 DELTA X
LH R8,YMAXX+2
SH R8,XSP
LPR R8,R8
CR R8,R7
BC 4,SNLCY
MVI CHAR,C'W'
B SMNWX
SNLCY MVI CHAR,C'N'
CLI QYMIN,X'C3'
BC 8,SMNWX
MVI CHAR,X'A8' NO
BEXIT EX8
SMNWX BEXIT EX0
SMLCX BEXIT EX4
END
BSRPRM

*FUNCTION
*
*CDISTINGUISHES AMONG R, 3, 5, RIGHT BRACKET, AND 2 GROUPS OF CHARACTERS
* (D, P), (RIGHT PAREN., COMMA, APOSTROPHE) BASED ON THE IDENTITY OF THE
* THE PREVIOUS SUBCHARACTER, THE NO. OF GEOM. CORNERS, AND THE POSITION
* CF A CORNER
*
*
*CALL
* RCS BSRPRMA,ECHAR,EDP,EPAREN
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*EXIT DCP WHEN THE CHARACTER IS A D CR P
*EXIT PAREN WHEN THE CHARACTER IS A RIGHT PAREN., COMMA, OR APOSTROPHE,
* TEST SIZE AND POSITION
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R8
*
*
USING XR6,R6

EX0 EQU 0
EX4 EQU 4
EX8 EQU 8
REGS
C6 CSECT
XR6 CS 0F
CS 1F
PAD DS 1F
DS 1F
DS 20H
YTC CS 1H
YBC CS 1H
CS 4H
CS 20C
CS 3F
CS 1H
CS 2C
NCUSP DS 1H
DS 2H
P CS 1C
CHAR CS 1C
CS 54C
DS 21H
CS 1F
DS 6C
DS 1H
DS 1F
CS 10C
YC 10C
BSRPRM BOX
CLI PAD+3,X'11'
BC 8,DPMR1
SRPRM CLI P,X'01'
BC 8,DPMR
CLI P,X'02'
MVI CHAR,C*5'
BC 8,SRPRMX
CLI P,X'06'
MVI CHAR,C*8'
BC 8,SRPRMX
MVI PAd+3,X'10'
SRPRM
CLI NCUSP+1,X'03'
MVI CHAR,C*3'
BC 10,SRPRMX
CLI NCUSP+1,X'01'
Rbrakx MVI CHAR,X*DF'
BC 2,SRPRMX
MVI CHAR,X*CD'
BC 4,SRPRMX1
*3 IF THE CUSP IS IN THE MIDDLE
LH R7,YTC
SH R7,YBC
SRL R7,1 1/2 DELTA Y
LR R8,R7
SRL R8,1 1/4 DELTA Y
AH R8,YBC
AR R7,R8
CH R8,YC
BC 2,Rbrakx
CH R7,YC
MVI CHAR,C*3'
BC 10,SRPRMX
BC 4,Rbrakx
CPRMR MVI P,X'00'
CPRMR1 CLI P,X'01'
MVI CHAR,C*8'
BC 8,SRPRMX
MVI PAD+3,X'11'
BEXIT EX4
SRPRMX BEXIT EX0
SRPRMX1 BEXIT EX8
END
BSSM

*FUNCTION
*
*Distinguishes among s, 5, 8, 9, and $ based on the general identity of
*the previous subcharacter, the position of the endpoint, the no. of
*directions, the first direction, and the no. of time-corners
*
*
*CALL
* RCS BSSMA, ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
*INPUT REGISTER. R6
*
*
*INTERNAL REGISTER. R7
*
*
USING XR6, R6
REGS
EX0 EQU 0
C6 CSECT
XR6 CS 0F
CS 1F
PAD CS 1F
CCDE CS 1F
CS 10H
N CS 1H
CS 7H
XRC CS 1H
XLC CS 1H
CS 6H
XYE CS 10C
CS 10C
CS 3F
CS 1H
CS 2C
NCUSP CS 1H
CS 2H
P CS 1C
CHAR CS 1C
TEMP CS 1C
CS 53C
DS 21H
CS 1F
CS 6C
CS 1H
CS 1F
XC DS 10C
CS 10C
CS 17H
NTCUSP CS 1H
BSSM BOX
 CLI PAD+3,X'13'
 BC 8, DOLDCOL
SSM MVC TEMP(1),P
 TR TEMP(1), LL
 SR R7,R7
 IC R7, TEMP
 EX 0, LLL(R7)
SSM1 MVI P,X'05'
 MVI PAD+3,X'12'
 TM XYE+1,X'08'
 BC 8, S8S8
*NOT 5 IF 1ST ANGLE IS 1
 TM CODE,X'80'
 BC 1, SSM2
 TM CODE,X'40'
 BC 1, S5
*TEST FOR TIME CORNERS
SSM2 EQU *
 CLI NTCUSP+1,X'01'
 BC 2, SSSS
 BC 4, SSSS
*1 TIME CORNER, CHECK FOR GECM CORNERS
 CLI NGCUSP+1,X'02'
 BC 2, SSSS
 BC 4, SSSS
 LM R7, XRC
 SH R7, XLC
 SRL R7,1 1/2 DELTA X
 AH R7, XLC
 CM R7, XC+2
 BC 2, SSSS
 BC 12, SSSS
 BC 15, SSSS
 BC 15, SSM1
 BC 15, STPCOL
 BC 15, S8S8
 BC 15, DOLDCOL
 BC 15, SSSS
BSVM

*FUNCTION
*
*DISTINGUISHES AMONG V, W, AND 5 GROUPS OF CHARACTERS (J, U), (M, W),
*(K, N, Y), (O, 8, 0, Q), (U, 8) BASED ON THE GENERAL IDENTITY OF THE
*PREVIOUS SUBCHARACTER, THE ORIGIN OF THE CALL TO THIS ROUTINE (TEMP
*HAS BEEN ENCODED AS C IN 'INTERP' IF THE CHAR CAN BE U), AND THE DIS-
*TANCE BETWEEN THE STARTING AND ENDING POINTS
*
*
*CALL
RCS BSVMA,ECHAR,EJU,EMK,EKNY,E08OQ,EU8
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*EXIT JU WHEN THE CHAR IS J, POTENTIALLY U
*EXIT MW WHEN THE CHAR IS M OR W
*EXIT KNY WHEN THE CHAR IS K, N, OR Y
*EXIT O8OQ WHEN THE CHAR IS O, POTENTIALLY 8, 0, OR Q
*EXIT U8 WHEN THE CHAR IS U, POTENTIALLY 8
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7,R8,R10
* * *

USING XR6, R6

EXO EQU 0
REGS
EX4 EQU 4
EX8 EQU 8
EX12 EQU 12
EX16 EQU 16
EX20 EQU 20

C6 DSECT

XR6 CS OF
CS 1F
PAD CS 1F
DS 1F
CS 18H
XRC CS 1H
XLC DS 1H
DS 6H
CS 20C
CS 3F
DS 1H
CS 2C
CS 3H

P DS 1C
CHAR CS 1C
TEMP DS 1C
CS 5C
XSP DS 10C
CS 10C
XEP DS 10C
BSVM BOX

CLI PAC+3, X*1D*
BC 8, KNYXXX
CLI PAD+3, X*1E*
BC 8, TEST5

SVM CLI P, X*01*
BC 8, KNYMMW
CLI P, X*02*
BC 8, SJMUXX
CLI P, X*08*
BC 8, MW1X
CLI P, X*04*
MVI CHAR, C*W*
MVI TEMP, X*C4*
BC 15, TEST5
BC 8, SVMX

