THE PARAMETERS OF CROSS-VALIDATION

Paul Albin Herzberg

December, 1967

Project on Techniques for Investigation of Structure of Individual Differences in Psychological Phenomena
Ledyard R. Tucker, Principal Investigator

Department of Psychology
University of Illinois
Urbana, Illinois

Distribution of this document is unlimited.
THE PARAMETERS OF CROSS-VALIDATION

Paul Albin Herzberg

December, 1967

The research reported here served as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology in the Graduate College of the University of Illinois, 1967. Reproduction of this report has been supported by the Office of Naval Research under Contract US NAVY/ONR/67-A-0305-0003.

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.

Project on Techniques for Investigation of Structure of Individual Differences in Psychological Phenomena

Ledyard R Tucker, Principal Investigator

Department of Psychology
University of Illinois
Urbana, Illinois
The validation of predictor weights, derived in one sample, by computing the correlation of the weighted sum of the predictors with the criterion in new samples is called cross-validation. The technique applies to any method of calculating the predictor weights. In this study three prediction methods were compared by cross-validation—multiple regression on the predictors, on the principal components of the predictors, and on the principal predictors. Prediction from the principal predictors is only possible when there are several criterion variables.

In order to discover the parameters of the multivariate distribution which affect the choice of prediction method and the number of principal components or principal predictors to include in the regression, a large number of distributions were simulated on a computer and samples generated from these distributions. The population distributions varied in the following parameters: n, the number of predictors, m, the number of criteria, ρ^2, the squared multiple correlation in the case of one criterion or the average squared multiple correlation of m criteria when $m > 1$; and v^2, the average predictor variance related to the criteria.
A typical calculation consisted of the following steps: generation of a population distribution for a set of values of the parameters; generation of two samples of size n from this population; calculation, in one sample, of the predictor weights for one or more prediction methods; and validation of these weights in the second sample. A large number of populations were generated, varying in the values of the parameters.

In cross-validating one criterion variable, it was shown that the optimal number of principal components to include in the regression is a function of n, ρ^2, π^2, and N. For several criterion variables, the relative effectiveness of prediction from the principal components of the predictors and from the principal predictors depends on π^2 and on the order of dependence of the predictors on the principal predictors.

The simulation calculations were compared with calculations in real samples; a close correspondence between real and simulated data was found. This comparison and other calculations with the simulated distributions showed that the simulation was accurate.
I wish to thank the members of my advisory committee for their help and encouragement. I am indebted to my chairman, Prof. J. S. Jiggins, for his constant help and for providing me with the opportunity to study at the Oregon Research Institute, Eugene, in the summer of 1964.

My thesis originated in discussions with Prof. L. S. Goldberg that summer. I am very grateful to Prof. V. C. Becker for his sympathetic counsel throughout my graduate career and to Prof. L. R. Tucker whose ideas provided both the basis and the stimulation for my thesis.

My greatest debt is to my wife, Louise, whose courage in the last few years has sustained me in my work.

In this report references are made to Appendices I through I. These appendices have been deposited with the American Documentation Institute. Order Document No. 974 from ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D.C. 20540. Remit in advance $5.00 for photocopies or $2.25 for microfilm and make checks payable to: Chief, Photoduplication Service, Library of Congress.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Multiple Regression and Cross-Validation</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Estimates of Validity</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Improvement of Prediction</td>
<td>9</td>
</tr>
<tr>
<td>1.4. The Comparison of Prediction Methods</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>2.1. Notation</td>
<td>18</td>
</tr>
<tr>
<td>2.2. The General Model for Predictors and Criteria</td>
<td>19</td>
</tr>
<tr>
<td>2.3. Computer Generation of the Model</td>
<td>25</td>
</tr>
<tr>
<td>2.4. Computer Generation of Data Samples</td>
<td>31</td>
</tr>
<tr>
<td>2.5. Multiple Regression on the Predictors</td>
<td>33</td>
</tr>
<tr>
<td>2.6. Multiple Regression on the Principal Components</td>
<td>37</td>
</tr>
<tr>
<td>2.7. Multiple Regression on the Principal Predictors</td>
<td>37</td>
</tr>
<tr>
<td>2.8. Cross-Validities</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>3.1. Distribution of the Correlation Statistics when $\rho = 0$</td>
<td>43</td>
</tr>
<tr>
<td>3.2. Dependence of the Correlation Statistics on \mathbf{Lxx} when $\rho \neq 0$</td>
<td>52</td>
</tr>
<tr>
<td>3.3. Dependence of the Correlation Statistics on n, \mathbf{H}, and ρ</td>
<td>60</td>
</tr>
<tr>
<td>3.4. Prediction from the Principal Components</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
</tr>
<tr>
<td>4.1. Simulation Results</td>
<td>77</td>
</tr>
<tr>
<td>4.2. Study of Real Data</td>
<td>92</td>
</tr>
<tr>
<td>4.3. Simulation of Real Data</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>101</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>106</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1. Multiple Regression and Cross-Validation

A problem common to many areas of psychology is the prediction of a person's score on one variable from his scores on a number of other variables. The variable that is to be predicted is called the criterion and the other variables are called predictors. Many methods have been developed to combine predictor scores in order to optimize the prediction of the criterion. A common procedure is to obtain a sample of subjects with known predictor and criterion scores (the derivation sample) and to calculate the linear combination of the predictor scores that best predicts the criterion scores. By "best" is usually meant "least squared error", which means that the sum (over subjects) of the squared deviations of the observed from the predicted criterion score is a minimum. The optimizing coefficients of the predictor scores are called the multiple regression weights and are calculated from the normal equations which express the minimization conditions (Anderson, 1958, Kendall and Stuart, 1961).

When multiple regression is used to compute predictor weights a multiple correlation may be calculated. The multiple correlation is the Pearson product-moment correlation, in the sample, between the optimal linear combination of the predictors and the criterion variable. The multiple
correlation is thus a measure of the degree of relationship between the predictors and the criterion. However the multiple correlation is a biased estimate of this relationship and is generally larger than the true population multiple correlation. The bias occurs because the process of minimizing the average squared error in prediction is equivalent to maximizing the correlation between the linear combination of the predictors and the criterion. Due to the finite size of the sample, the optimizing linear combination will be fitted to the idiosyncracies of the sample and will generally result in a higher multiple correlation than the population multiple correlation.

One problem in the application of multiple correlation techniques is therefore the estimation of the true multiple correlation from the biased sample multiple correlation. In the next section it will be shown that there are two population correlations which must be distinguished. A number of formulas for correcting the sample multiple correlation are known. However these formulas require assumptions which are often difficult to satisfy and therefore many early investigators estimated the population correlation by applying to a second sample the regression weights calculated in an original sample. They found that the correlation between the regression function and the criterion in the second sample was less than the original sample multiple correlation. This technique became known as cross-validation of the predictor weights or simply as cross-validation (Mosier, 1951). The correlation in the
second sample is called the cross-validity. The first sample is known as the derivation sample, the second is the validation sample. An obvious addition to the cross-validation method is to repeat the calculations interchanging the roles of the first and second sample. We shall call this technique double cross-validation.

This study was designed to investigate:

(a) the accuracy of the cross-validity as an estimate of the population correlation,
(b) the effectiveness of two reduced rank methods for estimating predictor weights, and
(c) the effect of the variation of some parameters of the population distribution on the results of (a) and (b).

The estimation of the population correlation is described in more detail in Section 1.2. The reduced rank methods are introduced in Section 1.3. Finally, the study of the effect of variation of population parameters by a simulation technique is introduced in Section 1.4.

1.2. Estimates of Validity

Let the predictor variables be x_1, x_2, \ldots, x_n and let the criterion variable be y. Then the regression function in the population is

\[(1.2.1) \quad \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \beta_0.\]

The constant term in the equation is β_0; the β_i are called the regression weights. Two models for the predictors are possible, the regression model and the correlation model (Ezekiel and Fox, 1959, pp. 279-281). In the regression
model, the values of the predictor variables are fixed and only the criterion is a random variable. A more realistic model for most multivariate work in psychology is to assume that both the predictors and the criterion are random variables (the correlation model). Under the null hypothesis of zero multiple correlation the distributional theory is identical for the two models. However when the null hypothesis is not true the distributions are different under the two models. Since the distributional theory is much more complicated under the correlation model, most investigators in psychology (e.g. Burket, 1964) have continued to use the regression model hoping that there will be little practical difference between the two models.

Regression equations can also differ in whether the constant term, \(\beta_0 \), is included. In the case of the regression model, the constant term is really indistinguishable from the other terms in the equation since a predictor variable, \(x_0 \), may be defined as the constant 1.0. Then the constant term may be written as \(\beta_0 \times 0 \). Therefore, formulas developed for the constant = 0 case

\[
(1.2.2) \quad \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n
\]

may be modified for the constant \(\neq 0 \) case (1.2.1) by simply replacing \(n \) by \(n + 1 \).

In the correlation model this simple correspondence between the zero and non-zero constant cases does not hold since \(x_1, \ldots, x_n \) are random variables while \(x_0 \) is fixed. Inclusion of a constant term does not affect the multiple correlation or the correlation between the regression
function and any other variable. Thus in studies such as
the preser: one which emphasize correlation measures, it is simplest to set the constant term to zero. However if
the mean squared error of prediction is used as a measure of accuracy of prediction it is very important to state
whether the constant term is included in the regression.

Let \(p \) be the population multiple correlation, \(\sigma_y \)
the population standard deviation of \(y \), and \(\sigma(y - \hat{y}) \) the
population standard deviation of the error in prediction
\((y - \hat{y})\) where \(\hat{y} \) is the regression function (1.2.1) with
weights calculated from the normal equations. Then
\[
(1.2.3) \quad \rho^2 = 1 - \frac{\sigma^2(y - \hat{y})}{\sigma_y^2} .
\]
A similar equation holds in the sample, relating the
squared sample correlation, \(r^2 \), to the mean squared error
of prediction, \(\text{MSE} \), and the standard deviation of the
sample, \(s_y \):
\[
(1.2.4) \quad r^2 = 1 - \frac{\text{MSE}}{s_y^2} .
\]
The first estimation of \(\rho^2 \) in the psychological literature
(Larson, 1931) is by the following formula:
\[
(1.2.5) \quad \text{Est}(\rho^2) = 1 - \frac{N}{N - n} (1 - r^2)
\]
where \(N \) is the sample size. Larson does not give a der-
ivation of this formula but Wherry (1931) showed that
it follows (in the regression model) from estimating
\(\sigma_y^2 \) by \(s_y^2 \) and estimating \(\sigma^2(y - \hat{y}) \) by \((\text{MSE}) N/(N - n) \).
The substitution of these two estimates into (1.2.3) and
the use of (1.2.4) gives (1.2.5). In order to improve this estimate, Wherry (1931) estimated σ_y^2 by $s_y^2 N/(N - 1)$ rather than by s_y^2. The resulting formula is

$$
(1.2.6) \quad \text{Est}(\rho^2) = 1 - \frac{N - 1}{N - n} (1 - r^2)
$$

Larson and Wherry compared their estimates with cross-validities and Wherry showed that (1.2.6) is superior to (1.2.5).

It is not entirely clear how Larson and Wherry handled the constant term in the regression function. Formula (1.2.6) is strictly applicable to a zero constant term. When the constant term is not zero, the unbiased estimate of $\sigma^2(y - \hat{y})$ is (MSE) $N/(N - n - 1)$ so that the estimate of ρ^2 is

$$
(1.2.7) \quad \text{Est}(\rho^2) = 1 - \frac{N - 1}{N - n - 1} (1 - r^2)
$$

Formula (1.2.7) is often referred to as Wherry's formula even though his original formula was (1.2.6). Formula (1.2.7) is not an unbiased estimate of ρ^2 since the ratio of two unbiased estimates is not unbiased. However, unbiased estimates of ρ^2 are not always desirable, for, if the true $\rho^2 = 0$, an unbiased estimate must take on both negative and positive values even though a multiple correlation is always positive.

The multiple correlation, ρ, is the correlation, in the population, of the criterion and the regression function calculated in the population. In applications, the population regression function can never be known and one is
more interested in how effective the sample regression function is in other samples. A measure of this effectiveness is \(r_c \), the sample cross-validity. For any given regression function, \(r_c \) will vary from validation sample to validation sample. The average value of \(r_c \) will be approximately equal to the correlation, in the population, of the sample regression function with the criterion. This correlation is the population cross-validity, \(\rho_c \). Wherry's formula estimates \(\rho \) rather than \(\rho_c \). Lord (1950) and Nicholson (1960) derived an unbiased estimate of the population mean square error of a sample regression function. Using this estimate of MSE, an estimate of \(\rho_c^2 \) is

\[
(1.2.8) \quad \text{Est}(\rho_c^2) = 1 - \frac{N - 1}{N - n - 1} \frac{N + n + 1}{N} \left(1 - r^2\right).
\]

This formula applies to the regression model with a constant term. Darlington (1967) modified this formula for the correlation model with a constant term. His formula is

\[
(1.2.9) \quad \text{Est}(\rho_c^2) = 1 - \frac{N - 1}{N - n - 1} \frac{N - 2}{N - n - 2} \frac{N + 1}{N} \left(1 - r^2\right).
\]

This formula is based on the assumption that the predictors and criterion have a multivariate normal distribution.

It would be possible to derive a similar formula for \(\text{Est}(\rho_c^2) \) in the multivariate normal case with no constant term. It is not, however, the purpose of this study to derive the best estimate of \(\rho_c^2 \) for it is not clear what properties such an estimator should have, particularly since an unbiased estimator has the defects mentioned
above. It is more interesting to study the accuracy of
the cross-validity as an estimate of ρ_c and ρ.

Returning to estimating ρ, Wishart (1931) calculated
the moments of the distribution of r^2 for the multivariate
normal distribution. The expected value of r^2 is

$$(1.2.10) \quad E(r^2) = 1 - \frac{N - n - 1}{N - 1} (1 - \rho^2) \times \frac{N}{N - n - 1} F(1, 1, (N + 1)/2, \rho^2)$$

where $F(a, b, c, x)$ is the hypergeometric function.

Using the first two terms of the expansion of this function,
equation (1.2.10) reduces to

$$(1.2.11) \quad E(r^2) = 1 - \frac{N - n - 1}{N - 1} (1 - \rho^2)$$

Olkin and Pratt (1958) showed that an unbiased estimate
of ρ^2 is

$$(1.2.12) \quad \text{Est} (\rho^2) = 1 - \frac{N - 3}{N - n - 1} (1 - r^2) \times \frac{N - 3}{N - n - 1} F(1, 1, (N - n + 1)/2, 1 - r^2),$$

which, neglecting terms in $1/N^2$, is

$$(1.2.13) \quad \text{Est} (\rho^2) = 1 - \frac{N - 3}{N - n - 1} (1 - r^2) \times \frac{N - 3}{N - n - 1} (1 - r^2)^2 .$$

The Wherry estimate (1.2.7) is almost identical to the first
two terms of this series.

Darlington (1967) has carefully distinguished the
four correlations \(\rho, \rho_c, r, \) and \(r_c \). The smallest of these, \(\rho_c \) and \(r_c \), are the validity of the sample regression function in the population and another sample, respectively. The average, over many samples, of the cross-validity, \(r_c \), will be approximately equal to \(\rho_c \). The next smallest correlation is \(\rho \), the population multiple correlation or the validity of the population regression function in the population. The largest correlation is the sample multiple correlation, \(r \), which is the validity of the sample regression function in the derivation sample. These relationships may be summarized as follows:

\[
(1.2.14) \quad E(r_c) = \rho_c < \rho < r
\]

Empirical confirmation of (1.2.14) is presented in Section 3.3.

