SCIENTIFIC INTERIM REPORT No. 6.

SMALL SHIELDED THERMOCOUPLE TOTAL TEMPERATURE PROBES

by

JOSEF ROM and YIGAL KRONZON

Technion - Israel Institute of Technology
Department of Aeronautical Engineering,
Haifa, Israel.

TAE REPORT No. 79.

The research reported in this document has been sponsored in part by the Aerospace Research Laboratories, under Contract F61052 67 C 0033, through the European Office of Aerospace Research (OAR) United States Air Force. This research is part of the Separated Flow Research Program, of the ARL, Thermomechanics Division.

This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

The design and the calibration of 2 mm and 3 mm O.D. shielded thermocouple total temperature probes are described.

The 3 mm O.D. probe recovery factor is 0.985 ± 0.005 and the 2 mm O.D. one is 0.975 ± 0.005 up to flow Mach number of 5.5. The probe response is only slightly dependent of Reynolds number. By positioning of the thermocouple junction at the vent holes position its output becomes sensitive to disturbances, such as shock waves in the flow. This characteristic of the probe can be useful in mapping of discontinuities in complicated flow fields.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
</tr>
<tr>
<td>2. THE 2 mm AND 3 mm O.D. SHIELDED THERMOCOUPLE PROBE DESIGN</td>
</tr>
<tr>
<td>3. THE SHIELDED THERMOCOUPLE PROBE'S CHARACTERISTICS</td>
</tr>
<tr>
<td>REFERENCES</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

M Mack number
r Recovery factor
Re Reynolds Number
T Static temperature
T_T Stagnation Temperature
T_TR Recovery Temperature
LIST OF FIGURES

Figure No.

1. The 2 mm O.D. shielded thermocouple probe.
2. Errors due to conduction and radiation losses as a function of heat transfer rate to the airstream.
3. Recovery factor as a function of Mach number for the 2 mm and 3 mm O.D. probes.
4. Recovery factor as a function of Reynolds number for the 2 mm and 3 mm O.D. probes.
5. Recovery factor dependence on the ratio of vent holes area to frontal hole area.
6. Typical response of the 2 mm O.D. probe to the flow structure in the supersonic wake behind a blunt base.
7. Sensitivity of the probe to flow disturbances as a function of thermocouple position in relation to the vent holes position.
I. INTRODUCTION

In principle the temperature inside a pitot tube, where the flow is brought to rest at equilibrium, should be the stagnation temperature, and could be measured by a temperature transducer placed inside the tube. The difficulty is that in practice equilibrium does not exist, since heat is lost by conduction, convection and by radiation from the transducer and the probe walls. Thus the transducer responds to a temperature T_r (recovery temperature) which is lower than the stagnation temperature. This recovery temperature depends on the probe configuration, conductivity and reflectivity of the probe walls, flow conditions about the probe walls, construction materials etc. It will be shown that such a probe, can be specially designed to respond to various disturbances in the flow field such as shock waves, shear or entropy discontinuities etc. In the present investigation total temperature probes are developed for studies of the flow field in the supersonic near wake. These probes should have recovery factor, r, close to unity which is also almost independent of Mach and Reynolds number variation. The probes must be of small dimensions so that a good resolution can be obtained with minimum disturbance to the wake flow. A successful total temperature-shielded thermocouple probe was designed and built at NRL by E. Winkeler (Ref. 1). This probe had good characteristics but its dimensions, 6 mm O.D., are large for most near wake measurements. In the present investigation probes of 3 mm and 2 mm O.D. were built and studied. It will be shown that those 2 mm and 3 mm O.D. probes have almost comparable characteristics to the 6 mm one of Ref. 1. The smaller probes can be made sensitive to flow discontinuities, so that these can be also used for flow field mapping (Ref. 2).
2. THE 2 MM AND 5 MM SHIELDED THERMOCOUPLE PROBE DESIGN

The drawing and a photograph of the 2 mm O.D. probe are shown in Figures 1a and 1b respectively. The dimensions of the probes are given in Table 1.

<table>
<thead>
<tr>
<th>Probe</th>
<th>D mm</th>
<th>d mm</th>
<th>x1 mm</th>
<th>x2 mm</th>
<th>Wire Hold Area</th>
<th>x4 mm</th>
<th>x5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td>2.0</td>
<td>1.3</td>
<td>3</td>
<td>4</td>
<td>0.60</td>
<td>9.3</td>
<td>10</td>
</tr>
<tr>
<td>3 mm</td>
<td>3.0</td>
<td>2.0</td>
<td>4</td>
<td>4</td>
<td>0.40</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

The glass shield is coated with shining platinum paint (Ivanovia paint type XX) baked at 760°C. The thermocouple is made of 33 gage iron-constant thermocouple wires packed in a stainless steel tube filled with insolated through a teflon plug. The thermocouple junction is obtained by spot welding in a mercury bath. The junction diameter is about 1.1 times larger than the wire diameters. The probe's head is glued by epoxy resin to the stainless steel probe holder. The stainless steel tube on which the probe head is mounted is bent, knee shape (see Fig. 1), so that the probe holder and support are kept outside the wake region.