SVM1 MVI PAD+3, X*1C*
MVI P, X*C4*
MVI CHAR, C*V*
BC 15, SVMX
**0 VS U,V TEST
*0 IF STARTPT AND ENDPT ARE CLOSER THAN 1/2 CHARACTER WIDTH
*TEMP CONTENTS CODE FOR RETURN TO U OR V
TEST5
 LH R7,XSP
 SH R7,XEP
 LPR R7,R7
 LH R8,XRC
 SH R8,XLC
 LPR R8,R8
 SRL R8,1
 CR R7,R8
 BC 4,5MX
*ENCPT IN LEFT OR RIGHT 1/4
SR R10,R1C
IC R10,TEMP
EX 0,T5SW(R10)
T5SW
 CS OF
 BC 15,SUJUL1X
 BC 15,SVM1
SVMX BEXIT EX0
SJMUXX BEXIT EX4
MW1X BEXIT EX8
KNY1X BEXIT EX12
SOMX BEXIT EX16
SUJUL1X BEXIT EX20
END

BTEST1

*FUNCTION
*
*DISTINGUISHES BETWEEN TWO CHARACTER GROUPS (8, SCRIPT G), (S-LIKE CHARACTERS) BASED ON THE POSITION OF THE ENDPOINT
*
*
*CALL
* RCS BTEST1A,E8G,ESSM
*EXIT 8G WHEN CHAR IS 8 OR SCRIPT G, TEST DIRECTIONS
*EXIT SSM WHEN CHAR IS S-LIKE, TEST FURTHER WITH BSSM
*
* *INPUT REGISTER. R6
* *INTERNAL REGISTERS. R7, R15
* *
* USING XR6, R6
REGS
EX0 EQU 0
EX4 EQU 4
C6 CSECT
XR6 CS OF
XYEP EQU X'40' XYE
CS 3F
CS 11H
SN CS 1H
CS 14H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H
CS 1C
CHAR CS 1C
BTEST1 BCX
TEST1 LH R15, SN
BCT R15, TEST11
TEST11 SLL R15, 1
LA R7, 0(R6, R15)
TM XYEP + 1(R7), X'C8'
BC 1, SSMXXX
MVI CHAR, C'8'
BEXIT EXC
SSMXXX BEXIT EX4
END

BTEST3

*FUNCTION
* *DISTINGUISHES AMONG B, R, U, SCRIPT K, SCRIPT X, AND A CHARACTER GROUP
*(5, 8) BASED ON THE NO. OF STROKES, THE POSITIONS OF STARTING AND ENDING
POINTS, THE DIRECTIONS, THE POSITIONS OF REL. Y MAXIMA
* * *
* CALL
RCS BTEST3A, ECHAR, E5B
EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
EXIT 5B WHEN CHAR IS 5, POTENTIALLY B

* INPUT REGISTER. R6
* INTERNAL REGISTERS. R7, R8

* USING XR6, R6 REGS

EX0 EQU 0
EX4 EQU 4
D6 DSECT
XR6 DS 0F
XYSP EQU X*4A*
XYEP EQU X*40*
CODE DS 1F
SN DS 1H
CXC DS 1H
XRC DS 1H
XYE DS 7H
XYE DS 10C
CHAR DS 1C
CS 54C
CS 21H
CS 1F
CS 6C
CS 1H
CS 1F
CS 20C
CS 33H
QYMAX DS 1OC
DS 2H
YMAXX DS 1CH
BTEST3 BOX
TEST3 CLI SN+1, X*01*
BC 8, TEST31

*2 STROKE CHARACTERS
LH R8,SN
BCT R8,TEST32
TEST32 SLL R8,1
 LA R8,(R8,R6)
 MVI CHAR,X'A7'
 TM XYS+I(R8),X'02'
 BC 8,TEST3X
 TM XYEP+I(R8),X'02'
 MVI CHAR,C'B'
 BC 1,TEST3X
 MVI CHAR,C'R'
 BC 8,TEST3X
 END IN LEFT HALF
* SINGLE STROKE CHARACTERS
TEST31 TM XYE+1,X'02'
 BC 1,SBM5X
 MVI CHAR,C'R'
 END IN RIGHT HALF
RLC ECU *
 CLI CODE,X'CC'
 BC 8,RU
 CLI QYMAX+1,X'00'
 BC 8,TEST3X
 MVI CHAR,X'92'
 B TEST3X
RU EQU *
 LH R8,DXC
 SRL R8,1
 LH R7,XRC
 SR R7,R8
 * IS MAX 2 IN RIGHT 1/2
 CH R7,YMAXX+2
 BC 2,TEST3X
 NO,R
 MVI CHAR,C'U'
TEST3X BEXIT EXC
SBM5X BEXIT EX4
 ENC

*FUNCTION
*
*DISTINGUISHES AMONG 3-STROKE (ALL VERT) K, N, AND Y BASED ON THE PCS-
*ITIONS OF THE STARTING AND ENDING POINTS
*
* *
*CALL
* RCS KNYTSTA, ECHAR
* EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
* INPUT REGISTER. R6
*
* INTERNAL REGISTERS. R7-R13, R15
*
*
USING XR6, R6
EXO EQU 0
REGS
D6 DSECT
XR6 CS OF
XYSP EQU X'4A'
XYEP EQU X'40'
CS 3F
CS 26H
XYE CS 10C
XYS CS 10C
CS 3F
CS 1H
CS 2C
CS 3H
CS 1C
CHAR CS 1C
KNYTST BCX
SR R9, R9
SR R10, R10
SR R11, R11
LA R12, 2
LA R13, 4
SR R15, R15
KNYIN LA R8, 0(R6, R15)
TR XYSP+1(1, R8), HHS
LH R7, XYS(R15)
EX 0, HHS(R7)
KNYSN CR R9, R12
BC 8, SNX
LR R9, R12
KNYSKY TR XYEP+1(1, R8), EVE
LH R7, XYE(R15)
EX 0, HHHE(R7)
KNYEY CR R10, R12
BC 8, SYX
LR R10, R12
BC 15, KNYI
KNYEN CR R11, R12
BC 8, SNX
LR R11, R12
KNYI BXLE R15,R12,KNYIN
SKXX EQU *
 MVI CHAR,C'K'
 BC 15,BEXIT2
SNX EQU *
 MVI CHAR,C'N'
 BC 15,BEXIT2
SYX EQU *
 MVI CHAR,C'Y'
BEXIT2 BEXIT EX0
HHS DS OF
 BC 15,KNYSKY
 BC 15,KNYSN
HHHE DS OF
 BC 15,KNYI
 BC 15,KNYEY
 BC 15,KNYEN
HHS DS OH
 CC 2X'00'
 CC 2X'04'
 CC 3X'00'
 CC X'04'
 CC 8X'00'
HHHE DS OH
 CC 5X'00'
 CC 2X'04'
 CC X'00'
 CC X'08'
 CC 2X'04'
 CC X'00'
 CC 2X'08'
 CC 2X'00'
 END