1.3. Improvement of Prediction

It is well known that adding predictors to a regression equation increases both the sample and population multiple correlations. However, the greater the number of predictors, \(n \), the more unstable are the sample regression weights and the lower are the sample cross-validity, \(r_c \), and the population cross-validity, \(\rho_c \). The decrease in estimated \(\rho_c \) follows from (1.2.9).

A second difficulty with a large number of predictors in multiple regression is that a subset of them would probably do just as well, if the subset could be determined. For predictions in applied psychology, e.g. personnel selection, it is undesirable to have to make a
large number of measurements on each individual in order to make accurate predictions. Furthermore, the weights for a subset of predictors would be more stable in future samples due to the smaller n.

There are several ways to select a subset of predictors. The best selection procedure is stepwise regression in which predictors are added to the regression, one at a time, until there is no significant additional prediction. Other selection procedures are shown by Darlington (1967) to be inferior to the stepwise method.

Another way to reduce the number of predictors in the regression function is to use a few linear combinations of the predictors rather than the predictors themselves. Two such methods, called reduced rank methods, are considered in this study. In the first method (Horst, 1941), the largest principal components of the predictors (Anderson, 1958) are entered in the regression function. Since the principal components may be expressed as linear combinations of the predictors, the regression function may be transformed to a linear combination of the predictors. Hence the full set of predictor variables is used but only through the intermediary of a few principal components. These components may be interpreted psychologically and it may be possible to select predictors loading highly on the components as a subset to use in future prediction. In this way reduced rank prediction can lead to a reduction of the size of the predictor battery.
In his 1941 paper, Horst also suggested that the predictors could be represented as a linear function of common and unique factors rather than as a linear function of the principal components. This factor analytic model is more difficult to treat because of the difficulty of estimating the factors as linear combinations of the predictors. Unlike Horst's first method, factor analysis is not a reduced rank method. The factor analytic model for regression calculations was studied by Leiman (1951) with some success but will not be considered further in this study.

Before outlining the second reduced rank procedure, let us consider a study by Burket (1964) comparing a number of regression methods in a large data sample. He compared two stepwise selection procedures (Efroymson, 1960; Horst and MacEwan, 1960), the largest principal components method, the smallest principal components method (Guttman, 1958) and the criterion-related principal components method (Hotelling, 1957; Massy, 1965). Guttman proposed the use of the smallest principal components since the solution for the multiple regression weights depends on the inverse of the predictor intercorrelation matrix, and the largest components of the inverse are the smallest components of the original matrix. Hotelling and Massy suggested that the principal components which are entered into the regression function should be those components correlating maximally with the criterion rather than those of largest variance. Burket compared these five methods for several
criteria and in several subsamples of his total sample. He found that the largest principal components method was consistently superior to the other four methods. One purpose of the present study is to show under what conditions this superiority can be expected to hold.

The second reduced rank method, prediction from the principal predictors, was developed from the following considerations. The principal components of the predictors may not be highly related to the criterion since the components are determined solely from the intercorrelations of the predictors. It would be desirable to find linear combinations of the predictors which are strongly related to the criterion. The Hotelling and Massy method employed by Burket finds these linear combinations by computing the correlation of each principal component with the criterion and entering into the multiple regression only those components with the highest correlations. However a more effective procedure might be to find those linear combinations of the predictors (not necessarily the principal components of the predictors) which are maximally correlated with the criterion.

In the single criterion case, this problem is trivial since there is only one linear combination of the predictors maximally correlated with the criterion and all other orthogonal combinations are uncorrelated with the criterion. This combination is simply the regression function, i.e. the predicted criterion, using multiple regression on all the predictors. Therefore, in the single criterion case,
nothing new is found by considering linear combinations of
the predictors maximally correlated with the criterion.

Consider, however, prediction of several criteria
from a common set of predictors. Examples of such multiple
criteria are the prediction of success in several academic
curricula by using a battery of aptitude tests or the
prediction of a number of social criteria using scales
from a personality test (Hase and Goldberg, 1966). In
particular, let us suppose that we wish to predict each
of the criteria equally well. Then Tucker (1957) has
developed a method which discovers those linear combinations
of the predictors maximally related to the set of criteria.
These combinations are called the principal predictors.
The largest of the principal predictors may be entered
into the regression equations for each criterion. The
principal predictors have the property that, for a fixed
number of linear combinations entered into each regression,
the average squared multiple correlation is greater for
the principal predictors than for any other linear com-
binations entered into the regression.

The principal predictors were developed by Tucker
as a convenient way to summarize a large number of pre-
dictor scores by a few criterion-related predictor scores.
The principal predictors also provide a useful conceptual-
tualization of the relationship of a set of predictors
to a set of criteria. In the present study, on the other
hand, the principal predictors are compared with the
principal components as reduced rank prediction methods.
In any prediction calculation, each criterion variable may be divided into two parts—one part is predictable from the set of predictors and the other part is unpredictable from these predictors. When there are several criteria the predictable parts of the criteria are themselves a set of variables which have principal components. These principal components are the principal predictors. It is important not to confuse the principal components of the predictors, previously discussed, with the principal components of the predictable parts of the criteria, which are called the principal predictors. The largest principal predictor accounts for the largest portion of the predictable variation in the criteria. The next largest principal predictor accounts for the next largest portion, and so on. Therefore a few of the principal predictors account for most of the predictable variation in the criteria.

The largest principal predictors may be used as predictors themselves. Then the principal predictors, like the principal components of the predictors, can be expressed in terms of the original predictors. The weights for the original predictors can therefore be calculated. Also, the principal predictors may be interpreted psychologically, which may lead to greater understanding of the relationship between the predictors and the criteria. The principal predictors, unlike the principal components of the predictors, are criterion-related so that variation in the predictors which is unrelated to the criteria is not represented
in the principal predictors. In some cases, the predictor variation which is unrelated to the criteria could be large enough to dominate the principal components of the predictors. But this variation is not useful for prediction. This is the reason that prediction from the largest principal predictors may be superior to prediction from the largest principal components.

The two methods, prediction from the principal components of the predictors and from the principal predictors, are called reduced rank methods since, in both cases, a correlation matrix may be approximated by a matrix of lower rank using the largest principal components or the largest principal predictors. In the first method, the correlation matrix of the predictors is approximated while in the second method, the correlation matrix of the predictable parts of the criteria is approximated. These statements are made more precise in Chapter 2.

Of the prediction methods discussed in this section only three will be considered further in this study:
(a) prediction from the full set of predictors,
(b) prediction from the largest principal components of the predictors, and
(c) prediction from the largest principal predictors. The last method is possible only when there are several criteria. The first two methods may be used for one or several criteria.
1.4. The Comparison of Prediction Methods

In order to evaluate and compare the prediction methods described in the preceding section it would be desirable to employ mathematical techniques. However the problems are so complex that multivariate statistical theory is unable to solve most of them.

Another approach to these problems has been to apply the different prediction methods to a common body of data and to compare the results (Burket, 1964; Leiman, 1951). There are definite advantages to this approach. Any conclusions are based on real data and do not depend on the assumptions in a theoretical development being valid. However, there is a major drawback to such empirical techniques. If two or more studies, using different data, disagree in their conclusions, it is difficult to determine what properties of the data sets differed enough between the studies to produce the varied conclusions. Similarly, it is difficult to evaluate the generality of conclusions found in a single study using one set of data.

It is therefore desirable to compare the prediction methods on a wide variety of data sets, differing in a known way in certain parameters. Since it is hard to satisfy this condition with real data, it is proposed that some useful conclusions may be made from the study of artificial or simulated data sets. Such data sets can be readily generated on a computer. The parameters specifying the properties of a data set can be input to the computer and a wide variety of data sets can be generated by varying
these input parameters. The prediction methods can then be compared in these data. Such a simulation procedure is described in this study.

The simulation experiments consist of four states of calculations:

Generation of the model. A combined predictor and criterion population covariance matrix is generated subject to certain input parameters. The population model and its parameters are described in Sections 2.2 and 2.3. In the model the predictors and criteria are expressed in terms of the principal predictors.

Generation of two samples. Two samples, each of size \(N \), are obtained from the population generated in the preceding stage. The samples are obtained by generating sample covariance matrices; the method is outlined in Section 2.4. The two samples are used in double cross-validation.

Calculation of predictor weights. The predictor weights are calculated, in each sample, by one or more of the following methods—(a) multiple regression on the predictors, (b) multiple regression on the principal components, and (c) multiple regression on the principal predictors. The calculation of these weights is described in Sections 2.5, 2.6, and 2.7, respectively.

Cross-validation of the weights. The weights for each sample (and each method) are cross-validated on the other sample \((r_c) \) and on the population itself \((\rho_c) \). The formulas for the validities are presented in Section 2.8.
CHAPTER 2

THE MATHEMATICAL MODEL AND SAMPLE CALCULATIONS

2.1. Notation

Scalars are denoted by lower case letters \((m, p)\). The only exceptions to this convention are \(N\) for sample size and the elements of matrices. Scalars may be either numbers or random variables. Column vectors are denoted by lower case underlined letters \((\underline{x}, \underline{a})\). These vectors may be either random variable vectors or vectors of numbers. Row vectors are transposed column vectors, transposition being indicated by priming \((\underline{x}', \underline{a}')\). Matrices are denoted by upper case letters \((A, \Sigma)\). Transposed matrices are indicated by a prime \((A', \Sigma')\). The \((i, j)\) element of a matrix is denoted by \(A_{ij}\). The identity matrix is \(I\).

The matrix consisting of the first \(t\) columns of a matrix \(A\) is denoted by \((A)_t\). The first \(t\) rows of \(A\) are \(t(A)\). The vector consisting of the first \(t\) elements of a vector \(b\) is denoted by \(t(b)\).

The population covariance matrix of two random vectors \(\underline{x}\) and \(\underline{y}\) is denoted by \(\Sigma_{xy}\). The corresponding sample covariance matrix is \(C_{xy}\). When \(\underline{y}\) is known to have only one component, the covariance matrices are column vectors denoted by \(\sigma_{xy}\) and \(c_{xy}'\). The variance of a scalar \(y\) is denoted by \(\sigma_{yy}\) or \(c_{yy}\). The abbreviation \(\text{Var}()\) is used to denote the variance of the random variable enclosed in parentheses.
The Greek letters Σ, σ, ρ, and π are regularly used to denote population parameters. Σ and σ are population covariances as stated above. ρ denotes a population multiple correlation. π is a population parameter defined in Section 2.2. β and Ω are also used as population parameters. All other population parameters are denoted by Latin letters as are all sample quantities.

The univariate normal distribution with mean $= m$ and variance $= v$ is denoted by $N(m, v)$. The multivariate normal distribution with mean vector $= a$ and covariance matrix $= \Sigma$ is represented by $N(a, \Sigma)$. Fisher's F distribution with n_1 and n_2 degrees of freedom is denoted by $F(n_1, n_2)$. Finally, the chi distribution with n degrees of freedom is denoted by $\chi(n)$. This is the square root of the chi-squared distribution.

A list of symbol definitions appears in Appendix F.

2.2. The General Model for Predictors and Criteria

Let x (n components) be n random variables, called predictors, and let y (m components) be m random variables, called criteria. Let m be less than n as is usually the case in practice. For convenience, normalize all variables x and y to unit variance. Let x and y have a joint multivariate normal distribution with null mean vector and arbitrary covariance matrix

\[
\Sigma = \begin{bmatrix}
\Sigma_{xx} & \Sigma_{xy} \\
\Sigma_{yx} & \Sigma_{yy}
\end{bmatrix}
\]

It is shown in Appendix A that x and y can be written in
a special way in terms of \((n + m)\) independent unit variance random variables \(w\). Let \(w\) be partitioned as

\[
(2.2.2) \quad w' = (w_1', w_2', w_3')
\]

where \(w_1\) has \(m\) components, \(w_2\) has \((n - m)\) components and \(w_3\) has \(m\) components. Then

\[
(2.2.3) \quad \begin{bmatrix}
 n & (n-m) & m \\
 m & y & x
\end{bmatrix} = \begin{bmatrix}
 S_1 & S_2 & 0 \\
 F & 0 & E
\end{bmatrix} \begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3
\end{bmatrix}
\]

(The number of rows or columns in the partitioned matrices are appended to the matrix expression above).

Thus the submatrices forming \(\Sigma\) may be written as

\[
(2.2.4) \quad \Sigma_{xx} = S_1 S_1' + S_2 S_2'
\]

\[
(2.2.5) \quad \Sigma_{yx} = \Sigma_{yx}' = S_1 F'
\]

\[
(2.2.6) \quad \Sigma_{yy} = F F' + E E'
\]

This representation of \(x\) and \(y\) can be understood in the following way. Let each of the \(y\) variables be predicted from a linear combination of the \(x\) variables. The best least squares prediction (multiple regression) of \(y\) is

\[
(2.2.7) \quad \hat{y} = B' x = \Sigma_{yx} \Sigma_{xx}^{-1} x
\]

The weight matrix is written as \(B'\) rather than \(B\) so that when \(m = 1\), \(B' = b'\), the transpose of a column vector. Each component of the predictable part \(\hat{y}\) is the best predictor of the corresponding component of \(y\). The squared multiple correlation of the \(j\)th criterion \(y_j\) with the \(n\) predictors is then (recall that \(y_j\) has unit variance)

\[
(2.2.8) \quad \rho_j^2 = \text{Var}(\hat{y}_j) = (B' \Sigma_{xx} B)'_{jj}
\]
Now the variables \(\mathbf{q} \) may be transformed to independent unit variance variables \(\mathbf{w}_1 \) by

\[
(2.2.9) \quad \mathbf{q} = \mathbf{F} \mathbf{w}_1
\]

where \(\mathbf{F} \) is orthogonal by columns, so that

\[
(2.2.10) \quad \mathbf{F}' \mathbf{F} = \mathbf{D}^2 \quad \text{(diagonal)}
\]

with the diagonal elements of \(\mathbf{D}^2 \) in descending order. The \(m \) variables \(\mathbf{w}_1 \) are the principal predictors (see Appendix A, equations (A.6) to (A.10)). The principal predictors are numbered in order so that the first accounts for the largest proportion of the variance of the \(y \) variables, the second accounts for the next largest proportion, and so on.

On referring back to the model (2.2.3) one sees that the criteria \(y \) are written as the sum of a linear transformation of the principal predictors \(\mathbf{w}_1 \) and a transformation of \(m \) other independent variables \(\mathbf{w}_3 \). Similarly, the predictors \(\mathbf{x} \) are written as the sum of a linear transformation of the same principal predictors \(\mathbf{w}_1 \) and a transformation of \((n - m) \) other independent variables \(\mathbf{w}_2 \). The association between \(y \) and \(x \) is expressed through their dependence on the principal predictors \(\mathbf{w}_1 \). The non-associated parts of \(x \) and \(y \) are expressed in terms of independent variables \(\mathbf{w}_2 \) (for \(x \)) and \(\mathbf{w}_3 \) (for \(y \)). The total set of variables \(\mathbf{w}' = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) \) are independent unit variance normal.