3. THE SHIELDED THERMOCOUPLE PROBE'S CHARACTERISTICS

The recovery factor of the shielded thermocouple probe is defined as

\[r = \frac{T_f - T}{T - T_0} \]
where T_r - Recovery Temperature Inside the Probe

T_T - Stagnation Temperature

T - Static Temperature

The recovery factor is determined by the balance of the losses due to conduction and radiation and the rate of heat addition from the free stream to the probe. The losses can be evaluated approximately from the known properties of the probes' materials and rate of heating as shown in Fig. 2. It is seen that for moderate heat transfer rates to the probe external surfaces total temperature deficiencies of the order \[
\frac{(\Delta T)}{T} + \frac{(\Delta T)}{T} = 2\% \text{ to } 5\%
\]
can be expected. The recovery factor values depend in general on the Mach number and Reynolds number. For convenience in use particularly in non-uniform flow regions (such as in the wake region) it is desirable to have a probe with a calibrated recovery factor which will be insensitive to the variation of these flow parameters. The present probes were designed to minimize the effects of Reynolds number variation on the recovery factor and only a small effect of Mach and Reynolds numbers is detected. The measured recovery factors are 0.985 ± 0.005 and 0.975 ± 0.005 for the 3 mm O.D. and 2 mm O.D. probes respectively. The variation of the probes output is shown in Figs. 3 and 4 as a function of Mach number and Reynolds numbers. The recovery factor dependence on the ratio of the vent holes area and frontal hole area is shown in Fig. 5. It can be seen that vent holes area of 35% to 50% are desired for the 3 mm probe while 50% to 80% are needed for the 2 mm probe, while the 6 mm probe required only 20% open vent area (Ref. 1).
The response time of the probe is important for transient measurements and also for measurements of temperature distribution using a traversing mechanism. The time response constant t for the 3 mm probe is estimated to be about 0.77 sec, while for the 2 mm one, the value is about 0.7 sec. These response times are reasonable and enable recording of large number of temperature points during a traverse of few minutes during the wind tunnel test.

An additional feature of the shielded thermocouple probe is its sensitivity to disturbances in the flow. When the probe crosses a disturbance (such as a shock wave or a thin shear layer) its recovery factor changes abruptly by the severe changes in the heat transfer rates due to the disturbed flow configuration in and about the probe. This characteristic of the probe can be used for detection of disturbances in a flow field. It was found that the change in the recovery factor may be made positive (indicating "higher" temperature) or negative ("lower" temperature) or even neutral depending on the position of the thermocouple junction in relation to the vent holes position. The magnitude of the response of the probe to the disturbances is determined in the present investigation at the jump of the probe's response as it traverses the trailing shock and entropy layer at a fixed station in the wake of a wedge-flat plate model. A typical probe's response at this position is shown in Fig. 6. Probes with varying thermocouple junction position are tested at the same wake station and the probe sensitivity to the wake disturbances is measured. The results of this measurement for the 3 mm probe is shown in Fig. 7. It is seen that when the junction is positioned near the probe's entrance the probe's output is reduced as the probe crosses the disturbance while beyond about 1/3 distance towards the vent holes this output becomes neutral and then becomes positive as the thermocouple junction is moved towards
the vent holes. The maximum sensitivity is obtained when the junction is at the
vent hole position. Similar results are obtained also in the case of the 2mm O.D.
probe. The use of these probes for wake flow mapping is shown in Reference 2.

Further miniaturization of the probe design can be obtained by using new
technique for manufacturing such as by use of new tools for drilling holes in
glass etc. These miniature probes can be used for boundary layer studies and
can be useful as additional tools to the generally used hot wire techniques.
REFERENCES

FIG. 2 ESTIMATES OF TOTAL TEMPERATURE ERROR DUE TO CONDUCTION AND RADIATION LOSSES
FIG. 3 TOTAL TEMPERATURE PROBES RECOVERY FACTOR AS A FUNCTION OF FLOW MACH NUMBER
FIG 4 TOTAL TEMPERATURE PROBES RECOVERY FACTOR AS A FUNCTION OF REYNOLDS NUMBER
FIG. 5 RECOVERY FACTOR DEPENDENCE ON THE RATIO OF VENT HOLE AREA TO FRONTAL HOLE AREA
FIG. 6 RECOVERY TEMPERATURE PROFILES IN THE TURBULENT NEAR WAKE BEHIND A BLUNT TWO DIMENSIONAL BASE AT M = 2.25
SMALL SHIELDED THERMOCOUPLE TOTAL TEMPERATURE PROBES

DESCRIPTIVE NOTES (Type of report and inclusive dates)
Scientific Interim Report No. 6.

AUTHOR(S) (Last name, First name, Initial)
Rom Josef
Kronzon Yigal

REPORT DATE
December 1967

TOTAL NO. OF PAGES
16

NO. OF REFS
2

CONTRACT OR GRANT NO.
F 61052 67 C 0033

PROJECT NO.
7063

0.
61445014

O.
681307

ORIGINATOR'S REPORT NUMBER(S)
TAE REPORT No. 79.

OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

AVAILABILITY/LIMITATION NOTICES
This document has been approved for public release and sale; Its distribution is unlimited

SUPPLEMENTARY NOTES
TECH, OTHER
Aerospace Research Laboratories (ARL)
Wright-Patterson, AFP, Ohio, 45433.

ABSTRACT

The design and the calibration of 2 mm and 3 mm O.D. shielded thermocouple total temperature probes are described.

The 3 mm O.D. probe recovery factor is 0.985 ± 0.005 and the 2 mm O.D. one is 0.975 ± 0.005 up to flow Mach number of 3.5. The probe response is only slightly dependent of Reynolds number. By positioning of the thermocouple junction at the vent holes position its output becomes sensitive to disturbances, such as shock waves in the flow. This characteristic of the probe can be useful in mapping of discontinuities in complicated flow fields.
Small Shielded Thermocouple Probes

Total Temperature Probes

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHORS: Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

9a. & 9d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9b. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9c. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY, LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1) "Qualified requesters may obtain copies of this report from DDC."

 2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 3) "U.S. Government agencies may obtain copies of this report from DDC. Other qualified DDC users shall request through"

 4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.