KNYIT

*FUNCTION
*
*DISTINGUISHES AMONG 2-STROKE (1 VERT, 1 V-LIKE) K, N, AND Y BASED ON
*THE POSITIONS OF THE STARTING AND ENDING POINTS
*
*
*CALL
*
*RC5 KNYITA,ECHar
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
* * * * * * * * *
*INPUT REGISTER. R6
* * * * * * * * *
*INTERNAL REGISTERS. R7, R8, R12, R13, R15
* *
USING XR6,R6

EX0 EQU 0
REGS
D6 CSECT
XR6 DS 0F
XYEP EQU X'40'
XYSP EQU X'4A'
CS 3F
DS 26H
XYE DS 10C
XYS CS 3F
DS 1H
CS 2C
CS 3H
CS 1C
CHAR CS 1C

KNY1T BOX
 SR R15,R15
 LA R13,2
 SR R12,R12
KNY11 LA R8,0(R6,R15)
 TR XYEP+1(1,R8),FFE
 LH R7,XYE(R15)
 EX 0,FFFE(R7)
KNY1NY TR XYSP+1(1,R8),FFS
 LH R7,XYS(R15)
 EX 0,FFFS(R7)
KNY1J CR R12,R13
 BC 8,NKNY1
 LR R12,R13
KNY12 BXLE R15,R13,KNY11
YKNY1 EQU *
 MVI CHAR,C'Y'
 BC 15,BEXIT5
KKNY1 EQU *
 MVI CHAR,C'K'
 BC 15,BEXIT5
NKNY1 EQU *
 MVI CHAR,C'N'
BEXIT5 BEXIT EX0
FFE CS 0F
DC 8X'00'
*FUNCTION
*
*DISTINGUISHES AMONG 2-STROKE (ALL VERT) K, V, X, AND Y BASED ON THE
*POSITIONS OF THE STARTING AND ENDING POINTS
*
*CALL
* RCS KVXYTA,ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R8, R12, R13, R15
*
* USING XR6,R6
EXO EQU 0
REGS
C6 DSECT
XR6 CS OF
XYEP EQU X'40'
XYSP EQU X'4A'
CS 3F
DS 26H
XYE CS 10C
CS 10C
DS 3F
CS 1H
DS 2C
DS 3H
CS 1C
CHAR CS 1C
KVXYT BOX
SR R15, R15
LA R13, 2
SR R12, R12
KVXY1 LA R8, 0(R6, R15)
TR XYEP+1(1, R8), EEE
LH R7, XYE(R15)
EX 0, EEEE(R7)
KXY TM XYSP+1(R8), X'C3'
BC 1, KKVXY
BC 12, KVXY2
KVXY3 CR R15, R13
BC 8, VKVXY
CR R15, R13
BC 8, XKVXY
LR R12, R13 SET J=1
KVXY2 BXLE R15, R13, KVXY1
XKVXY EQU *
MVI CHAR, C'X'
BC 15, BEXIT6
KKVXY EQU *
MVI CHAR, C'K'
BC 15, BEXIT6
VKVXY EQU *
MVI CHAR, C'V'
BC 15, BEXIT6
YKVXY EQU *
MVI CHAR, C'Y'
BEXIT6 BEXIT EXO
EEE DS 0H
DC X'08'
FUNCTION

DISTINGUISHES BETWEEN 3-STROKE (2 VERTS, 1 V-LIKE) OR 4-STROKE (ALL VERT) M AND W BASED ON THE POSITIONS OF THE ENDING POINTS

*CALL RCS MWTA, ECHAR
EXIT CHAR WHEN A CHARACTER IS RECOGNIZED*

INPUT REGISTERS
*C(R6) = ADDRESS OF THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
(PASSED DOWN DIRECTLY FROM CHAREC, NOT SET SPECIFICALLY IN REC)*
C(R13) = NO. OF STRCKES - 1

INTERNAL REGISTERS R8, R9, R11, R12, R15

**USING XR6, R6
EXO EQU 0
REGS
C6 DSECT
XR6 DS OF
XYEP EQU X'40'
DS 3F
CS 26H
XYE DS 10C
DS 10C
DS 3F
DS 1H
DS 2C
DS 3H
DS 1C
CHAR DS 1C
MWT BOX
SR R15,R15
SR R9,R9 J
SR R11,R11 K
LA R12,1
MW1N SLL R15,1
LA R8,0(R6,R15)
TR XYEP+1(1,R8),GGE
LH R8,XYE(R15)
EX O,GGE(R8)
MW1G LA R9,1(C,R9) J=J+1
BC 15,MW11
MW13G LA R11,1(C,R11)
MW1I SRL R15,1
BXLE R15,R12,MW1IN
CR R9,R12
BC 6,MWW
CR R11,R12 J=1
BC 6,MWW K NOT 1
MWM EQU *
MVI CHAR,C'M'
BC 15,BEXIT4
MWW EQU *
MVI CHAR,C'W'
BEXIT4 BEXIT EXO
GGE DS 0H
DC 8X'04'
CC X'08'
DC 2X'04'
CC X'00'
DC X'08'
CC X'04'
CC X'04'
CC X'00'
GGGE DS 0F
BC 15,MW11Q
BC 15,MW11
BC 15,MW13Q
END
PTEST

*FUNCTION
*
*Distinguishes among comma, apostrophe, and normal size characters.
NORMAL SIZE IF ITS HEIGHT IS GREATER THAN 3/8 OF THE NORMALLY EXPECTED
CHARACTER HEIGHT (*CHAREC* SETS DYM = 3/2 NORM CHAR HEIGHT). COMMA IF
TOP OF CHARACTER IS IN THE LOWER 5/8 OF A CHARACTER SPACE, OTHERWISE
APOSTROPHE. IF COMMA, CHARACTER CENTER IS SHIFTED UPWARD BY
(NORMAL CHARACTER HEIGHT/4) RASTERS.
*
*CALL
*RCS PTESTA, ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R8, R9, R15
*
*USING XR6, R6
EXO EQU 0
REGS
C6 DSECT
XR6 DS 0F
DS 3F
DS 17H
DVC DS 1H
DS 2H
YTC DS 1H
DS 5H
DS 20C
WIDTH DS 1H
HEIGHT DS 1H
DS 2F
DS 1H
DS 2C
DS 3H
DS 1C
CHAR DS 1C
DS 54C
DS 14H
DYM DS 1H
CS 6H
CENT CS 1F
PSTEST BCX