The matrices \(S_1 \) and \(\mathbf{F} \) are central to the description of the dependence of the criteria on the predictors. Let us first consider \(\mathbf{F} \). The dependence of the \(m \) criteria \(y \)
on the \(k \)th principal predictor is given by the sum of the squares of the elements in the \(k \)th column of \(F \). Let this quantity be \(D_{kk}^2 \) (\(k \)th element of the diagonal matrix \(D^2 \)):

\[
(2.2.11) \quad D_{kk}^2 = \sum_{j=1}^{m} F_{jk}^2.
\]

\(D_{kk}^2 \) is the \(k \)th eigenvalue of \(\Sigma = FF' \) (see Appendix A, equations (A.6) and (A.7)). The quantities \(D_{kk}^2 \) are thus monotonically decreasing numbers. If, in a certain population, the first eigenvalue \(D_{11}^2 \) is very large and the others small, this indicates that most of the prediction of \(y \) from \(x \) is derived from only one linear combination of the \(x \) variables, namely the first principal predictor. On the other hand, if several of the \(D_{kk}^2 \) are large, then several independent linear combinations of the predictors are needed in order to get maximum prediction of \(y \) from \(x \).

The average, over criteria, of the squared multiple correlations is simply related to the \(D_{kk}^2 \) (see equation (A.12)):

\[
(2.2.12) \quad \rho^2 = (1/m) \sum_{j=1}^{m} \rho_j^2 = (1/m) \sum_{k=1}^{m} D_{kk}^2.
\]

The relation of the predictors \(x \) to the principal predictors \(\mathbf{w}_1 \) through the matrix \(\mathbf{S}_1 \) is quite independent of the matrix \(F \) and the quantities \(D_{kk}^2 \). For convenience, let us suppose that the variables are normalized to unit variance. Let us define the \((n \times n) \) matrix \(\mathbf{S} \) as the super-matrix

\[
(2.2.13) \quad \mathbf{S} = (\mathbf{S}_1 \mathbf{S}_2).
\]
Thus

\[(2.2.14) \quad \mathbf{x} = S \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}. \]

Since the \(w \) variables are independent and of unit variance, the sum of squares of each row is 1.0. The sum of squares of the \(i \)th row of \(S_1 \) is then less than 1.0 and represents the magnitude of the dependence of the \(i \)th predictor on the principal predictors. Let \(q_k^2 (k = 1, \ldots, m) \) denote the sum of squares of the \(k \)th column of \(S \):

\[(2.2.15) \quad q_k^2 = \frac{1}{n} \sum_{i=1}^{n} S_{ik}^2. \]

\(q_k^2 \) is a measure of the average dependence or relation of the \(x \) variables to the \(k \)th principal predictor. The \(q_k^2 \) are analogous to the \(D_{kk}^2 \) since they represent, respectively, the average dependence of the predictors and the criteria on the \(k \)th principal predictor.

We may average the \(q_k^2 \) in the same way as the \(D_{kk}^2 \) are averaged in (2.2.12):

\[(2.2.16) \quad \pi^2 = \frac{1}{n} \sum_{k=1}^{m} q_k^2 = \frac{1}{n} \sum_{k=1}^{m} \frac{1}{n} \sum_{i=1}^{n} S_{ik}^2. \]

Note that the division is by \(n \), not \(m \), in order to get a parameter \(\pi^2 \) with maximum value 1.0. \(\pi^2 \) represents the average, over predictors, of the predictor variance related to the principal predictors. It is a measure of the dependence of the predictors on the principal predictors. For brevity, \(\pi^2 \) will be called the average criterion-related predictor variance. This description does not imply that \(\pi^2 \) is an average multiple correlation of \(x \).
predicted from \(y \) (roles of predictors and criteria reversed). \(\pi^2 \) is, however, the average multiple correlation of the \(x \) variables predicted from the principal predictors \(w_1 \).

Another way to interpret \(\pi^2 \) is to define \(\mathcal{A} \) as the parts of \(x \) linearly predictable from \(w_1 \):

\[
(2.2.17) \quad \mathcal{A} = S_1 w_1.
\]

Then the variance of \(\mathcal{A}_i \), the predictable part of the \(i \)th predictor, is

\[
(2.2.18) \quad \text{Var}(\mathcal{A}_i) = \sum_{k=1}^{m} S_{1k}^2.
\]

The average of these variances is

\[
(2.2.19) \quad \pi^2 = \frac{1}{n} \sum_{i=1}^{n} \text{Var}(\mathcal{A}_i) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} S_{1k}^2 = \frac{1}{n} \sum_{k=1}^{m} q_k^2.
\]

Consider now two populations, each with the same average squared multiple correlation \(\sigma^2 \). One population might have a small value of \(\pi^2 \) and the second a large value of \(\pi^2 \). In the first population the predictors depend very little on the principal predictors while in the second the dependence is greater. Nevertheless the prediction of the criteria is the same in each population. This paradoxical situation can be understood by first noting that we are considering for the moment prediction in the population, not in finite samples. The prediction of \(y \) is solely via the principal predictors \(w_1 \) and the random vector \(w_1 \) is an exact linear combination of the predictors \(x \) since
S is square and non-singular:

\[
(2.2.20) \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = S^{-1} x.
\]

As additional verification that the average multiple correlation is independent of \(\tau^2 \), note that \(\rho^2 \) depends only on \(F \) in (2.2.11) and (2.2.12).

The parameter \(\tau^2 \) will have an effect on prediction in finite samples however. Consider prediction from the principal components of the predictors. When \(\tau^2 \) is large, the largest principal component will be largely in the space of the principal predictors and will contribute to prediction. However, when \(\tau^2 \) is small, the first principal component will be unrelated to the principal predictor space and will be a very poor predictor. The effectiveness of prediction from the principal components will thus depend on the size of \(\tau^2 \). Empirical confirmation of this phenomenon will be demonstrated in Section 3.4.

2.3. Computer Generation of the Model

Since any set of \(n \) predictors and \(m \) criteria may be written in the form (2.2.3), it is possible to generate an arbitrary population distribution by specifying the matrices \(S, F, \) and \(E \). The covariance matrices \(\Sigma_{xx}, \Sigma_{xy} \), and \(\Sigma_{yy} \) may then be calculated by (2.2.4) to (2.2.6) where \(S \) is related to \(S_1 \) and \(S_2 \) by (2.2.13).

Rather than allowing the matrices \(S, F, \) and \(E \) to be completely arbitrary, a few basic parameters may be fixed arbitrarily and the matrices then generated essentially
randomly subject to these given parameters. These arbitrary parameters are called "input parameters" since they are input to the computer program that generates the model.

The major input parameters are:
1. \(n \) = number of predictors.
2. \(m \) = number of criteria.
3. \((D_k^2, k = 1, \ldots, m) \), the eigenvalues of \(\Sigma \).
4. \((q_k^2, k = 1, \ldots, m) \), the dependencies of the predictors on the principal predictors.

Note that once \(D_k^2 \) and \(q_k^2 \) are specified for all \(k \), the average squared multiple correlation \(\rho^2 \) and the average criterion-related predictor variance \(\pi^2 \) are fixed by (2.2.12) and (2.2.16). In particular, when \(m = 1 \) as in Chapter 3, \(\rho^2 = D_{11}^2 \) and \(\pi^2 = (1/n) q_1^2 \).

Two additional parameters, related to \(n \) and \(m \), are:
1a. \(n_s \) = number of columns of \(S \).
2a. \(m_d \) = number of duplicate criteria.

In the model described in Section 2.2, \(S = (S_1, S_2) \) is an \((n \times n)\) square matrix. \(S_1 \) has \(m \) columns and \(S_2 \) has \((n - m)\) columns. In some of the experiments described in Sections 3.1 and 3.2, \(S \) has more than \(n \) columns, namely \(n_s \) columns, so that \(S_2 \) has \((n_s - m)\) columns and \(S_1 \) still has \(m \) columns.

All the experiments in Chapter 3 involve only one criterion (\(m = 1 \)). However several duplicate criteria are allowed and the number of such duplicate criteria is denoted by \(m_d \). Duplicate criteria are described further in Chapter 3 and Appendix D.
Four minor parameters are needed to complete the input for the model:

5. $v_x = \text{variance of the generated } \text{Var}(\mathbf{X}_1)\text{.}$
6. $e_x = \text{tolerance on this variance.}$
7. $v_y = \text{variance of the generated multiple correlations } \rho_j^2.$
8. $e_y = \text{tolerance on this variance.}$

The computer program generates matrices F and E so that the m squared multiple correlations ρ_j^2 calculated from them have mean exactly equal to the average of the D_{kk} and variance equal to v_y within a maximum error of e_y. That is,

\begin{equation}
\rho^2 = (1/m) \sum_{j=1}^{m} \rho_j^2 = (1/m) \sum_{k=1}^{m} D_{kk}^2
\end{equation}

and

\begin{equation}
|\text{Var}(\rho_j^2) - v_y| = |(1/m) \sum_{j=1}^{m} (\rho_j^2 - \rho^2)^2 - v_y| < e_y.
\end{equation}

Matrix S, composed of S_1 and S_2, is generated so that the mean of the variances of \mathbf{X}_j calculated from S_1 is exactly equal to $(1/n) \sum_{k=1}^{n} q_k^2$ and the variance of these variances is equal to v_x within a maximum error of e_x. That is,

\begin{equation}
\pi^2 = (1/n) \sum_{i=1}^{n} \text{Var}(\mathbf{X}_i) = (1/n) \sum_{k=1}^{m} a_k^2
\end{equation}

and

\begin{equation}
|\text{Var}[\text{Var}(\mathbf{X}_1)] - v_x| < e_x.
\end{equation}

The two occurrences of "Var" in the preceding formula
refer to different types of variances. \(\text{Var}(X_i) \) means the variance of the random variable \(X_i \) in the population. Let the constants \(\text{Var}(X_i) = v_i \) temporarily. Then \(\text{Var}(v_i) \) is simply shorthand notation for

\[
\text{Var}(v_i) = (1/n) \sum_{i=1}^{n} (v_i - \bar{v})^2
\]

Note that \(\bar{v} \) is the mean of the \(v_i \).

Generation of \(F \)

The matrix \(F \) is the product of an orthonormal matrix \(V \) and a diagonal matrix \(D \) consisting of the square roots of the eigenvalues \(D_{kk}^2 \) (equation (A.8)):

\[
F = V D
\]

The matrix \(D^2 \) is input so that generation of \(F \) reduces to the generation of an orthonormal \(V \) satisfying the two restrictions (2.3.1) and (2.3.2) on the squared multiple correlations \(\rho_j^2 \). \(\rho_j^2 \) may be expressed in terms of \(V \) and \(D \) by

\[
\rho_j^2 = \text{Var}(\gamma_j) = (F F')_{jj} = (V D^2 V')_{jj}
\]

\[
= \sum_{k=1}^{m} V_{jk}^2 D_{kk}^2
\]

When \(\rho_j^2 \) is calculated in this way with \(V \) orthonormal, equation (2.3.1) is automatically satisfied. The restrictions on \(V \) are then

(a) \(V \) must be orthonormal,

(b) all \(\rho_j^2 \) calculated from (2.3.7) must be less than 1.0, and

(c) the variance of the \(\rho_j^2 \) must satisfy equation (2.3.2).

An algorithmic procedure to generate a \(V \) satisfying these
three conditions, for arbitrary parameters \(m, (D^2_{kk}, k = 1, \ldots, m), v_y, \) and \(e_y, \) is outlined in Appendix C.

Generation of \(E \)

The elements of the \((m \times m)\) matrix \(E \) are first generated randomly from \(N(0, 1) \) and then the rows of \(E \) are normalized so that, for all \(j, \)

\[
(E E')_{jj} = \sum_{k=1}^{m} E_{jk}^2 = 1 - \rho_j^2
\]

where the \(\rho_j^2 \) are calculated from (2.3.7). This normalization ensures that the criteria \(y \) are normalized to unit variance. The methods used to generate normal random numbers as well as other random numbers discussed in this chapter are given in Appendix B.

Generation of \(S \)

Two different methods for generating \(S \) were developed for the experiments described in Chapters 3 and 4. The first is called the \(e_x = 0 \) method since the variance of \(\text{Var}(X_1) \) is exactly equal to \(v_x. \) This method was used for the single criterion case \((m = 1)\) in Chapter 3. The method does not generalize well to the \(m > 1 \) case and therefore a second method, called the \(e_x \neq 0 \) method was used for the several criterion calculations in Chapter 4. This latter method could have been employed in Chapter 3 except that \(e_x \) cannot be set to zero in this method.

When \(m = 1, \) \(\pi^2 \) can be calculated directly from the input parameters as

\[
(2.3.9) \quad \pi^2 = (1/n) q_1^2
\]

Then, in the \(e_x = 0 \) method, \(n \) numbers are generated randomly
from $N(\pi^2, \nu^2)$ subject to the restriction that no number be more than 1.0 or less than 0.0. The numbers are re-scaled after generation so that their mean is exactly π^2 and their variance is ν^2. If one of the numbers is now more than 1.0 or less than 0.0, the number is discarded and a new attempt is made to satisfy the conditions. These n numbers are the variances of x_1, denoted by $\nu^2_i = \text{Var}(x^2_i)$ in equation (2.3.5). When this step is completed equations (2.3.3) and (2.3.4) are exactly satisfied with $e_x = 0$.

Now S_1 is a single column, and its elements are defined as the square roots of $(\nu^2_i, i = 1, \ldots, n)$, with their signs chosen randomly. The elements of the last $(nS - 1)$ columns of S, namely S_2, are generated randomly from $N(0, 1)$ and then rescaled, by rows, so that the row sum of squares of the whole S matrix is unity. This rescaling ensures that all x variables have unit variance. The generation of S by the $e_x = 0$ method is now complete.

The $e_x \neq 0$ method of generating S is very similar to the method of generating F. In analogy to (2.3.6) in which all matrices are $(m \times m)$, S_1 is written as

\begin{equation}
S_1 = T Q
\end{equation}

where S_1 and T are $(n \times m)$ and Q is diagonal $(m \times m)$ with diagonal elements $= (q_k, k = 1, \ldots, m)$. T (like V) is orthonormal by columns. The $\text{Var}(x^2_1)$ may be written in terms of T and Q as

\begin{equation}
\text{Var}(x^2_1) = (S_1 S_1')_{11} = (T Q^2 T')_{11} = \sum_{k=1}^{m} T_{1k}^2 q_k^2
\end{equation}
Since T is orthonormal it follows that the average of these variances is exactly $(1/n) \sum_{k=1}^{m} q_k^2 = \pi^2$ so that (2.3.3) is exactly satisfied. The remaining restrictions on T (as on V) are then

(a) T must be orthonormal by columns,

(b) all $\text{Var}(R_i)$ calculated from (2.3.11) must be less than 1.0, and

(c) the variance of the $\text{Var}(R_i)$ must satisfy (2.3.4).

The algorithmic procedure for generating V (Appendix C) may be also used to generate a T satisfying the above three conditions for arbitrary n, m, $(q_k^2, k = 1, \ldots, m)$, μ_x, and σ_x.