LH R15,DYM
SRL R15,2 1/4 MAX DY
CH R15,DYC
BC 4,PTX
LH R9,YTC
SRL R9,2 YTC IN RASTERS
LH R15,HEIGHT
SRL R15,2 HEIGHT IN RASTERS
SR R8,R8
DR R8,R15 R8=REM(YTC/HEIGHT)
SRL R15,1 1/2 HEIGHT
LR R9,R15
SRL R9,2 1/8 HEIGHT
AR R15,R9 5/8 HEIGHT
CR R8,R15
BC 2,PTA

*REM(YTC/HEIGHT) LSS, EQ 5/8 HEIGHT
MVI CHAR,X'EB'

*SHIFT CENTER OF COMMA UP BY HEIGHT/4 RASTERS
L R8,CENT
LH R15,HEIGHT
SRL R15,2
AR R8,R15
ST R8,CENT
BC 15,PTX

*REM(YTC/HEIGHT) GTR 5/8 HEIGHT
PTA MVI CHAR,X'FD'
PTX BEXIT EXO
END

SYMT

*FUNCTION
*
*RECOGNIZES GEOMETRIC SYMBOLS BASED FIRSTLY ON THE NO. OF TIMES EACH
*16-DIRECTION (THE SAME AS THE DIRECTIONS IN THE INK TRACK) OCCURS,
*THEN ON NO. OF TIME-CORNERS, THE 4-DIRECTION SEQUENCE, SEPARATION BET-
*WEEN STARTING AND ENDING POINTS, AND ASPECT RATIO.
*
*
*CALL
*
RCS SYMTA,ENOCCHAR,ECHAR
*EXIT NOCHAR WHEN THE SYMBOL IS NOT ONE OF THE GEOMETRIC SYMBOLS
*EXIT CHAR WHEN A GEOMETRIC SYMBOL IS RECOGNIZED
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7-R13, R15
*
* USING XR6, R6
EXO EQU 0
EX4 EQU 4
REGS
D6 DSECT
XR6 CS 0F
CS 2F
CCDE CS 1F
CS 10H
N CS 1H
CS 5H
DXC CS 1H
DYC CS 1H
CS 8H
CS 20C
CS 3F
CS 1H
CS 2C
NCUSP CS 1H
CS 2H
CS 1C
CHAR CS 1C
CS 6C
XSP CS 10C
YSP CS 10C
XEP CS 10C
YEP CS 10C
CS 8C
CS 21H
CS 1F
CS 6C
CS 1H
CS 1F
CS 20C
D0 CS 1H
D1 CS 1H
CS 2H
D4 CS 1H
CS 2H
D7 CS 1H
D8 CS 1H
C9 CS 1H
CS 2H
D12 CS 1H
CS 2H
D15 CS 1H
CN CS 1H
NTCUSP CS 1H
SYMT BOX
SR R8,R8
LH R9,DN
LA R15,5
CR R8,R15
LR R12,R9
LH R13,DN
LR R15,R13
SRL R15,2
SR R13,R15
*C(R12) = 0.2(NO. OF DIRECTION OCCURANCES)
*C(R13) = 0.75(NO. OF DIRECTION OCCURANCES)
*IS NO. OF HORIZ GTR 0.2 ON?
LH R7,DO
AH R7,D8
CR R7,R12
BC 2,BOXTRI YES
*NO, IS NO. OF HORIZ IN 1 DIRECTION GTR
*1/8 ON?
LH R8,DN
SRL R8,3
*NEARLY RIGHT-DIRECTION
LH R7,D15
CR R7,R8
BC 2,RIGHT
LA R10,2
SR R9,R9
LA R11,2
NEARR LH R7,DO(R9)
CR R7,R8
BC 2,RIGHT
BXLE R9,R10,NEARR
LA R11,18
CR R9,R11
BC 10,NOTSQ
*NEARLY LEFT-DIRECTION
LA R9,14
B NEARR
*NO
*IS NO. OF 4 MAIN DIRECTIONS LESS THAN 1/8 ON?
NOTSQ LH R7,DG
AH R7,D8
AH R7,D4
AH R7,D12
LH R9,DN
SRL R9,3
CR R7,R9
BC 4,PBOXX YES
*NO, IS IT GTR 0.2 DN?
CR R7,R12
BC 2,ROUNC YES
LA R10,256
BC 15,ROUN

*IS NO. OF 4 MAIN DIRECTIONS AT LEAST
*3/4 DN ?
BOXTRI AH R7,D4
AH R7,D12
CR R7,R13
BC 10,PBOXX YES
*NO, IS NC. OF VERTS GTR 1/4 DN?
LH R9,DN
SRL R9,2
LH R7,D4
AH R7,D12
CR R7,R9
BC 2,PBOXX

*NO
*IS NO. IN 1 HORIZONTAL DIRECTION
*PLUS 2 OTHER DIRECTIONS AT LEAST 3/4 DN?
*FIRST FIND HORIZ. DIRECTION
LH R7,DC
CR R7,R13
BC 10,RIGHT
LH R7,D8
CR R7,R12
BC 4,ROUN
*R7 HAS NC. OF RIGHTS OR LEFTS
*FIND D OWNWARD DIRECTION
RIGHT LA R9,20
LA R10,2
LA R11,30
DOWN LH R8,DO(R9)
AH R8,DO-2(R9)
CR R8,R12
BC 10,DOWNX
BXLE R9,R1C,DOWN
*NO SUC H OWNWARD DIRECTION
BC 15,ROUN
*R9 CON TAINS OWNWARD DIRECTION CODE
*R8 CON TAINS NC. OF DOWNWARDS
*FIND U UPWARD DIRECTION DIRECTION
DOWNX AR R7,R8
LA R15,24
CR R9,R15
BC 2,DGTR12
BC 4, DLSS12
*DOWNWARD DIRECTION IS 12
*UP DIR ECTION MUST BE 3, 4, OR 5
LA R9, 6
LA R11, 10
BC 15, UP
*COWN D IR. IS 10 OR 11
**UP DI R. MUST BE 4, 5, OR 6
CLSS12 LA R9, 8
LA R11, 12
BC 15, UP
*COWN D IR. IS 13 OR 14
*UP DIRE TION MUST BE 2, 3, OR 4
DGTR12 LA R9, 4
LA R11, 8
*FIND UP DIRECTION
UP LH R8, D0(R9)
AH R8, D0+2(R9)
CR R8, R12
BC 10, UPX
BXLE R9, R10, UP
*NO SUCK UPWARD DIRECTION
BC 15, ROUNC
*R7 CONTAINS NO, OF HORIZ. ? DOWNS
*R8 CONTAINS NO, OF UPWARDS
*IS TOTAL HORIZ, UPS, AND DOWNS
*GREATER THAN 3/4 DN?
UPX AR R7, R8
CR R7, R13
BC 12, NOTSQ
*TRIANGLE, TRAPAZOID, OR ELLIPSE
*TRIANGLE IF HORIZ NOT GTR 0.375 DN
LH R7, 00
AH R7, 08
LR R15, R13
SRL R15, 1
CR R7, R15
BC 12, TRIX
*CHECK TIME CORNERS FOR TRAP
CLI NTCUSP+1, X'02'
BC 2, TRAPXX
B ELPSX
*SYMBOL NOT BOX OR TRIANGLE
*TEST FOR CIRCLE OR ELLIPSE
*CR TRAPAZOID
*4-ANGL E SEQUENCE MUST BE
*0-3-2- 1 OR 2-3-0-1
ROUND CLI CODE, X'B1'
BC 8, OKSYM
CLI CODE, X'39'
BC 8, OKSYM
*3-2-1- C
CLI CODE,X'E4'
BC 8,CKSYM
*2-1-0- 3
CLI CODE,X'93'
BC 8,OKSYM
*1-0-3- 2
CLI CODE,X'4E'
BC 8,OKSYM
*3-0-1- 2
CLI CODE,X'C6'
BC 8,OKSYM
*0-1-2- 3
CLI CODE,X'1B'
BC 8,OKSYM
*1-2-3- 0
CLI CODE,X'6C'
BC 8,OKSYM
*IS THIS A POTENTIAL PBOX?
LA R9,256
CR R9,R10
BC 8,PBOX
*TEST FOR NARROW TRAPEZOID
*NO MORE THAN 4 ANGLES
*MOSTLY HORIZONTAL
*CLOSE ENDPOINTS
CLI N+1,X'C4'
BC 2,NOSYM
LH R7,D0
AH R7,D1
AH R7,D15
AH R7,D8
AH R7,D9
LH R9,DN
SRL R9,1
CR R7,R9
BC 4,NOSYM
CLI NTCUSP+1,X'G2'
BC 12,XELPS
LA R10,128
BC 15,PBX
*DECIDE IF ELLIPSE
*ARE ENDPOINTS SEPARATED VERTICALLY
XELPS LH R7,YSP
SH R7,YEP
LPR R7,R7
SLL R7,1
CH R7,DYC
BC 4,ELPS
NOSYM BEXIT EXO
DECIDE BETWEEN CIRCLE AND ELLIPSE

AND TRAPEZOIDIC

CKSYM

CLI NTCUSP+1,X*02*
BC 2,TRAPXX
LH R7,DYC
SLL R7,1
CH R7,DXC
BC 2,CIRCX

ELPSX

EQU *
MVI CHAR,X*76*
BC 15,BEXIT7

BCXX

EQU *
MVI CHAR,X*73*
BC 15,BEXIT7

CIRCX

EQU *
MVI CHAR,X*74*
BC 15,BEXIT7

TRIX

EQU *
MVI CHAR,X*75*
BC 15,BEXIT7

TRAPXX

EQU *
MVI CHAR,X*78*
BC 15,BEXIT7

TEST FOR CLOSENESS OF ENOPTS

PBCXX

LH R7,XSP
SH R7,XEP
LPR R7,R7
SLL R7,1
CH R7,DXC
BC 2,NOSYMXX
LH R7,YSP
SH R7,YEP
LPR R7,R7
SLL R7,1
CH R7,DYC
BC 2,NOSYMXX
LA R9,128
CR R9,R10
BC 8,TRAPXX

XXPBOX

EQU *
MVI CHAR,X*77*

BEXIT7

BEXIT EX4

ENC
TILDT

*FUNCTION
*RECOGNIZES TILDA BASED ON CHAR. HEIGHT, ASPECT RATIO, AND FIRST FOUR
*DIRECTIONS.
*ALTHOUGH THIS ROUTINE ENCORPORATES ALL THE CODE FOR RECOGNITION, IT
*PRESENTLY ALWAYS TAKES THE NOT TILDA EXIT.
*
*
*CALL
*RCS TILDTA,ENOTTIL,ETIL
*EXIT NOTTIL WHEN THE CHARACTER IS NOT A TILDA
*EXIT TIL WHEN THE CHARACTER IS A TILDA
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTER. R7
*
*
USING XR6,R6
EX0 EQU 0
EX4 EQU 4
REGS
C6 DSECT
XR6 DS 0F
DS 2F
CDE DS 1F
DS 17H
CYC DS 1H
DS 4H
ASPR DS 1H
DS 3H
DS 20C
DS 3F
DS 1H
DS 2C
DS 3H
P DS 1C
CHAR DS 1C
DS 54C
DS 14H
CYM DS 1H
TILCT BOX
LH R7,DYM
SRL R7,2 1/4 DYM
CH R7,DYC
BC 4,NOTTIL
*CYC LE SS THAN 1/4 CYM
CLI ASPR+1,X'02'
BC 2, NOTIL
CLI ASPR+1, X'01'
BC 4, NOTIL

* ASPEC
T RATIO IS BETWEEN 1/2 AND 1/4

* TEST FOR ALLOWABLE SEQUENCES

0-0-0- 0
CLI CODE, X'C0'
BC 8, TIL

0-3-0- 0
CLI CODE, X'30'
BC 8, TIL

0-3-0- 1
CLI CODE, X'31'
BC 8, TIL

1-0-0- 0
CLI CODE, X'40'
BC 8, TIL

1-0-1- 1
CLI CODE, X'45'
BC 8, TIL

1-0-3- 0
CLI CODE, X'4C'
BC 8, TIL

1-0-3- 1
CLI CODE, X'40'
BC 8, TIL

1-3-0- 0
CLI CODE, X'70'
BC 8, TIL

1-3-0- 1
CLI CODE, X'71'
BC 8, TIL

1-3-1- 1
CLI CODE, X'75'
BC 8, TIL

NCTIL BEXIT EX0

* TEMPORARILY KILL TILDA
TIL BC 15, NOTIL
MVI P, X'02'

TILX EQU *
MVI CHAR, X'D0'
BEXIT EX4
END
TPXY

*FUNCTION
*
*DISTINGUISHES AMONG 2-STROKE (1 VERT, 1 HORIZ) T, X, Y, AND PLUS BASED
*ON THE POSITIONS OF STARTING AND ENDING POINTS
*
*
*CALL
* RCS TPXYA,ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7-R9, R12, R13, R15
*
*
USING XR6,R6
EX0 EQU 0
REGS
C6 DSECT
XR6 DS 0F
DS 3F
DS 26H
XYE DS 10C
DS 10C
DS 3F
DS 1H
DS 2C
DS 3H
P DS 1C
CHAR DS 1C
XYEP EQU X'40'
XYSP EQU X'4A'
TPXY BOX

*IS SECOND STROKE HORIZONTAL?
CLI P,X'02'
BC 8,YE
LA R9,2(R6) VERT REF
B GO
YE
LA R9,0(R6) VERT REF
GO EQU *
SR R15,R15
SR R12,R12
LA R13,2
TPLUS1 LA R7,0(R6,R15)
LH R8,XYEP(R7)
STH R8,XYE+4
TR XYE+5(1),TTE
LH R8,XYE+4
EX 0,TTTE(R8)
TPLUS4 TM XYSP+1(R7),X*CC*
BC 8,TPLUS1 YS GTR 3/4 DELTA Y
BC 1,TPLUS2 YS LESS 1/4 DELTA Y

*START IN MIDDLE Y
TM XYSP+1(R7),X*08*
BC 1,TPLUS5
TM XYEP+1(R7),X*CC*
BC 9,TPLUS2
BC 4,TTPXY

*START IN LOWER MID Y
TPLUS5 TM XYEP+1(R7),X*CC*
BC 1,TPLUS2
BC 12,TTPXY

*START AT TCP
TPLUS1 TM XYEP+1(R7),X*CC*
BC 8,TTPXY
BC 4,TPLUS3

*END AT BOTTOM
TM XYEP+1(R7),X*03*
BC 1,TPLUSX LEFT
BC 8,TTPXY RIGHT
BC 4,TPLUS2 MIDDLE

*START AT TCP, END IN MIDDLE Y
*IS END IN RIGHT MID Y?