After S_1 is generated, S_2 ($n \times (n_s - m)$) is generated in the same way as in the $e_x = 0$ method. First the elements of S_2 are generated as $N(0, 1)$ random numbers. The rows of S_2 are rescaled so that each row sum of squares of $S = (S_1 \ S_2)$ is unity, resulting in unit variance x variables. This completes the $e_x \neq 0$ method for generating S.

2.4. **Computer Generation of Data Samples**

x and y are $(n + m)$ random variables with a joint multivariate normal distribution. The mean vector is the null vector and the covariance matrix is I as given in equation (2.2.1). In order to draw samples from this distribution, it would be a straightforward procedure to use equation (2.2.3) which expresses x and y in terms of
independent \(N(0, 1) \) variables \(w \). For each simulated subject it would be necessary to generate \((n + m)\) independent \(N(0, 1) \) numbers and to place these in equation (2.2.3) as the \(w \) values. The sample \(x \) and \(y \) vectors would then be found by matrix multiplication.

This procedure, while conceptually simple, has the disadvantage that the computer time required increases linearly with \(N \), the sample size. The method is thus impossible to use for all but small sample sizes.

Another procedure was chosen instead. It is not based on generating sample vectors \(x \) and \(y \) at all but on generating a sample covariance matrix

\[
(2.4.1) \quad C = \begin{pmatrix} C_{xx} & C_{yx} \\ C_{xy} & C_{yy} \end{pmatrix}
\]

The method is the Bartlett decomposition of the Wishart distribution (Bartlett, 1933; Kshirsagar, 1959; Wijsman, 1957). The covariance matrix \(C \) has a Wishart distribution depending solely on the population covariance matrix \(\Sigma \), the sample size \(N \), and the number of variables which is \((n + m)\).

Let the population covariance matrix \(\Sigma \) be written as

\[
(2.4.2) \quad \Sigma = \Omega \Omega'
\]

This may be done in a variety of ways. The Gauss-Doolittle method for computing a triangular \(\Omega \) was used.

Let an \(((n + m) \times (n + m))\) matrix \(A \) be defined as

\[
(2.4.3) \quad A = (1/N) \ T \ T'
\]

where \(T \) is a lower triangular \(((n + m) \times (n + m))\) matrix
whose lower triangular elements are independent random variables:

\[
T_{ij} \ (i > j) \text{ are } N(0, 1)
\]

(2.4.4) \quad T_{ii} \text{ are } \chi(N - 1)

\[
T_{ij} = 0 \ (i < j)
\]

Then, if we compute

(2.4.5) \quad C = \Omega A \Omega' = (1/N) \Omega T T' \Omega',

C will have a Wishart distribution as desired. Equation (2.4.5) is the Bartlett decomposition of the Wishart matrix C. A is a sample covariance matrix from a population with identity covariance matrix. The letter A is used as a temporary symbol in this paragraph and is reserved for another use in Section 2.6. The generation of normal and chi variables is described in Appendix B.

2.5. Multiple Regression on the Predictors

The most widely used method for prediction is multiple regression. This least squares method ensures that, in the derivation sample, the correlation between the predicted score and the observed criterion score is a maximum. The maximum correlation is the multiple correlation.

Let the covariance matrix of the n predictors in the derivation sample (of size N) be \(C_{XX} \) \((n \times n)\) and let the column vector \(C_{XY} \) \((n \times 1)\) be the covariance between each predictor and the single criterion \((m = 1)\). Let the coefficients of the multiple regression combination of the predictors be \(b_1 \) \((n \times 1)\), the subscript indicating that the first method of prediction, multiple regression on the
predictors, is being used. The linear combination of the predictors is then \(b_1 x \).

The solution for \(b_1 \) is well known to be

\[
(2.5.1) \quad b_1 = c_{xx}^{-1} c_{xy}.
\]

The correlation between \(y = b_1' x \) and \(y \) is the multiple correlation. The square of this correlation is

\[
(2.5.2) \quad r^2 = \frac{b_1' c_{xy}}{c_{yy}}
\]

where \(c_{yy} \) is the sample variance of the criterion. The proof of this formula is presented in Appendix E. The subscript on \(r^2 \) is only used in this chapter to distinguish the three methods of prediction. The subscript is dropped in later chapters.

2.6. **Multiple Regression on the Principal Components**

As an alternative to the original predictors one can use the largest principal components of the predictors in the regression function. The scores on the principal components are first estimated from the predictor scores.

The following calculations are made in the derivation sample. The characteristic roots and vectors of the covariance matrix of the predictors, \(C_{xx} \) \((n \times n)\), are calculated. Let the roots be written in descending order on the diagonal of a diagonal matrix \(U^2 \) and the vectors in corresponding order as the columns of an orthonormal matrix \(W \). Then \(C_{xx} \) may be written as

\[
(2.6.1) \quad C_{xx} = W U^2 W'
\]

where all matrices are \((n \times n)\). The characteristic vectors
are the coefficients for relating the principal components, \(f \), to the predictors, i.e.

\[
(2.6.2) \quad f = W' \ x
\]

where \(x \) is the \((n \times 1)\) column vector of one subject's scores on the predictors and \(f \) is the \((n \times 1)\) column vector of the principal component scores (Anderson, 1958, pp. 273-277).

We wish to use the \(t \) largest principal components in the regression function. From (2.6.2), the scores on these \(t \) principal components are estimated by

\[
(2.6.3) \quad t(f) = t(W') \ x
\]

where \(t(f) \) is \((t \times 1)\) and is the vector of the first \(t \) elements of \(f \). \(t(W') \) is the matrix consisting of the first \(t \) rows of \(W' \).

The prediction equation, using the \(t \) largest principal components, is

\[
(2.6.4) \quad g(t) = d' \ t(f)
\]

where \(d \) is a temporary symbol representing the \(t \)-vector of weights for the principal components. The multiple regression solution for \(d \) is

\[
(2.6.5) \quad d = C_{ff}^{-1} \ C_{fy}
\]

in analogy to the solution (2.5.1). In (2.6.5), \(C_{ff} \) is \((t \times t)\) and \(C_{fy} \) is \((t \times 1)\). The covariance matrix of the \(t \) principal components is, from (2.6.3), (2.6.1), and the orthonormality of \(W' \),

\[
(2.6.6) \quad C_{ff} = t(W') \ C_{xx} (W)_t = t(U^2)_t
\]

and the covariance of the \(t \) principal components and the criterion is

\[
(2.6.7) \quad C_{fy} = t(W') \ C_{xy}
\]
Therefore the weight vector is

\[(2.6.8) \quad \mathbf{d} = (\mathbf{U}^{-2})_t \mathbf{t}^\top (\mathbf{W}') \mathbf{c}_{xy}. \]

Substituting (2.6.3) and (2.6.8) into (2.6.4), we find that

\[(2.6.9) \quad \mathbf{g}(t) = \mathbf{c}_{xy}' (\mathbf{W})_t \mathbf{t}^\top (\mathbf{U}^{-2})_t \mathbf{t}^\top (\mathbf{W}') \mathbf{x} \]

is the equation for predicting \(y \) from \(\mathbf{x} \) using regression on the \(t \) largest principal components of the predictors.

This equation may be simplified slightly by writing

\[(2.6.10) \quad \mathbf{A} = \mathbf{W} \mathbf{U} \]

so that (2.6.1) becomes

\[(2.6.11) \quad \mathbf{C}_{xx} = \mathbf{A} \mathbf{A}'. \]

Then (2.6.9) becomes

\[(2.6.12) \quad \mathbf{g}(t) = \mathbf{c}_{xy} (\mathbf{A}')^{-1} \mathbf{t}^\top (\mathbf{A}^{-1}) \mathbf{x}. \]

Equation (2.6.12) is the formula for predicting \(y \) from \(\mathbf{x} \) using regression on the \(t \) largest principal components. If we express the right hand side of this equation as \([\mathbf{b}_2(t)]' \mathbf{x} \), then the weight vector is

\[(2.6.13) \quad \mathbf{b}_2(t) = (\mathbf{A}')^{-1} \mathbf{t}^\top (\mathbf{A}^{-1}) \mathbf{c}_{xy}. \]

It is shown in Appendix E that the squared multiple correlation is

\[(2.6.14) \quad [r_2(t)]^2 = \frac{[\mathbf{b}_2(t)]' \mathbf{c}_{xy}}{\mathbf{c}_{yy}} \]

which is identical in form to (2.5.2) but of course involves \(\mathbf{b}_2(t) \) instead of \(\mathbf{b}_1 \). It is important to note that \(r_2(t) \) is not the multiple correlation of \(y \) with the predictors \(\mathbf{x} \). The latter multiple correlation is \(r_1 \).

The symbol \(r_2(t) \) represents the multiple correlation of \(y \)
and the \(t \) largest principal components of the predictors
and therefore \(r_2^{(t)} \) must be less than \(r_1 \) unless \(t = n \).
The subscript 2 is dropped in later chapters when the con-
text makes clear which method of prediction is used.

Multiple regression on the principal components may
be called a reduced rank method since the use of the
\(t \) largest principal components instead of the original
predictors is equivalent to approximating the matrix \(C_{xx} \)
by the matrix
\[
C_{xx} = (A)_t (A')_t
\]
The matrix \(C_{xx} \) is of reduced rank \(t < n \).

2.7. **Multiple Regression on the Principal Predictors**

Another method of calculating independent scores in
the derivation sample is the method of principal predictors.
Scores on the largest principal predictors are used in
the regression equation. The method is only applicable
if there are several criteria \((m > 1)\).

Let the scores of a subject on the \(m \) criteria be
\(y_1, \ldots, y_m \), which may be placed in a column vector \(y \)
\((m \times 1)\). Each criterion, \(y_j \), has a part, \(\varphi_j \), linearly
predictable from the \(n \) predictors, \(x \), in the derivation
sample:
\[
(2.7.1) \quad \varphi_j = \frac{c'_{xj}}{c_{yj}} C_{xx}^{-1} x
\]
where \(c_{yj} \) \((n \times 1)\) is the covariance of \(y_j \) with the
\(n \) predictors \(x \) and \(C_{xx} \) is the covariance of the predictors.
The \(m \) predictable parts of the criteria may be written
as a column vector \(\mathbf{q} \) (m x 1). Then equation (2.7.1) may be rewritten as

\[
(2.7.2) \quad \mathbf{q} = c_{yx} \mathbf{C}_{xx}^{-1} \mathbf{x} = c_{yx} \mathbf{C}_{xx}^{-1} \mathbf{x}
\]

where \(c_{yx} \) (m x n) is the covariance matrix of the m criteria with the n predictors. The covariance of the predictable parts is the (m x m) matrix \(\mathbf{C}_{yy} \):

\[
(2.7.3) \quad \mathbf{C}_{yy} = c_{yx} \mathbf{C}_{xx}^{-1} c_{yx}^t.
\]

Let us diagonalize \(\mathbf{C}_{yy} \) in analogy to the way that \(\mathbf{C}_{xx} \) was written in (2.6.1) and (2.6.11):

\[
(2.7.4) \quad \mathbf{C}_{yy} = \mathbf{V} \mathbf{D}_{yy}^2 \mathbf{V}' = \mathbf{G} \mathbf{G}'.
\]

The matrices \(\mathbf{V} \) and \(\mathbf{D}_{yy}^2 \) are sample estimates of the corresponding population matrices denoted by the same symbols in Sections 2.2 and 2.3. The eigenvalues \(\mathbf{D}_{yy}^2 \) are written in decreasing order in the diagonal of \(\mathbf{D}_{yy}^2 \) and the eigenvectors are written in the corresponding order as columns of \(\mathbf{V} \). The rows of \(\mathbf{G} \) are the coefficients for relating the predictable parts of the criteria and the principal predictors, i.e.

\[
(2.7.5) \quad \mathbf{q} = \mathbf{G} \mathbf{w}.
\]

Thus the equation for estimating the scores on the \(n \) principal predictors (column vector \(\mathbf{w} \) (m x 1)) from the predictable parts is

\[
(2.7.6) \quad \mathbf{w} = \mathbf{G}^{-1} \mathbf{q}
\]

which, combined with equation (2.7.2), gives

\[
(2.7.7) \quad \mathbf{w} = \mathbf{G}^{-1} c_{yx} \mathbf{C}_{xx}^{-1} \mathbf{x}
\]

as the equation for estimating \(\mathbf{w} \) from \(\mathbf{x} \).
The equation for estimating the t largest principal predictors $t(w)$ is

$$(2.7.8) \quad t(w) = t(G^{-1}) C_{yx}^{-1} x$$

where $t(G^{-1})$ is the first t rows of G^{-1}.

Note that w is a vector of numbers which can be calculated for each subject. The use here of w for the estimated principal predictor score vector should not be confused with the use of w, in Section 2.2, for the principal predictors, a random vector in the population.

Since the principal predictors are uncorrelated in the derivation sample the multiple regression weights for predicting each y_j from the principal predictors are simply the rows of the pattern matrix G as shown in (2.7.5). Each row of G is the weight vector for one criterion variable. The coefficients G are still the correct weights when only some of the principal predictors are included in the regression. If the t largest principal predictors are included, the predicted parts of the criteria are

$$(2.7.9) \quad \hat{q}_j^{(t)} = (G)_t t(w) .$$

In order to express this equation in terms of the original predictor scores as

$$(2.7.10) \quad \hat{q}_j^{(t)} = B_j^t x ,$$

equations (2.7.9) and (2.7.8) may be combined, yielding

$$(2.7.11) \quad B_j = C_{xx}^{-1} C_{xy} (G')_t t(G') .$$

It is shown in Appendix E that the squared multiple correlation of the j^{th} criterion variable y_j is

$$(2.7.12) \quad [r_{3j}^{(t)}]^2 = \frac{(B_j C_{xy})_j}{C_{yy} y_j^2}$$
which is identical in form to (2.5.2) and (2.6.14) except that there is one such equation for each criterion variable y_j. As was the case with regression on the principal components, the multiple correlation $r_{3j}^{(t)}$ is not the multiple correlation of y_j with x but is the multiple correlation of y_j and the t largest principal predictors. The correlation $r_{3j}^{(t)}$ is always less than or equal to r_{1j}.

The subscript j is dropped in later chapters.

Multiple regression on the principal predictors, as on the principal components, is a reduced rank method. The use of the t largest principal predictors instead of all m principal predictors is equivalent to approximating the matrix C_{yy} by the matrix

$$(2.7.13) \quad \hat{C}_{yy} = (G)_t t(G') .$$

The matrix \hat{C}_{yy} is of reduced rank $t < n$.

It was pointed out after equation (2.7.4) that the eigenvalues of C_{yy} are estimates of the population parameters $(D^2_{kk}, k = 1, \ldots, m)$. In order to estimate π^2 and $(q^2_k, k = 1, \ldots, m)$ it is natural to require that the covariance matrices be changed to correlation matrices. The correlations of the predictors x and the principal predictors w are given by the $(n \times m)$ sample matrix

$S_1 = C_{xw}$. S_1 may be written as

$$(2.7.14) \quad S_1 = C_{xw} = C_{xx} C^{-1}_{xx} C_{xy} (G')^{-1} = C_{xy} (G')^{-1}$$

by equation (2.7.7).