TPLUS3 TM XYEP+1(R7),X*03*
BC 5,TPLUS2

*YES
TM XYEP+1(R7),X*08*
BC 1,TTPXY
CR R12,R13
BC 8,YTPXY
BC 6,TPLUS2

TPLUSX LR R12,R13
TPLUS2 BXLE R15,R13,TPLUS1
CR R12,R13
BC 8,TTPXY

TTPXY EQU *

*IS VERT START IN UPPER LEFT
CLI XYSP+1(R9),X*CO*
BC 8,YTPXY
MVI CHAR,C*T*
BC 15,BEXIT3

PTPXY EQU *

*IS VERT START IN UPPER LEFT
CLI XYSP+1(R9),X*CO*
BC 8,YTPXY
MVI CHAR,X*CE*
BC 15,BEXIT3

XTPXY EQU *
MVI CHAR,C*X*
"VERTST"

FUNCTION

DETERMINES THE SET OF STROKE TYPES WHEN THE MOST RECENT STROKE IS A VERTICAL. BASED ON 'P' AND THE NO. OF STROKES

CALL

RCS VERTSTA, EV1, EV2, EV1H1, EVINOT

EXIT V1 WHEN THERE IS ONLY ONE VERTICAL STROKE (THE MOST RECENT)

EXIT V2 WHEN THERE ARE 2 VERTICAL STROKES

EXIT V1H1 WHEN THERE IS 1 VERT STROKE AND 1 HORIZ STROKE

EXIT VINOT WHEN THERE IS 1 VERT STROKE AND THE PREVIOUS SUBCHARACTER IS NEITHER VERT OR HORIZ

INPUT REGISTER. R6

INTERNAL REGISTERS. NONE
USING XR6, R6

EX0 EQU 0
EX12 EQU 12
EX4 EQU 4
EX8 EQU 8

REGS

D6 DSECT
XR6 CS 0F
CS 3F
CS 11H
SN CS 1H
CS 14H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H
P CS 1C

VERTST BOX
CLI P, X'02'
BC 8, EQ2
BC 2, GTR2

LSS2 CLI P, X'01'
BC 8, EQ1

LSS1 CLI SN+1, X'01'
BC 2, GTR2
MVI P, X'01'
BEXIT EX0

EQ1 MVI P, X'00'
BEXIT EX4

EQ2 MVI P, X'00'
BEXIT EX8

GTR2 MVI P, X'01'
BEXIT EX12

END
APPENDIX

THE OS/360 OPERATING SYSTEM--2250 DISPLAY RECOGNITION PROGRAM

In order to modify the GRAIL recognition program for operation under OS/360 and in conjunction with a 2250 display, only CHAREC and the macros need be changed:

The following changes must be made for the program to operate under OS/360:

1) Either the GRAIL macros (see MACROS below) must be modified so that they do not require the SVC (supervisor call) command, or the GRAIL SVC's must be built into OS/360. The GRAIL SVC's are used to initiate and terminate processes, synchronize parallel processes, go to the wait state, etc., and may be replaced by the equivalent code. The macros must be added to the macro library.

2) CHAREC must be modified to await the asynchronous event of either a pendown or the expiration of the real-time interval timer. This is done by first issuing a STIMER OS/360 macro and then a WAIT OS/360 macro for the Tablet pen. If the timer expires, the ECB (Event Control Block) for the WAIT is posted with a special code and control is returned to the system. When control is returned from the WAIT, the special code is checked to see if it was posted by the timer; if not, the timer is cancelled and the pendown is processed.

The following changes must be made for the program to operate in conjunction with a 2250 display:

1) CHAREC must be modified to do its inking on the 2250. This involves formatting the x,y coordinates and writing them into the 2250 buffer. The method of erasing the ink track must similarly be modified...
2) The character codes (see CRT Display Character Codes below) must be converted to EBCDIC (Extended Binary-Coded-Decimal Interchange Code). This may be done either in CHAREC prior to outputting a code, or externally to the recognition program.

CRT DISPLAY CHARACTER CODES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C1</td>
<td>+</td>
<td>□</td>
</tr>
<tr>
<td>B</td>
<td>C2</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>C3</td>
<td>=</td>
<td>▼</td>
</tr>
<tr>
<td>D</td>
<td>C4</td>
<td>/</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>C5</td>
<td>(</td>
<td>●</td>
</tr>
<tr>
<td>F</td>
<td>C6</td>
<td>)</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>C7</td>
<td>*</td>
<td>◆</td>
</tr>
<tr>
<td>H</td>
<td>C8</td>
<td>$</td>
<td>△</td>
</tr>
<tr>
<td>I</td>
<td>C9</td>
<td>.</td>
<td>△</td>
</tr>
<tr>
<td>J</td>
<td>D1</td>
<td>;</td>
<td>△</td>
</tr>
<tr>
<td>K</td>
<td>D2</td>
<td>#</td>
<td>△</td>
</tr>
<tr>
<td>L</td>
<td>D3</td>
<td>[</td>
<td>△</td>
</tr>
<tr>
<td>M</td>
<td>D4</td>
<td>]</td>
<td>△</td>
</tr>
<tr>
<td>N</td>
<td>D5</td>
<td><</td>
<td>△</td>
</tr>
<tr>
<td>O</td>
<td>D6</td>
<td>></td>
<td>△</td>
</tr>
<tr>
<td>P</td>
<td>D7</td>
<td>~</td>
<td>△</td>
</tr>
<tr>
<td>Q</td>
<td>D8</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>R</td>
<td>D9</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>S</td>
<td>E2</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>T</td>
<td>E3</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>U</td>
<td>E4</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>V</td>
<td>E5</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>W</td>
<td>E6</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>X</td>
<td>E7</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>Y</td>
<td>E8</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>Z</td>
<td>E9</td>
<td></td>
<td>△</td>
</tr>
</tbody>
</table>

Numbers Hex Number Code

- 0 F0
- 1 F1
- 2 F2
- 3 F3
- 4 F4
- 5 F5
- 6 F6
- 7 F7
- 8 F8
- 9 F9

Special Hex Symbol Code

- Erasure 72
- Cannot Interpret
REGISTER ASSIGNMENT

Registers are referred to as RO, R1, ..., R15, rather than as 0, 1, ..., 15. The equivalence is made by the macro REGS (see MACROS below).

R1 through R5 have special system assignments:

R1 is the contextual base-register.
R2 is the read-only code base-register.
R3 is the data base-register for data defined within a given context.
R4 is an address argument register, and is used in process calls.
R5 is used in macro and process calls, and as the address argument register for SS instructions with two formal parameters.
R6 has a special assignment in REC and the RCS's—it is locally loaded by REC to reference DSECT type label descriptions of CHAREC's data.

PROCESSES

CHAR

CHAR is an interface process between a Tablet input device and the recognition program on one side, and an application program on the other. It allows its parent process (the application program) to interact with the Tablet by providing a convenient level of control. In addition to providing CHAREC outputs (see CHAREC outputs below), CHAR provides the raw Tablet data to the user. CHAR is a read-only reentrant process that uses two other read-only processes--CHAREC (see p. 20), a reentrant process, and TABLET, a serially re-usable process (i.e., each use must wait for the hardware device to be free), which communicates with the Tablet.
CHAR allows the following user controls:

Permit/inhibit inking (stylus tracking) by CHAREC.
Permit/inhibit character recognition.
Permit/inhibit halting CHAREC.
Permit/inhibit providing raw data to either
 CHAREC, or the user.
Specify ink vector length.

CHAR has the following parallel task exits:

Match (coincidence of the virtual tablet stylus
 and displayed data) detected--similar to a
 light pen strike.
Keyboard character detected (for optional key-
 board device).
Penup detected.
Raw data buffer filled.
Character recognized.
Character not recognized.

CHAR has the following terminal exits:

Normal termination exit.
Error exit (channel multiplex or device error).

CLOCK

Function. This process acts as a real-time clock
that is turned off (takes the terminal turned-off exit) by
CHAREC as a result of a pendown, or sets an alarm (takes
the expired parallel task exit) if the 360 real-time clock
runs longer than a prespecified time before a pendown occurs.

Call.

INST ACLK,CLKA,FWAITBX,ITIME,EEXP,ETOFF
ACLK is a linkage between CHAREC's context and CLOCK's context.
CLKA is a link to CLOCK.
WAITBX is CHAREC's PSG.
TIME is the time at which CLOCK takes the expired exit.
Exit EXP is the expired (parallel) exit.
Exit TOFF is the turned-off (terminal) exit.

MACROS

BEXIT

*FUNCTION
*
*RETURN FROM A REMOTE CODE SEQUENCE
*
*
*MACRO DEFINITION
*

MACRO
&LABEL BEXIT &EXIT
&LABEL L R2,4(R1)
EX C,&EXIT.(R5)
MEND

BOX

*FUNCTION
*
*INITIATES A REMOTE CODE SEQUENCE
*
*
*MACRO DEFINITION
*

MACRO
&LABEL BCX
&LABEL CSECT
USING *,R2
MEND
*
CLEAR

*FUNCTION
*PARALLEL PROCESS SYNCHRONIZER. NULLIFIES THE ADVENT OF 'WATE' AND CR
*SET
*
*MACRO DEFINITION
*
MACRO
&LABEL CLEAR &CNTX=I,&PSG=0
AIF (*&CNTX' EQ 'I').A
&LABEL L R5,&PSG
TM 0(R5),X'01'
BC 8,**6
SVC CRW
 NI 0(R5),X'7E'
 MEXIT
 ANCP
A
&LABEL LA R5,&PSG
TM 0(R5),X'01'
BC 8,**6
SVC CRW
 NI 0(R5),X'7E'
 MEND

EPLOG (Epilogue)

*FUNCTION
*TERMINATES A PROCESS
*
*MACRO DEFINITION
*
MACRO
&LABEL EPLCG &EXIT,&STATE,&PSW,&ENTER
&LABEL LA R5,&EXIT
```assembly
AIF ('&STATE' EQ 'S').B
SVC RETURN
MEXIT
.A
ANOP
LA R6,&PSW
LA R7,&ENTER
SVC RETSUP
MEND

INST (Instance)

*FUNCTION
*
*GENERATES THE CALLING SEQUENCE FOR A RE-ENTRANT PROCESS
*
*
*MACRO DEFINITION
*
MACRO
&LABEL INST &CNTX,&LOCN,&A1,&A2,&A3,&A4,&A5,&A6,&A7,&A8,&A9,&A10X
, &A11, &A12, &A13, &A14, &A15, &A16, &A17, &A18, &A19, &A20, &A21, X
A33, &A34, &A35, &A36, &A37, &A38, &A39, &A40, &A41, &A42, &A43, &AX
A44, &A45, &A46
LCLA &AL1, &AL2, &AL3, &AL4
LCLC &CG1, &CG2, &CG3
&LABEL LA R4,&CNTX
LA R5,&LOCN
SVC FORMAL
&CG3 SETC '.
&AL1 SETA 2
&AL2 SETA 6
&AL3 SETA 1
.* A
ANCP
&AL1 SETA &AL1+1
&AL2 SETA &AL2+1
&CG1 SETC '&SYSLIST(&AL1)*(1,1)
&CG2 SETC '&SYSLIST(&AL1)&CG3*(2,8)
AIF ('&CG1' NE 'E').E
&AL3 SETA 0
AIF (&AL1 GT 3).G
.* F
ANCP
&AL4 SETA &AL1-3
&AL4 SETA &AL4*4
```
PARL (Parallel)

*FUNCTION

*INITIATES A PARALLEL PROCESS. THIS PROCESS FIRST TAKES THE HIGH PRIORITIES EXIT. WHEN THE HIGH PRIORITY TASK IS COMPLETED OR SUSPENDED, THIS PROCESS TAKES THE LOW PRIORITY EXIT.

*MACRO DEFINITION
MACRO
&LABEL PARL &CNTX=I,&LOW=O,&HIGH=O,&STATE=O,&PSW=O
AIF (*&CNTX' EQ '*F') A
&LABEL SVC PARIN
B &LOW
B &HIGH
MEXIT
* A
&LABEL SVC PARLEL
B &LOW
LH R5,10(R2)
BCT R5,**4
SLL R5,2
L R5,0(R5,R1)
AIF (*&STATE* NE '*O*') B
L R1,0(R1)
LM R2,3,4(R1)
EX C,&HIGH,(R5)
MEXIT
* B
LA R5,&HIGH,(R5)
ST R5,&PSW+4
LA R5,&PSW
L R1,0(R1)
LM R2,3,4(R1)
LPSW C(R5)
MEND

PAWS (Pause)

*FUNCTION
*
*TERMINATES A FLOW OF CONTROL. RESULTS IN INITIATING THE NEXT TASK ON
*THE SUPERVISOR TASK LIST, WHICH, IF THE ONLY TASK, WILL BE THE WAIT
*STATE WITH TRAPS ENABLED.
* *
* *
*MACRO DEFINITION
* &LABEL MACRO PAWS &LABEL SVC PAUSE
MEND
PROC (Process)

*FUNCTION
*
*SETS UP THE PROCESS ENTRY POINT, ITS IDENTIFICATION NUMBER, AND ITS
*STORAGE REQUIREMENTS
*
*
*MACRO DEFINITION
*