The sample quantity q^2_k is the average dependence of the predictors on the k^{th} principal predictor and is
therefore, since the predictors have unit variance by the use of correlation matrices, given by

\[(2.7.15) \text{ sample } q_k^2 = \sum_{i=1}^{n} S_{1ik}^2.\]

Similarly the sample estimate of \(\pi^2 \), the average criterion-related predictor variance is the sum of the squares of all the elements of \(S_1 \) divided by \(n \) and is

\[(2.7.16) \text{ sample } \pi^2 = (1/n) \sum_{k=1}^{m} \sum_{i=1}^{n} S_{1ik}^2,
= (1/n) \sum_{k=1}^{m} \text{ sample } q_k^2.\]

2.8. Cross-Validities

The calculation of correlations in the validation sample is identical for all three weight computational methods. Given the weight vector \(b \) from the derivation sample, the square of the correlation between \(b'x \) and a criterion variable \(y \) in the validation sample is

\[(2.8.1) \quad r_c^2 = \frac{(b' \hat{c}_{xy})^2}{(b' \hat{c}_{xx} b) \hat{c}_{yy}}\]

where \(\hat{c}_{xy}, \hat{c}_{xx} \) and \(\hat{c}_{yy} \) are covariances computed in the validation sample. The proof of this formula is given in Appendix E. The quantity \(r_c^2 \) is called the sample cross-validity and may be negative or positive. The sign of \(r_c^2 \) is equal to the sign of \(b' \hat{c}_{xy} \). The sign of \(r_c^2 \) is also affixed to \(r_c^2 \) when averages of several \(r_c^2 \) are taken.

The predictor weight vector \(b \), calculated in the derivation sample, may also be applied to the population.
The square of the correlation between $b'\ x$ and the criterion variable y in the population is

$$p^2 = \frac{(b'\ \sigma_{xy})^2}{(b'\ \sigma_{xx}b)\ \sigma_{yy}}$$

This formula is identical to (2.8.1) except for the use of population covariances instead of sample covariances. p_c is called the population cross-validity. A sign is affixed to p^2_c in the same way as to r^2_c.

The three statistics, r^2 (in its several forms), r^2_c, and p^2_c are called the correlation statistics. These statistics are the principal quantities computed in the experiments described in Chapters 3 and 4.
CHAPTER 3

SIMULATION RESULTS WITH ONE CRITERION VARIABLE

A number of experiments were performed using a single criterion variable. The two methods of prediction used were multiple regression on the predictors and on the principal components of the predictors. The model and sample generation methods described in Sections 2.2 and 2.3 are applicable to the single criterion case ($m = 1$). However, in order to generate many samples without excessive use of computer time, a special procedure for the $m = 1$ case was developed. This procedure, described in detail in Appendix D, allows any number of criterion variables to be generated, each with the same population multiple correlation and each with the same relation to the predictors. The criterion variables are thus all duplicates of the single criterion of interest. The number of such duplicates is denoted by m_d.

As an example, suppose that there are five predictors and ten duplicate criteria. Then, in a sample, one can compute ten multiple correlations, one for each criterion. These ten correlations are all based on one sample (size N) of five predictor scores but on ten different samples of single criterion scores.

Each calculation described in this chapter is based on one or more populations (Ξ) generated for each combination of the input parameters. For each Ξ that was generated,
sample covariance matrices were generated in pairs (C_1, C_2), representing the two samples needed for double cross-validation. E, C_1, and C_2 are the covariance matrices of $(n + m_d)$ variables—n predictors and m_d duplicate criteria. Except in Section 3.4, at least two such pairs of sample covariance matrices were generated. This allowed variation in the predictor sample covariance matrices.

The results using the simulation program described in this chapter are:

(a) When $\rho = 0$, the sample multiple correlation follows the known theoretical law. (Section 3.1)

(b) When $\rho \neq 0$, variation in E_{xx} produced by change in the number of columns of S does not affect the correlation statistics r^2, r_c^2, and ρ_c^2. (Section 3.2)

(c) The correlation statistics depend on n, N, and ρ^2 in theoretically understandable ways. Tables are presented which may be used to interpret sample multiple correlations and cross-validities. (Section 3.3)

(d) The optimum number of principal components to include in the regression function depends on the parameters n, N, ρ^2, and π^2. (Section 3.4)

3.1. Distribution of the Correlation Statistics When $\rho = 0$

It is useful to study populations in which the multiple correlation (ρ) is zero even though such populations are of little practical significance. Firstly, the distributions of the correlation statistics when $\rho = 0$ provide a baseline against which to compare the distributions obtained for
non-zero ρ. Secondly, some properties of the distributions for ρ = 0 are known theoretically and a comparison of the distributions obtained from the computer model for ρ = 0 with the theoretical predictions provides a check of the model and the computer calculations.

Fisher (1928) showed that, if r is the sample multiple correlation,

$$r^2 \frac{N - n - 1}{1 - r^2} \frac{n}{n}$$

(3.1.1) is distributed as $F(n, N - n - 1)$ when $\rho = 0$. This distribution has the important property that it is independent of the covariance matrix of the predictors, Σ_{xx}. The distribution of the sample cross-validity, r_c, is not known but its expected value is zero and its distribution is symmetric. Presumably its distribution is also independent of Σ_{xx}. Finally, the population cross-validity, ρ_c, is exactly zero since $\sigma_{xy} = 0$.

An effective simulation of multiple regression should be able to reproduce these properties. The distributions of r^2 and r_c^2 were studied for two different sample sizes, N, and for predictor covariance matrices, Σ_{xx}, varying in two ways, namely in the values of the parameters π^2 and n_s. π^2 is the average of the variances of the part of each predictor dependent on the principal predictor; n_s is the number of columns of the S matrix. Two values of n_s were used—$n_s = 10$ implies a square S matrix since $n = 10$ and $n_s = 20$ implies a non-square S matrix.

The input parameters which were constant for all
the calculations in this section are shown in Table 1. Table 2 shows the variable model parameters and sample sizes and also the total number of populations and samples calculated for each model. According to Table 2 four different Es were generated for each model, and for each E generated, three double cross-validations were performed. Since ten duplicate criteria were used throughout ($m_d = 10$), there were altogether $10 \times 4 \times 3 \times 2 = 240$ sample multiple correlations and cross-validities computed for each model. The final factor of two in the preceding expression represents the two samples (C_1, C_2) which were generated for each double cross-validation.

In order to test whether r^2 satisfies the Fisher distribution law (3.1.1), it is necessary to have a tabulation of $F(10, 39)$ for Models 1 and 2 and $F(10, 130)$ for Models 3 and 4. These distributions were obtained directly, or by interpolation, from Owen (1962). From (3.1.1), r^2 is distributed as

$$
(3.1.2) \quad \frac{n F(n, N - n - 1)}{(N - n - 1) + n F(n, N - n - 1)}
$$

The percentage points used (those available in Owen) and the corresponding percentile points of the F and r^2 distributions are shown in Tables 3 and 4.

The four Es and associated samples for each model were divided equally into two sets, chosen in the order that they were computed. The cumulative frequency distribution of the 120 sample squared multiple correlations, r^2, are presented in Tables 3 and 4. Each set of 120
Table 1

Constant Parameters for Section 3.1

\[n = 10 \]
\[m_d = 10 \quad (m = 1) \]
\[\rho^2 = 0.0 \]
\[v_x = 0.01 \]
\[e_x = 0.0 \]
\[v_y, e_y \text{ inapplicable since } m = 1 \]

Table 2

Variable Parameters for Section 3.1

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_s)</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(\pi^2)</td>
<td>.2</td>
<td>.2</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>number of (E)s</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(N)</td>
<td>50</td>
<td>50</td>
<td>131</td>
<td>131</td>
</tr>
<tr>
<td>number of (C_1, C_2) pairs per (E)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 3

Distribution of r^2 for Models 1 and 2

<table>
<thead>
<tr>
<th>Prob-ability</th>
<th>F(10, 39) r^2</th>
<th>Cumulative Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>1.050</td>
<td>1.000</td>
<td>120</td>
</tr>
<tr>
<td>.975</td>
<td>2.401 .381</td>
<td>117</td>
</tr>
<tr>
<td>.95</td>
<td>2.086 .348</td>
<td>114</td>
</tr>
<tr>
<td>.90</td>
<td>1.769 .312</td>
<td>108</td>
</tr>
<tr>
<td>.75</td>
<td>1.329 .254</td>
<td>90</td>
</tr>
<tr>
<td>.50</td>
<td>.951 .196</td>
<td>60</td>
</tr>
<tr>
<td>.25</td>
<td>.664 .145</td>
<td>30</td>
</tr>
<tr>
<td>.10</td>
<td>.469 .107</td>
<td>12</td>
</tr>
<tr>
<td>.05</td>
<td>.375 .0878</td>
<td>6</td>
</tr>
<tr>
<td>.025</td>
<td>.307 .0729</td>
<td>3</td>
</tr>
<tr>
<td>.000</td>
<td>.000 .0000</td>
<td>0</td>
</tr>
</tbody>
</table>

MD = maximum absolute difference (observed - expected) 10 10 8 4

Kolmogorov-Smirnov D = MD/120 0.083 0.083 0.067 0.033
Table 4

Distribution of r^2 for Models 3 and 4

<table>
<thead>
<tr>
<th>Prob-ability $F(10,120) r^2$</th>
<th>Cumulative Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 3</td>
</tr>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>1.000</td>
<td>1.0000</td>
</tr>
<tr>
<td>.975</td>
<td>2.157</td>
</tr>
<tr>
<td>.95</td>
<td>1.911</td>
</tr>
<tr>
<td>.90</td>
<td>1.652</td>
</tr>
<tr>
<td>.75</td>
<td>1.279</td>
</tr>
<tr>
<td>.50</td>
<td>.939</td>
</tr>
<tr>
<td>.25</td>
<td>.670</td>
</tr>
<tr>
<td>.10</td>
<td>.480</td>
</tr>
<tr>
<td>.05</td>
<td>.388</td>
</tr>
<tr>
<td>.025</td>
<td>.318</td>
</tr>
<tr>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

MD = maximum absolute difference (observed - expected)

Kolmogorov-Smirnov D = MD/120

<table>
<thead>
<tr>
<th></th>
<th>.050</th>
<th>.075</th>
<th>.025</th>
<th>.075</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
squared multiple correlations originated in six sample covariance matrices for each of two Es. There were ten duplicate criteria in each sample.

The observed frequency distributions were compared with the expected distributions by the Kolmogorov-Smirnov one sample test (Siegel, 1956). MD is the maximum absolute difference between observed and expected cumulative frequencies and \(D = \frac{MD}{120} \) is the Kolmogorov-Smirnov statistic. Both values are presented in the tables. The critical \(D \) for the one sample, two tailed test is 0.12 (\(\alpha = 0.05, N = 120 \)). None of the Ds in Tables 3 and 4 exceeds this value. There is therefore good evidence that the multiple correlations generated by the simulation program satisfy the Fisher law.

The means and standard deviations of the eight sets of cross-validities (120 in each set) are presented in Table 5. The t values are also shown. The critical t for a two tailed test is 1.98 (\(\alpha = 0.05, df = 119 \)). The cross-validities do not have mean zero by this test since two of the ts exceed the critical value and one other is almost at the critical value. If the models with the same sample size are combined the ts are +1.38 (Models 1 and 2) and -1.49 (Models 3 and 4). The critical t is now 1.96 (df = 479). It is apparent that the powerful t test is able to show small imperfections in the simulation procedure.

The calculations in this section have shown that when the population multiple correlation is zero, the sample statistics obey, at least to a certain extent, the
Table 5
Cross-Validities for Models 1 to 4

<table>
<thead>
<tr>
<th>Model</th>
<th>Set</th>
<th>Mean r_c^2</th>
<th>Standard Deviation</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>.00168</td>
<td>.0402</td>
<td>.46</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>.00439</td>
<td>.0222</td>
<td>2.16*</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>.00232</td>
<td>.0405</td>
<td>.63</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>.00068</td>
<td>.0378</td>
<td>.20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-.00232</td>
<td>.0095</td>
<td>-2.66*</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>.00228</td>
<td>.0129</td>
<td>1.94</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-.00146</td>
<td>.0147</td>
<td>-1.08</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-.00213</td>
<td>.0149</td>
<td>-1.56</td>
</tr>
</tbody>
</table>

Note: Each r_c^2 entering into the mean has the same sign as the corresponding r_c.

* $p < .05$
theoretically known distributions. The function (3.1.1) of the sample multiple correlation has an F distribution and the mean value of the cross-validity is approximately zero.

3.2. **Dependence of the Correlation Statistics on Σ_{xx}**

When $\rho \neq 0$

It was shown in Section 2.2 and Appendix A that the average squared population multiple correlation, ρ^2, depends only on the $(D_{kk}, k = 1, \ldots, m)$ (equation 2.2.11) and not on matrix S. In particular, when there is only one criterion ($m = 1$), the squared population multiple correlation of the criterion with the predictors is

$$\rho^2 = \frac{D_{11}^2}{S_{11}}$$ \hspace{1cm} (3.2.1)

Since D_{11}^2 is an input parameter it is therefore straightforward to specify an arbitrary ρ^2 for a desired population. Unfortunately, this simple specification of ρ^2 is only possible when the matrix S is square. When S is non-square, say with n_s columns, then ρ^2 is given by

$$\rho^2 = \frac{D_{11}^2}{S_{11}} \frac{S_{1}'}{(S S')^{-1} S_{1}}$$ \hspace{1cm} (3.2.2)

which depends on the matrix S. The vector S_{1} is the first column of S (equation 2.2.15). Since S is generated to some extent randomly by the population generation procedure, it is impossible to specify by input parameters what the population multiple correlation will be. This is a severe limitation on the model if S is not square.

Because of the ease in specifying ρ^2, the models in the remaining sections of this study all employ square S matrices. In order to show, at least to a certain extent, that this does not effect the generality of the conclusions,
Some experiments are described in this section which compare the correlation statistics of square S and non-square S models. A further comparison is made of two models which differ only in the parameter π^2.

The input parameters which were constant for all the calculations in this section are shown in Table 6.

Table 6

Constant Parameters for Section 3.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
</tr>
<tr>
<td>m_d</td>
<td>10 ($m = 1$)</td>
</tr>
<tr>
<td>v_x</td>
<td>0.01</td>
</tr>
<tr>
<td>e_x</td>
<td>0.00</td>
</tr>
<tr>
<td>v_y, e_y</td>
<td>inapplicable since $m = 1$</td>
</tr>
<tr>
<td>N</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 7 shows the variable parameters and the total number of populations and samples calculated for each of the ten models. Models 5 and 6 are square S models differing only in π^2. Two populations were generated for each model and three sample pairs for each population. This results in $10 \times 2 \times 3 \times 2 = 120$ sample correlations for each model.

Each of the four remaining model pairs differ only in n_s, one model of each pair has square S and the other model has non-square S. The squared population multiple correlation, ρ^2, is identical for the model in each pair. The identity holds to six or seven decimal places even
Table 7
Variable Parameters for Section 3.2

<table>
<thead>
<tr>
<th>Model</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_s)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>(\rho^2)</td>
<td>.5</td>
<td>.5</td>
<td>.234</td>
<td>.234</td>
<td>.311</td>
<td>.311</td>
<td>.438</td>
<td>.438</td>
<td>.495</td>
<td>.495</td>
</tr>
<tr>
<td>(\pi^2)</td>
<td>.2</td>
<td>.5</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>number of (\Sigma)s</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>number of (C_1, C_2) pairs per (\Sigma)</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
though only three are shown in Table 7. The identity was produced in the following way. As explained above, ρ^2 is not an input parameter. The input D_{11}^2 is equal to ρ^2 only for square S models. The non-square S Models 8, 10, 12, and 14 were generated using $D_{11}^2 = 0.5$. The population squared multiple correlation, ρ^2, was calculated for each model by (3.2.2). These are the values in Table 7. These computed values were used as the input D_{11}^2 for the square S Models 7, 9, 11, and 13. Since only one Σ could be generated for each set of parameters, six C_1, C_2 pairs were generated instead of three. This means that $10 \times 1 \times 6 \times 2 = 120$ sample correlations were generated, the same number as for Models 5 and 6.