MACRO

&LABEL PRCCS &CLEAR=3, &CNTX=3, &AUTO=0, &ID=80000000, &PRCLG=0
&LABEL CSECT

USING *, R2

LM R2, R3, 4(R4)

B &PRCLG

CC H'&CLEAR'

DC H'&CNTX'

DC H'&AUTO'

DC X'&ID'

MEND

PROLG (Prologue)

*FUNCTION
*
*INITIATES A PROCESS--PRECONDITIONS CERTAIN VALUES
*
*
*MACRO DEFINITION
*

MACRO

&LABEL PRCLG &AUTO=Yes, &STATE=0, &PSG=0, &LINK=0

AIF ('&AUTO' EQ 'C').A
&LABEL CS OH

LR R1, R4

AIF ('&STATE' EQ 'O').B

LA R4, &PSG

LA R5, &LINK
RCS (Remote Code Sequence)

*FUNCTION
*
*GENERATES THE CALLING SEQUENCE FOR A REMOTE CODE SEQUENCE—A PROCESS
*WITH ONLY REGISTER I/O WHICH OPERATES IN THE ENVIRONMENT OF THE PARENT
*(CALLING) CONTEXT
*
*
*MACRO DEFINITION
*

MACRO
&NAME RCS &LABEL,&A6,&A7,&A8,&A9,&A10,&A11,&A12,&A13,&A14,&A15X
,&A0,&E1,&E2,&E3,&E4,&E5,&E6,&E7,&E8,&E9,&E10,&E11,&E12
LCLA &AL1,&AL2,&AL3
LCLC &CG1,&CG2,&CG3
&NAME DS OH
&AL1 SETA 1
&AL3 SETA 0
&CG3 SETC *
0 ANCP
&AL1 SETA &AL1+1
&AL2 SETA &AL1+4
&AL3 SETA &AL3+1
AIF ('ESYSLIST(&AL1)' EQ '*').A
&CG1 SETC 'ESYSLIST(&AL1)'(1,1)
&CG2 SETC 'ESYSLIST(&AL1)'.&CG3'(2,8)
AIF ('&CG1' EQ 'E').C
AIF ('&CG1' EQ 'I').B
L R&AL2,&CG2
AGCB .D
&8 LA R&AL2,&CG2
AGCB .D
.A AIF (&AL3 EQ 15).C
AGCB .D
.C L R2, GLABEL
BALR R5, R2
.Y B &CG2
&AL1 SETA &AL1+1
AIF ('SYSLIST(&AL1)' EQ '').W
&CG2 SETC 'SYSLIST(&AL1).&CG3'(2, 8)
AGCB .Y
.W ANOP MEND

REGS (Registers)

*FUNCTION *
* GENERATES THE CODE REG EQU 0, R1 EQU 1, ..., R15 EQU 15
* THE SYMBOLIC FORM IS USED BY THE OTHER MACROS *
*
* MACRO DEFINITION *
* MACRO *
&NAME REGS
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
MEND
SET

*FUNCTION
*
*PARALLEL PROCESS SYNCHRONIZER—DENOTES AN EVENT HAS OCCURRED
*RESULTS IN SUPERVISOR STACKING A 'WAIT'ED TASK ON THE SUPERVISOR TASK
*LIST IF IN THE WAIT STATE
*
*
*MACRO DEFINITION
*
*
MACRO

&LABEL SET &CNTX=1, &PSG=0
AIF (*.GCNTX* EQ 'I'). B
&LABEL L R5, &PSG
AGC A
B ANCP
&LABEL LA R5, &PSG
.A TM 0(R5), X*01
B0 GS&SYS&NDX
O1 0(R5), X*80
B GS&SYS&NDX+2
GS&SYS&NDX SVC STACK
MEND

SVCS

*FUNCTION
*
*DEFINES PARAMETERS FOR MACROS
*
*
*MACRO DEFINITION
*
*
MACRO

&NAME SVCS
STACK EQU 5
WAIT EQU 6
CUPIC EQU 7
FORMAL EQU 8
AUTO EQU 9
CRW EQU 20
RETURN EQU 15
PARIN EQU 21
PARLEL EQU 16
PAUSE EQU 17
MEND
FUNCTION

PERFORMS SEQUENCES OF TESTS ON ENCODED 1-BYTE FEATURES

MACRO DEFINITION

```plaintext
MACRC
 &A14, &A15, &A16, &A17, &A18, &A19, &A20, &A21, &A22, &A23, &A24, &X
 7, &A48, &A49
LCLA &AL1, &AL2
LCLC &CG1, &CG2, &CG3, &CG4, &CG5
AIF ('&LABEL' EQ '').O
&LABEL EQU *
.C ANOP
&AL1 SETA O
.A ANOP
&AL1 SETA &AL1+1
AIF ('&SYSLIST(&AL1)' NE '').B
MEXIT ANOP
.B &CG1 SETC '&SYSLIST(&AL1)'*(1,1)
AIF ('&CG1 GT 'Z').C
&CG2 SETC '&AL1(''
&CG3 SETC '')'
&CG4 SETC '&SYSLIST(&AL1)'*(2,2)
AIF ('&CG4 EQ 'EX').E
DC &CG2&CG4&CG3
&AL1 SETA &AL1+2
&CG2 SETC 'X***'
&CG3 SETC '*****'
&CG4 SETC '&SYSLIST(&AL1)'*(1,2)
DC &CG2&CG4&CG3
&AL1 SETA &AL1-1
&CG2 SETC '&AL1(''
```
-175-

&CG3 SETC ')
&CG4 SETC '*DATA'
DC &CG2&SYSLIST(&AL1)&CG4&CG3
&AL1 SETA &AL1+1
AGCB .A
.C ANOP
&AL2 SETA 4096&SYSLIST(&AL1)
&CG2 SETC '+'
&CG3 SETC '*BASE'
&CG4 SETC '*AL2('
&CG5 SETC '*)
&AL1 SETA &AL1+1
DC &CG4&AL2&CG2&SYSLIST(&AL1)&CG3&CG5
AGCB .A
.E ANOP
&CG5 SETC '*AL1('
&AL1 SETA &AL1+1
DC &CG2&CG4&CG3
DC &CG5&SYSLIST(&AL1)&CG3
&AL1 SETA &AL1+1
AGCB .A
MEND

WATE (Wait)

*FUNCTION
*WAITS FOR AN EVENT TO OCCUR, THEN FLOW OF CONTROL CONTINUES.
*IF AN EVENT HAS ALREADY OCCURRED (SEE 'SET'), THEN THE FLOW OF
*CONTROL CONTINUES UNINTERRUPTED
*
*
*MACRO DEFINITION
*
MACRO
&LABEL WATE &CNTX=I, &PSG=0
AIF ('&CNTX' EQ 'F') .A
&LABEL LA R5, &PSG
AGC .B
.A ANOP
&LABEL L R5, &PSG
.B TM O(R5), X*80'
BZ GW&SYSNDX
NI O(R5), X*7F'
B GW&SYSNDX+2

GW&SYSNDX SVC WAIT 'I
MEND

*
REFERENCES