The frequency distributions of the 120 correlations for each model are presented in Tables 8 (r^2), 9 (r_c^2), and 10 (ρ_c^2). The maximum absolute difference, MD, and the Kolmogorov-Smirnov statistic D are also presented for each pair of models. The critical D for the two sample test, two tailed, is $0.18 (\alpha = 0.05, N = 120)$. None of the sample values exceeds this value although two approach it. It can be safely stated that for these examples the variation in Σ_{xx} has not produced differences in the observed distributions of the correlation statistics. This conclusion is further confirmed by the comparison of the means of the pairs of distributions as shown in Table 11. The critical t value for a two tailed test is $1.98 (\alpha = 0.05, df = 119)$ and none of the sample ts exceeds this value.
Table 8
Cumulative Frequency Distribution of r^2

for Models 5 to 14

<table>
<thead>
<tr>
<th>r^2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>.85</td>
<td>120</td>
</tr>
<tr>
<td>.80</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>.75</td>
<td>108</td>
<td>111</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>.70</td>
<td>101</td>
<td>93</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>.65</td>
<td>76</td>
<td>68</td>
<td>119</td>
<td>120</td>
<td>120</td>
<td>116</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>.60</td>
<td>44</td>
<td>48</td>
<td>118</td>
<td>117</td>
<td>117</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>.55</td>
<td>31</td>
<td>29</td>
<td>115</td>
<td>113</td>
<td>113</td>
<td>99</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>.50</td>
<td>18</td>
<td>17</td>
<td>104</td>
<td>105</td>
<td>105</td>
<td>69</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>.45</td>
<td>8</td>
<td>4</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>.40</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>.35</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>.30</td>
<td>0</td>
</tr>
<tr>
<td>.25</td>
<td>0</td>
</tr>
<tr>
<td>.20</td>
<td>11</td>
<td>21</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>.15</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>.10</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.05</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.00</td>
<td>0</td>
</tr>
</tbody>
</table>

MD 8 21 13 12 6

D .067 .175 .109 .100 .050
Table 9

Cumulative Frequency Distribution of r^2_c for Models 5 to 14

<table>
<thead>
<tr>
<th>Model</th>
<th>r^2_c</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>.70</td>
<td>120</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.65</td>
<td>119</td>
<td>115</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.60</td>
<td>112</td>
<td>105</td>
<td></td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.55</td>
<td>102</td>
<td>83</td>
<td>120</td>
<td>119</td>
<td>120</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>72</td>
<td>68</td>
<td>120</td>
<td>119</td>
<td>116</td>
<td>118</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.45</td>
<td>55</td>
<td>56</td>
<td>118</td>
<td>118</td>
<td>113</td>
<td>110</td>
<td>74</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.40</td>
<td>38</td>
<td>29</td>
<td>112</td>
<td>113</td>
<td>104</td>
<td>100</td>
<td>59</td>
<td>61</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.35</td>
<td>27</td>
<td>18</td>
<td>106</td>
<td>111</td>
<td>88</td>
<td>86</td>
<td>43</td>
<td>42</td>
<td>13</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>.30</td>
<td>14</td>
<td>10</td>
<td>99</td>
<td>102</td>
<td>64</td>
<td>68</td>
<td>25</td>
<td>26</td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td>8</td>
<td>4</td>
<td>88</td>
<td>96</td>
<td>44</td>
<td>53</td>
<td>13</td>
<td>17</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td>2</td>
<td>2</td>
<td>66</td>
<td>81</td>
<td>22</td>
<td>35</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>.15</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>52</td>
<td>12</td>
<td>25</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>.10</td>
<td>31</td>
<td>36</td>
<td>7</td>
<td>18</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.00</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.05</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.10</td>
<td></td>
</tr>
</tbody>
</table>

MD: 19 15 13 9 11

D: .158 .125 .109 .075 .092
Table 10
Cumulative Frequency Distribution of p^2_c
for Models 5 to 14

<table>
<thead>
<tr>
<th>p^2_c</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>.500</td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>.475</td>
<td>82</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td>99</td>
</tr>
<tr>
<td>.450</td>
<td>53</td>
<td>56</td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
<td>59</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.425</td>
<td>31</td>
<td>33</td>
<td></td>
<td>113</td>
<td>107</td>
<td>29</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.400</td>
<td>18</td>
<td>16</td>
<td></td>
<td>78</td>
<td>71</td>
<td>18</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.375</td>
<td>13</td>
<td>7</td>
<td></td>
<td>47</td>
<td>37</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.350</td>
<td>8</td>
<td>3</td>
<td></td>
<td>28</td>
<td>21</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.325</td>
<td>6</td>
<td>2</td>
<td></td>
<td>120</td>
<td>120</td>
<td>14</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>.300</td>
<td>3</td>
<td>0</td>
<td></td>
<td>108</td>
<td>114</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.275</td>
<td>1</td>
<td></td>
<td></td>
<td>82</td>
<td>81</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.250</td>
<td>1</td>
<td></td>
<td>120</td>
<td>120</td>
<td>57</td>
<td>52</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.225</td>
<td>1</td>
<td></td>
<td>118</td>
<td>113</td>
<td>24</td>
<td>32</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.200</td>
<td>1</td>
<td></td>
<td>88</td>
<td>91</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.175</td>
<td>1</td>
<td></td>
<td>65</td>
<td>65</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.150</td>
<td>1</td>
<td></td>
<td>37</td>
<td>45</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>0</td>
<td></td>
<td>18</td>
<td>32</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.100</td>
<td>9</td>
<td></td>
<td>15</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.075</td>
<td>4</td>
<td></td>
<td>10</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.050</td>
<td>3</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.025</td>
<td>2</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.000</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- .025</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MD | 11 | 14 | 8 | 10 | 12 |
D | .092| .117| .067| .083| .100|
<table>
<thead>
<tr>
<th>Model</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>.563</td>
<td>.571</td>
<td>.328</td>
<td>.300</td>
<td>.416</td>
<td>.389</td>
<td>.527</td>
<td>.506</td>
<td>.571</td>
<td>.560</td>
</tr>
<tr>
<td>S. D.</td>
<td>.100</td>
<td>.097</td>
<td>.104</td>
<td>.116</td>
<td>.101</td>
<td>.127</td>
<td>.104</td>
<td>.112</td>
<td>.101</td>
<td>.106</td>
</tr>
<tr>
<td>t</td>
<td>-.691</td>
<td>1.938</td>
<td>1.815</td>
<td>1.502</td>
<td>.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>.449</td>
<td>.471</td>
<td>.188</td>
<td>.174</td>
<td>.287</td>
<td>.267</td>
<td>.408</td>
<td>.394</td>
<td>.473</td>
<td>.460</td>
</tr>
<tr>
<td>S. D.</td>
<td>.112</td>
<td>.117</td>
<td>.117</td>
<td>.115</td>
<td>.108</td>
<td>.130</td>
<td>.132</td>
<td>.122</td>
<td>.105</td>
<td>.120</td>
</tr>
<tr>
<td>t</td>
<td>-1.464</td>
<td>.927</td>
<td>1.335</td>
<td>.830</td>
<td>.656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>.441</td>
<td>.444</td>
<td>.166</td>
<td>.158</td>
<td>.251</td>
<td>.246</td>
<td>.376</td>
<td>.384</td>
<td>.444</td>
<td>.448</td>
</tr>
<tr>
<td>S. D.</td>
<td>.055</td>
<td>.038</td>
<td>.043</td>
<td>.052</td>
<td>.041</td>
<td>.048</td>
<td>.044</td>
<td>.040</td>
<td>.040</td>
<td>.028</td>
</tr>
<tr>
<td>t</td>
<td>-.457</td>
<td>1.254</td>
<td>.976</td>
<td>-1.491</td>
<td>-.867</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the simulation model, the population multiple correlation is independent of ρ^2, the average predictor variance related to the criteria. The comparison of Models 5 and 6 confirmed that the sample statistics are independent of ρ^2. Even though the population multiple correlation does depend on the matrix S if it is not square, it was shown that the correlation statistics are not affected by the matrix S for the models considered in this section. All further calculations in this study involve square S models only.

3.3. Dependence of the Correlation Statistics on n, N, and ρ^2

The cross-validation technique was developed as a way to correct a sample multiple correlation (Mosier, 1951). The purpose of the calculations described in this section was to investigate empirically the relationship of the sample multiple correlation and the cross-validities to the population multiple correlation.

The parameters which were constant for all the calculations in this section are shown in Table 12. Table 13 indicates the values of the three parameters which were varied. All possible combinations of squared multiple correlations, ρ^2, number of predictors, n, and sample size, N, were used except for those combinations with (n, N) = (15, 16). A different model was generated for each combination of $(\rho^2$, n, $N)$ so that the models for combinations differing only in N are different models.
Table 12

Constant Parameters for Section 3.3

\[m = 1 \]
\[n_S = n \text{ (square } S \text{ matrix)} \]
\[n^2 = 0.5 \]
\[\nu_x = 0.01 \]
\[e_x = 0.0 \]
\[\nu_y, e_y \text{ inapplicable since } m = 1 \]

Table 13

Variable Parameters for Section 3.3

\[n = 2, 5, 10, 15 \]
\[\rho^2 = 0.0, 0.1, 0.25, 0.5, 0.75 \]
\[N = 16, 26, 50, 131 \]

models with \((n, N) = (15, 16) \ (10, 16) \text{ all others}\)

<table>
<thead>
<tr>
<th>m_d</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of (\xi)s</td>
<td>not done</td>
<td>1</td>
</tr>
<tr>
<td>number of (C_1, C_2) pairs per (\xi)</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
In all cases 40 sample correlations were obtained. The means of the 40 correlations of each type \((r^2, r_c^2, \text{and } \rho_c^2)\) are shown in Tables 14 to 17. The expected values \(E(r^2)\) as calculated from (1.2.10) are also shown in these tables. The standard errors of the correlation means range from 0.0 to 0.02 for \(r^2\) and \(r_c^2\) and somewhat less for \(\rho_c^2\). However, this standard error does not take into account variation which would be produced by another population generated from the same parameters. Table 13 indicates that only one \(\Sigma\) was generated for each parameter combination. Nevertheless the tables give a useful picture of the dependence of the three correlation statistics on \(\rho^2, N, \text{and } n\).

The following observations may be made from the tables:

(a) The squared sample multiple correlation, \(r^2\), is an overestimate of \(\rho^2\). The expected values of \(r^2, E(r^2)\), from (1.2.10) match the observed \(r^2\) values very well. The first two terms of the expansion (1.2.11) may be rearranged to show that the bias in \(E(r^2)\) is a simple function of \(n, N, \text{and } \rho^2:\)

\[
E(r^2) - \rho^2 = \frac{n}{N - 1} (1 - \rho^2) .
\]

The match of \(E(r^2)\) and \(r^2\) shows that formulas (1.2.13) and (1.2.7), which are essentially backward solutions of (1.2.10), provide reasonable estimates of the squared population multiple correlation.

(b) The squared sample cross-validity, \(r_c^2\), is generally an underestimate of \(\rho^2\) and this bias (except for
Table 14
Correlation Statistics for Sample Size $N = 10$

<table>
<thead>
<tr>
<th>ρ^2</th>
<th>0.00</th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{E}(r^2)$</td>
<td>0.133</td>
<td>0.211</td>
<td>0.331</td>
<td>0.541</td>
<td>0.763</td>
</tr>
<tr>
<td>r^2</td>
<td>0.160</td>
<td>0.189</td>
<td>0.329</td>
<td>0.593</td>
<td>0.805</td>
</tr>
<tr>
<td>r_c^2</td>
<td>0.029</td>
<td>0.121</td>
<td>0.217</td>
<td>0.534</td>
<td>0.763</td>
</tr>
<tr>
<td>ρ_c^2</td>
<td>0.000</td>
<td>0.056</td>
<td>0.191</td>
<td>0.468</td>
<td>0.731</td>
</tr>
</tbody>
</table>

$n = 2$

$\mathbb{E}(r^2)$	0.333	0.393	0.485	0.647	0.818
r^2	0.307	0.409	0.450	0.669	0.866
r_c^2	0.014	0.086	0.104	0.372	0.691
ρ_c^2	0.000	0.027	0.107	0.351	0.648

$n = 5$

$\mathbb{E}(r^2)$	0.667	0.696	0.743	0.823	0.909
r^2	0.680	0.666	0.744	0.821	0.908
r_c^2	-0.035	0.003	0.047	0.300	0.523
ρ_c^2	0.000	0.009	0.041	0.217	0.489

$n = 10$
Table 15
Correlation Statistics for Sample Size N = 26

<table>
<thead>
<tr>
<th>(\rho^2)</th>
<th>.00</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E((r^2))</td>
<td>.080</td>
<td>.166</td>
<td>.297</td>
<td>.523</td>
<td>.757</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.073</td>
<td>.183</td>
<td>.372</td>
<td>.542</td>
<td>.805</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>.016</td>
<td>.125</td>
<td>.317</td>
<td>.491</td>
<td>.788</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.076</td>
<td>.226</td>
<td>.480</td>
<td>.738</td>
</tr>
<tr>
<td>n = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E((r^2))</td>
<td>.200</td>
<td>.275</td>
<td>.389</td>
<td>.585</td>
<td>.789</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.188</td>
<td>.277</td>
<td>.400</td>
<td>.565</td>
<td>.733</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>-.013</td>
<td>.059</td>
<td>.204</td>
<td>.384</td>
<td>.642</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.046</td>
<td>.161</td>
<td>.413</td>
<td>.710</td>
</tr>
<tr>
<td>n = 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E((r^2))</td>
<td>.400</td>
<td>.456</td>
<td>.542</td>
<td>.689</td>
<td>.841</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.409</td>
<td>.455</td>
<td>.567</td>
<td>.685</td>
<td>.855</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>-.010</td>
<td>.012</td>
<td>.145</td>
<td>.335</td>
<td>.642</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.016</td>
<td>.102</td>
<td>.311</td>
<td>.629</td>
</tr>
<tr>
<td>n = 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E((r^2))</td>
<td>.600</td>
<td>.637</td>
<td>.694</td>
<td>.792</td>
<td>.894</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.604</td>
<td>.648</td>
<td>.669</td>
<td>.804</td>
<td>.888</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>.009</td>
<td>.030</td>
<td>.050</td>
<td>.252</td>
<td>.425</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.012</td>
<td>.050</td>
<td>.199</td>
<td>.476</td>
</tr>
</tbody>
</table>
Table 16
Correlation Statistics for Sample Size N = 50

<table>
<thead>
<tr>
<th>ρ^2</th>
<th>.00</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E(r^2)$</td>
<td>0.041</td>
<td>0.133</td>
<td>0.274</td>
<td>0.511</td>
<td>0.753</td>
</tr>
<tr>
<td>r^2</td>
<td>0.037</td>
<td>0.139</td>
<td>0.276</td>
<td>0.524</td>
<td>0.738</td>
</tr>
<tr>
<td>r_c^2</td>
<td>0.002</td>
<td>0.107</td>
<td>0.239</td>
<td>0.496</td>
<td>0.733</td>
</tr>
<tr>
<td>ρ_c^2</td>
<td>0.000</td>
<td>0.079</td>
<td>0.233</td>
<td>0.485</td>
<td>0.746</td>
</tr>
<tr>
<td>$n = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E(r^2)$</td>
<td>0.102</td>
<td>0.189</td>
<td>0.320</td>
<td>0.542</td>
<td>0.769</td>
</tr>
<tr>
<td>r^2</td>
<td>0.092</td>
<td>0.182</td>
<td>0.350</td>
<td>0.547</td>
<td>0.765</td>
</tr>
<tr>
<td>r_c^2</td>
<td>0.037</td>
<td>0.079</td>
<td>0.218</td>
<td>0.468</td>
<td>0.720</td>
</tr>
<tr>
<td>ρ_c^2</td>
<td>0.000</td>
<td>0.057</td>
<td>0.198</td>
<td>0.453</td>
<td>0.725</td>
</tr>
<tr>
<td>$n = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E(r^2)$</td>
<td>0.204</td>
<td>0.281</td>
<td>0.397</td>
<td>0.594</td>
<td>0.795</td>
</tr>
<tr>
<td>r^2</td>
<td>0.202</td>
<td>0.263</td>
<td>0.399</td>
<td>0.634</td>
<td>0.790</td>
</tr>
<tr>
<td>r_c^2</td>
<td>0.005</td>
<td>0.063</td>
<td>0.137</td>
<td>0.476</td>
<td>0.694</td>
</tr>
<tr>
<td>ρ_c^2</td>
<td>0.000</td>
<td>0.042</td>
<td>0.136</td>
<td>0.418</td>
<td>0.693</td>
</tr>
<tr>
<td>$n = 15$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E(r^2)$</td>
<td>0.306</td>
<td>0.373</td>
<td>0.474</td>
<td>0.646</td>
<td>0.821</td>
</tr>
<tr>
<td>r^2</td>
<td>0.327</td>
<td>0.353</td>
<td>0.483</td>
<td>0.659</td>
<td>0.806</td>
</tr>
<tr>
<td>r_c^2</td>
<td>-0.003</td>
<td>0.033</td>
<td>0.160</td>
<td>0.350</td>
<td>0.666</td>
</tr>
<tr>
<td>ρ_c^2</td>
<td>0.000</td>
<td>0.027</td>
<td>0.116</td>
<td>0.350</td>
<td>0.671</td>
</tr>
</tbody>
</table>
Table 17
Correlation Statistics for Sample Size \(N = 131 \)

<table>
<thead>
<tr>
<th>(\rho^2)</th>
<th>.00</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E(r^2))</td>
<td>.015</td>
<td>.113</td>
<td>.259</td>
<td>.504</td>
<td>.751</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.014</td>
<td>.118</td>
<td>.241</td>
<td>.526</td>
<td>.764</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>.001</td>
<td>.101</td>
<td>.235</td>
<td>.515</td>
<td>.761</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.091</td>
<td>.246</td>
<td>.496</td>
<td>.748</td>
</tr>
<tr>
<td>(n = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E(r^2))</td>
<td>.038</td>
<td>.133</td>
<td>.276</td>
<td>.516</td>
<td>.757</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.040</td>
<td>.127</td>
<td>.299</td>
<td>.500</td>
<td>.769</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>-.001</td>
<td>.075</td>
<td>.245</td>
<td>.465</td>
<td>.749</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.076</td>
<td>.227</td>
<td>.483</td>
<td>.742</td>
</tr>
<tr>
<td>(n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E(r^2))</td>
<td>.077</td>
<td>.168</td>
<td>.305</td>
<td>.534</td>
<td>.767</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.085</td>
<td>.178</td>
<td>.295</td>
<td>.537</td>
<td>.767</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>.002</td>
<td>.078</td>
<td>.209</td>
<td>.473</td>
<td>.730</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.061</td>
<td>.205</td>
<td>.464</td>
<td>.730</td>
</tr>
<tr>
<td>(n = 15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E(r^2))</td>
<td>.115</td>
<td>.203</td>
<td>.334</td>
<td>.554</td>
<td>.776</td>
</tr>
<tr>
<td>(r^2)</td>
<td>.116</td>
<td>.202</td>
<td>.325</td>
<td>.573</td>
<td>.799</td>
</tr>
<tr>
<td>(r_c^2)</td>
<td>-.000</td>
<td>.037</td>
<td>.174</td>
<td>.463</td>
<td>.753</td>
</tr>
<tr>
<td>(\rho_c^2)</td>
<td>.000</td>
<td>.048</td>
<td>.181</td>
<td>.449</td>
<td>.722</td>
</tr>
</tbody>
</table>
\(\rho^2 = 0.0 \) tends to be approximately the same for all values of \(\rho^2 \) for fixed \((n, N)\). As with \(r^2 \), the bias of the cross-validity decreases with \(N \) and increases with \(n \) for fixed \(\rho^2 \).

(c) The squared population cross-validity, \(\rho_{p}^2 \), is the squared cross-validity using the derived weights on a validation sample of infinite size. The tables show that \(\rho_{p}^2 \) has similar values to \(r_{c}^2 \) and the same comments apply to \(\rho_{c}^2 \) as were applied to \(r_{c}^2 \) above.

Looked at another way, \(r_{c}^2 \) is an unbiased estimate of \(\rho_{c}^2 \).

The tables confirm the known properties of multiple regression and cross-validation as summarized in (1.2.14). The sample multiple correlation is an overestimate of the population value since the sample weights are chosen to optimize the correlation in the derivation sample. These weights are not the optimum weights in either the population or another sample and the consequence is that both \(\rho_{p}^2 \) and \(r_{c}^2 \) are biased low. With repeated samplings the values of \(r_{c}^2 \) cluster around \(\rho_{p}^2 \) since some weights are better for the validation sample than the population \((r_{c}^2 > \rho_{c}^2) \) and other weights are worse \((r_{c}^2 < \rho_{c}^2) \).

These tables can, perhaps, be useful in estimating the population \(\rho^2 \) from sample \(r^2 \) and \(r_{c}^2 \) values obtained from real data. If the values of \((n, N)\) correspond to one of the tables and if \(r^2 \) and \(r_{c}^2 \) match the values in the tables for a value of \(\rho^2 \), then this value of \(\rho^2 \) is
the estimate of the population multiple correlation.

3.4. Prediction from the Principal Components

Burket (1964) showed that cross-validities can be increased by using only a few principal components of the predictors in the prediction function. The formulas for such prediction were presented in Section 2.6. The calculations described in the present section demonstrate the improvement of prediction by using the largest principal components in the simulation data and show how variation in some parameters can change the effect.

Sixty models were generated varying in four parameters: n, the number of predictors; ρ^2, the squared multiple correlation; π^2, the average criterion-related predictor variance; and N, the sample size. The constant parameters are listed in Table 18. All combinations of the variable parameters listed in Table 19 were used. A new model was generated for each (n, ρ^2, π^2, N) combination so that here, as in Section 3.3, combinations differing only in N are different models.

For each simulation model two sample covariance matrices, C_1 and C_2, were generated, both with the same sample size N. The covariance matrix of the first sample predictors, $(C_1)_{XX}$, was diagonalized and the weights for predicting each of the ten duplicate criteria from the largest principal components were calculated. These weights were validated on C_2 and the cross-validities $r_c^{(1)}$ were calculated for each criterion, the superscript (1) indicating that one component was included in the
Table 18
Constant Parameters for Section 3.4

\[m_d = 10 \ (m = 1) \]
\[n_s = n \ (\text{square S matrix}) \]
\[v_x = 0.01 \]
\[e_x = 0.0 \]
\[v_y, e_y \text{ inapplicable since } m = 1 \]
number of \(E \)s per model = 1
number of \(C_1, C_2 \) pairs per \(\Sigma \) = 1

Table 19
Variable Parameters for Section 3.4

\[n = 5, 10 \]
\[\rho^2 = 0.25, 0.50, 0.75 \]
\[\pi^2 = 0.20, 0.35, 0.50, 0.65, 0.80 \]
\[N = 2 \nu, \ 100 \text{ for } n = 5 \text{ and } N = 25, 105 \text{ for } n = 10 \]
regression. The weights were then recomputed for prediction from the two largest principal components resulting in cross-validities $r_c^{(2)}$. This procedure was continued until all components had been included in the regression. In general, the t largest principal components resulted in ten cross-validities $r_c^{(t)}$ for each t ($t = 1, \ldots, n$). The average of the squares of the ten cross-validities for each t was calculated. The largest of these averages is called $r_c^{2(\text{max})}$ and occurs for $t = t_{\text{max}}$. The symbol t_{max} represents the number of components producing the largest average squared cross-validity. (When $r_c^{(t)}$ was negative, a negative sign was affixed to its square before the averages were calculated).

The above procedure was repeated for validating the principal components of $(C_2)^{\text{xx}}$ on C_1. The quantities $r_c^{2(\text{max})}$ and t_{max} were again calculated. As a result, there are two values of $r_c^{2(\text{max})}$ and t_{max} for each model generated. These values are listed in Appendix I.

In Section 3.3 it was shown that the squared cross-validity r_c^{2} (when all variables or principal components are included in the regression) underestimates the squared population multiple correlation ρ^2. The result was confirmed with the 60 new models since only 14 out of the 120 values of $[r_c^{(n)}]^2$ exceeded ρ^2. Recall that $r_c^{(n)}$ is the same as r_c. The $r_c^{2(\text{max})}$ were less biased as 30 out of 120 values exceeded ρ^2. Thus $r_c^{2(\text{max})}$ is still an underestimate of the squared population multiple correlation.
Averaging the squared correlations before calculating t_{max} has the disadvantage of reducing $r_{c}^{2(\text{max})}$ from what it would be if the maximum r_{c}^{2} was found for each criterion and then these maxima averaged. These maxima will occur for different t for the different criteria, in general. In several cases which were examined, however, it was found that most maxima occurred for the same t. Since some averaging had to be done to comprehend the results, the method previously described was used for simplicity.

There are a number of ways in which the results in Appendix I may be summarized. Table 20 show how t_{max} varies as a function of ρ^{2}, π^{2}, and N for each of the two values of n. For example, the first section of Table 20 shows that for all ten models with $\rho^{2} = 0.25$ and $n = 5$ (two values of t_{max} per model), $t_{\text{max}} = 1$ occurred five times, $t_{\text{max}} = 2$ occurred four times, etc. This section of the table shows that t_{max} tended to increase as ρ^{2} increased. This increase is reflected in the correlation between ρ^{2} and t_{max} of 0.157.

A summary of the correlations of t_{max} with the parameters is given in Table 21. The last column in the table shows the correlations when the data for $n = 5$ and $n = 10$ are combined. Before these correlations could be computed the values of t_{max} for $n = 10$ (which range from 1 to 10) had to be converted to the same range as the values of t_{max} for $n = 5$ (which range from 1 to 5). This was done by recoding $t_{\text{max}} = 1$ or 2 as 1, $t_{\text{max}} = 3$ or 4 as 2, etc., for $n = 10$. The first three correlations in the last
Table 20
Frequencies of t_{max} for Cross-Validities r^2_c

<table>
<thead>
<tr>
<th>$n = 5$</th>
<th>t_{max}</th>
<th>$n = 10$</th>
<th>t_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>ρ^2</td>
<td>.25 .5 .4 1 .2</td>
<td></td>
<td>.25 .16 .1 0 0 0 0 0 0 0 1 2</td>
</tr>
<tr>
<td>.50 .6 1 0 .3</td>
<td>10</td>
<td>.50 9 1 2 0 0 0 0 0 0</td>
<td>3 2 3 2</td>
</tr>
<tr>
<td>.75 3 1 .4 0 12</td>
<td></td>
<td>.75 3 2 1 0 0 0 1 2 0 2 9</td>
<td></td>
</tr>
<tr>
<td>(Correlation = .157)</td>
<td></td>
<td>(Correlation = .467)</td>
<td></td>
</tr>
<tr>
<td>π^2</td>
<td>.20 0 0 0 0 12</td>
<td></td>
<td>.20 2 0 1 0 0 0 0 0 0 2 2 5</td>
</tr>
<tr>
<td>.35 0 2 2 2 6</td>
<td></td>
<td>.35 3 1 0 0 0 0 0 0 1 3 4 4</td>
<td></td>
</tr>
<tr>
<td>.50 3 1 0 0 8</td>
<td></td>
<td>.50 8 0 0 0 0 0 1 0 0 0 3 3</td>
<td></td>
</tr>
<tr>
<td>.65 4 1 3 2 2</td>
<td></td>
<td>.65 8 2 0 0 0 0 0 0 0 0 3 2</td>
<td></td>
</tr>
<tr>
<td>.80 7 2 0 1 2</td>
<td></td>
<td>.80 7 1 2 0 0 0 2 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>(Correlation = -.593)</td>
<td></td>
<td>(Correlation = -.497)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>20 10 4 3 4 9</td>
<td></td>
<td>25 17 3 3 0 0 1 0 3 2 1</td>
</tr>
<tr>
<td>100</td>
<td>4 2 2 1 21</td>
<td></td>
<td>105 11 1 0 0 2 0 3 1 3 13</td>
</tr>
<tr>
<td>(Correlation = .346)</td>
<td></td>
<td>(Correlation = .394)</td>
<td></td>
</tr>
</tbody>
</table>

The cell entry is the frequency that the value of t_{max} occurred for models with the row value of the parameter.
Table 21

Correlations of \(t_{\text{max}} \) (for \(r_c^2 \)) and Parameters

<table>
<thead>
<tr>
<th>Correlation of (t_{\text{max}}) and</th>
<th>(n = 5)</th>
<th>(n = 10)</th>
<th>All n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^2)</td>
<td>.157</td>
<td>.467</td>
<td>.302</td>
</tr>
<tr>
<td>(\pi^2)</td>
<td>-.593</td>
<td>-.497</td>
<td>-.524</td>
</tr>
<tr>
<td>(N)</td>
<td>.346</td>
<td>.394</td>
<td>.361</td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td></td>
<td>-.251</td>
</tr>
</tbody>
</table>

number of samples 60 60 120

The correlations in the last column were computed after the values of \(t_{\text{max}} \) for \(n = 10 \) were recoded in pairs as values from 1 to 5.

Table 22

Correlations of \(t_{\text{max}} \) (for \(\rho_c^2 \)) and Parameters

<table>
<thead>
<tr>
<th>Correlation of (t_{\text{max}}) and</th>
<th>(n = 5)</th>
<th>(n = 10)</th>
<th>All n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^2)</td>
<td>.217</td>
<td>.325</td>
<td>.261</td>
</tr>
<tr>
<td>(\pi^2)</td>
<td>-.679</td>
<td>-.566</td>
<td>-.608</td>
</tr>
<tr>
<td>(N)</td>
<td>.364</td>
<td>.514</td>
<td>.434</td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td></td>
<td>-.186</td>
</tr>
</tbody>
</table>

number of samples 60 60 120

The correlations in the last column were computed after the values of \(t_{\text{max}} \) for \(n = 10 \) were recoded in pairs as values from 1 to 5.
column are, in effect, an average of the correlations in the first two columns. The last correlation in the column shows the correlation of \(n \) and \(t_{\text{max}} \).

The size of the correlations shows that each of the parameters \(\rho^2 \), \(\pi^2 \), \(N \), and \(n \) has a substantial main effect on \(t_{\text{max}} \). These effects may be summarized as follows:

(a) An increase in the number of predictors, \(n \), produces a decrease in \(t_{\text{max}} \) when the values of \(t_{\text{max}} \) are converted (standardized) to a common scale with the same maximum for each \(n \). In other words, an increase in \(n \) produces a decrease in \(t_{\text{max}}/n \).

(b) An increase in the sample size, \(N \), produces an increase in \(t_{\text{max}} \).

(c) An increase in the average criterion-related predictor variance, \(\pi^2 \), produces a decrease in \(t_{\text{max}} \).

(d) An increase in the squared multiple correlation, \(\rho^2 \), produces an increase in \(t_{\text{max}} \).

These results may be explained in the following way. When \(N \) is small and \(n \) is large, the regression weights are very unstable and the weights for a few principal components cross-validate better than the weights for many principal components. However, as the sample size, \(N \), increases or the number of predictors, \(n \), decreases, the weights become stable enough that several components, accounting for more predictor variance, cross-validate better than a few components.

When \(\pi^2 \), the average criterion-related predictor variance, is increased, one linear combination of the
predictors, namely \(w_1 \), the first principal predictor, is increased in variance. The result is that the largest principal component of the predictors becomes increasingly collinear with \(w_1 \) as \(x^2 \) increases. This means that a single principal component can produce better prediction than several components. Hence \(t_{\text{max}} \) decreases (becomes closer to unity) as \(x^2 \) increases.

The effect of \(\rho^2 \) on \(t_{\text{max}} \) is not as strong as the effect of the other three parameters. However the increase of \(t_{\text{max}} \) with increasing \(\rho^2 \) may perhaps be explained as follows. As \(\rho^2 \) increases, the correlation of each principal component of the predictors with the criterion increases. The larger this correlation is, the less likely it is to vanish on cross-validation. Hence as \(\rho^2 \) increases, more components have correlations with the criterion which do not vanish on cross-validation. Hence \(t_{\text{max}} \), which is approximately the number of such components, increases as \(\rho^2 \) increases.

The population cross-validity, \(r_c \), reflects validation of weights in the population or an infinitely sized sample. When the weights for all the previous samples were calculated, they were also validated on \(I \). The same analysis as previously carried out on \(r_c^2 \) was done on \(\rho_c^2 \). The values of \(\rho_c^2(\text{max}) \) and \(t_{\text{max}} \) are given in Appendix I. Table 22 summarizes the correlations of \(t_{\text{max}} \) computed from \(\rho_c^2 \) with the parameters. The correlations are very similar to those obtained for \(r_c^2 \).
The effect of \(N \) and \(n \) on \(t_{\max} \), the optimal number of principal components to include in prediction, has been known as long as reduced rank prediction has been studied. Studies such as those of Burket (1964) have shown this phenomenon. The effects of \(\rho^2 \) and \(\kappa^2 \) are new, however, for only in simulation can these parameters be systematically varied.
STUDIES WITH SEVERAL CRITERIA

The generation of populations with several criterion variables permits the principal predictors to be used in multiple regression. In the first section of this chapter, simulation experiments with several criteria are described. The two reduced rank methods of prediction (multiple regression on the principal components and on the principal predictors) are compared. In the next section, some studies are described using real data from high school students. Finally, in the last section, an attempt is made to simulate the real data with the computer program.

4.1. Simulation Results

The purpose of this section is to compare the principal component and principal predictor methods of prediction in a number of models which differ in the distribution of \(q_k^2, k = 1, \ldots, m\) and \(\sigma^2\). The importance of the parameter \(\sigma^2\), the average criterion-related predictor variance, in prediction from the principal components of the predictors, has already been shown in the single criterion case (Section 3.4). When \(m = 1\), there is only one \(q_k^2\) and it is directly related to \(\sigma^2 (q_1^2 = n \sigma^2)\). However, when there are several criteria, there are several \(q_k^2\), each \(q_k^2\) representing the average dependence of the predictors on the \(k^{th}\) principal predictor. The sum of the \(q_k^2\) is equal to \(n \sigma^2\).
Similarly, the \(D^2_{kk}, k = 1, \ldots, m \) are the average dependence of the criteria on each principal predictor. Since the \(D^2_{kk} \) are eigenvalues (of \(E_{yy} \)), they are always considered in descending order. In this section, the \(D^2_{kk} \) distribution was kept constant. By varying the order of the \(q^2_k \) it is possible to vary the relative dependence of the predictors and criteria on the principal predictors. This variation will produce differences in the effectiveness of the two methods of prediction.

Eighteen models were studied. The constant input parameters are shown in Table 23 and the variable parameters in Table 24. For each value of \(\pi^2 \), three different \(q^2_k \) distributions were used, called decreasing, level, and increasing. The same distributions, except for scaling by \(\pi^2 \), were used for all three values of \(\pi^2 \). Two models, differing only in sample size, were generated for each combination of \(\pi^2 \) and \(q^2_k \) distribution. A pair of samples of size 20 (small \(N \)) was generated from one model and a pair of sample of size 75 (large \(N \)) was generated from the second model.

In the decreasing \(q^2_k \) distribution, half the dependence of the predictors on the principal predictors is dependence on the first principal predictor. When \(\pi^2 = 0.8 \), this means that 40% of the total variance of the predictors is linearly dependent on the first principal predictor. The contribution of the succeeding principal predictors is progressively smaller. When \(\pi^2 = 0.2 \) and the \(q^2_k \) are again decreasing, the first principal predictor accounts
Table 23
Constant Parameters for Section 4.1

\[
\begin{align*}
n &= 10 \\
m &= 5 \\
n_s &= 10 \\
p_2 &= 0.6 \\
D_{11} &= 1.2, D_{22} = 0.8, D_{33} = 0.6, \\
D_{44} &= 0.3, D_{55} = 0.1 \\
v_x &= 0.01 \\
e_x &= 0.005 \\
v_y &= 0.01 \\
e_y &= 0.005 \\
\text{number of } \Sigma \text{ per model} &= 1 \\
\text{number of } {C_1, C_2} \text{ pairs per } \Sigma &= 1
\end{align*}
\]

Table 24
Variable Parameters for Section 4.1

\[
\begin{align*}
\pi^2 &= 0.2, 0.5, 0.8 \\
q_k^2 \text{ distribution} &= \text{decreasing, level, increasing} \\
N &= 20, 75 \\
decreasing & \text{ level } \text{ increasing} \\
q_1^2 & 5.0 \pi^2 2.0 \pi^2 0.625 \pi^2 \\
q_2^2 & 2.5 \pi^2 2.0 \pi^2 0.625 \pi^2 \\
q_3^2 & 1.25 \pi^2 2.0 \pi^2 1.25 \pi^2 \\
q_4^2 & 0.625 \pi^2 2.0 \pi^2 2.5 \pi^2 \\
q_5^2 & 0.625 \pi^2 2.0 \pi^2 5.0 \pi^2
\end{align*}
\]
for only 10% of predictor variance and the other principal predictors account for less, with a total of 20% of the variance of the predictors explained by the principal predictors.

In the level \(q_k^2 \) distribution, each principal predictor contributes equally to the predictors, the contribution of each varying from 16% when \(\pi^2 = 0.8 \) to 4% when \(\pi^2 = 0.2 \).

When the \((q_k^2, k = 1, \ldots, m) \) are increasing the dependence is exactly reversed from the decreasing case. Most of the dependence of the predictors on the principal predictors is dependence on the fifth (last) principal predictor. The dependence on the first principal predictor is very small.

One change was made in the generation of samples for the calculations in this chapter. The sample covariance matrices, \(C_1 \) and \(C_2 \), were changed to correlation matrices in order to make possible the calculation of a sample \(\pi^2 \) and sample \((q_k^2, k = 1, \ldots, m) \).

The calculations performed on the sample correlation matrices were similar to the calculations in Section 3.4 except that two methods of prediction were compared and the criteria were no longer duplicate criteria. Multiple regression on the principal components of the predictors was done first. The correlation matrix of the predictors, \((C_1)_{xx} \), was diagonalized and the weights for predicting each of the five criteria from the largest component were calculated. The cross-validities for each criterion in
the second sample were calculated. The average, over criteria, of the squares of these validities was calculated and is presented in Tables 25 to 30 in the \(r_c^2 \) columns under "P. C." for \(t = 1 \) (one component). The weights were then recomputed for the two largest components (\(t = 2 \)) and the average squared cross-validity calculated. This was repeated for \(t = 3, \ldots, 10 \). The whole procedure was repeated again for validating the weights derived in \(C_2 \) on \(C_1 \) but these results are not reproduced in the tables as they are very similar to the validation of \(C_1 \) on \(C_2 \).

Prediction from the principal predictors was then performed following the method given in Section 2.7. The weights in equation (2.7.11) were calculated in the first sample for each value of \(t \) (\(t = 1, \ldots, 5 \)) and the weights were cross-validated in the second sample. The average of the cross-validities for each value of \(t \) was calculated and is given in Tables 25 to 30 in the \(r_c^2 \) columns under "P. P." for each \(t \). The validation of sample 2 on sample 1 is not reported here.

In the derivation sample the following sample statistics were calculated: sample (\(q_k^2 \), \(k = 1, \ldots, 5 \)), sample (\(D_{kk}^2 \), \(k = 1, \ldots, 5 \)), and sample (\(\rho^2 \)). For the calculation of the sample (\(q_k^2 \), \(k = 1, \ldots, 5 \)) and the sample (\(\rho^2 \)) see equations (2.7.15) and (2.7.16). The \(D_{kk}^2 \) are the eigenvalues of \(C_{gg} \) and the sample (\(\rho^2 \)) is \(r^2 \), the average squared multiple correlation using all predictors. The sample (\(\rho^2 \)) is the average of the \((D_{kk}^2 \), \(k = 1, \ldots, 5 \)).
Table 25
Several Criteria (N = 20) q_k^2 Distribution Decreasing

<table>
<thead>
<tr>
<th>π^2</th>
<th>P.C.</th>
<th>P.P.</th>
<th>Sample</th>
<th>P.C.</th>
<th>P.P.</th>
<th>Sample</th>
<th>P.C.</th>
<th>P.P.</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_c^2</td>
<td>r_c^2</td>
<td>D_{kk}</td>
<td>q_k^2</td>
<td>r_c^2</td>
<td>r_c^2</td>
<td>D_{kk}</td>
<td>q_k^2</td>
<td>r_c^2</td>
</tr>
<tr>
<td>$\pi^2 = .2$</td>
<td>1</td>
<td>.06</td>
<td>.21</td>
<td>1.5</td>
<td>.6</td>
<td>-.01</td>
<td>-.01</td>
<td>2.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.09</td>
<td>.13</td>
<td>1.0</td>
<td>.3</td>
<td>.23</td>
<td>.10</td>
<td>1.2</td>
<td>.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.09</td>
<td>.23</td>
<td>1.0</td>
<td>1.0</td>
<td>.41</td>
<td>-.01</td>
<td>.3</td>
<td>.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>.11</td>
<td>.33</td>
<td>.5</td>
<td>1.0</td>
<td>.41</td>
<td>-.01</td>
<td>.2</td>
<td>.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>.17</td>
<td>.30</td>
<td>.2</td>
<td>.4</td>
<td>.32</td>
<td>-.01</td>
<td>.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>.22</td>
<td>.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>.41</td>
<td>.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>.44</td>
<td>.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>.44</td>
<td>.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample π^2 | .80 | .80 | .77 |
Sample π^2 | .27 | .57 | .75 |
Table 26
Several Criteria (N = 20) q_k^2 Distribution Level

<table>
<thead>
<tr>
<th>$\pi^2 = .2$</th>
<th>$\pi^2 = .5$</th>
<th>$\pi^2 = .8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t or k</td>
<td>P.C. P.P. Sample</td>
<td>P.C. P.P. Sample</td>
</tr>
<tr>
<td>r_c^2</td>
<td>r_c^2</td>
<td>D_{kk}^2</td>
</tr>
<tr>
<td>1</td>
<td>.00</td>
<td>.10</td>
</tr>
<tr>
<td>2</td>
<td>.02</td>
<td>.12</td>
</tr>
<tr>
<td>3</td>
<td>.05</td>
<td>.12</td>
</tr>
<tr>
<td>4</td>
<td>.04</td>
<td>.12</td>
</tr>
<tr>
<td>5</td>
<td>.04</td>
<td>.13</td>
</tr>
<tr>
<td>6</td>
<td>.10</td>
<td>.23</td>
</tr>
<tr>
<td>8</td>
<td>.18</td>
<td>.31</td>
</tr>
<tr>
<td>9</td>
<td>.20</td>
<td>.15</td>
</tr>
<tr>
<td>10</td>
<td>.13</td>
<td>.83</td>
</tr>
</tbody>
</table>
Table 27

Several Criteria (N = 20) q_k^2 Distribution Increasing

<table>
<thead>
<tr>
<th>$\pi^2 = .2$</th>
<th>$\pi^2 = .5$</th>
<th>$\pi^2 = .8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t or k</td>
<td>P.C. r_c^2</td>
<td>P.P. r_c^2</td>
</tr>
<tr>
<td>1</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>2</td>
<td>.02</td>
<td>.04</td>
</tr>
<tr>
<td>3</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>4</td>
<td>.02</td>
<td>.04</td>
</tr>
<tr>
<td>5</td>
<td>.02</td>
<td>.04</td>
</tr>
<tr>
<td>6</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.23</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.27</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.04</td>
<td></td>
</tr>
</tbody>
</table>

Sample ρ^2 | .80 | .80 | .76
Sample π^2 | .42 | .56 | .78
Table 28

Several Criteria (N = 75) q_k^2 Distribution Decreasing

<table>
<thead>
<tr>
<th>$\pi^2 = .2$</th>
<th>$\pi^2 = .5$</th>
<th>$\pi^2 = .8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t or k</td>
<td>$P.C.$ P.P.</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>r_c^2</td>
<td>r_c^2</td>
</tr>
<tr>
<td>1</td>
<td>-.00</td>
<td>.15</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.21</td>
</tr>
<tr>
<td>3</td>
<td>.07</td>
<td>.27</td>
</tr>
<tr>
<td>4</td>
<td>.07</td>
<td>.32</td>
</tr>
<tr>
<td>5</td>
<td>.15</td>
<td>.33</td>
</tr>
<tr>
<td>6</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.29</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.44</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.33</td>
<td></td>
</tr>
</tbody>
</table>

Sample ρ^2 | .65 | .63 | .58 |

Sample π^2 | .38 | .54 | .85 |
Table 29

Several Criteria (N = 75) q^2 Distribution Level

\(\pi^2 = .2 \) \hspace{1cm} \(\pi^2 = .5 \) \hspace{1cm} \(\pi^2 = .8 \)

<table>
<thead>
<tr>
<th>t or k</th>
<th>P.C.</th>
<th>P.P.</th>
<th>Sample</th>
<th>P.C.</th>
<th>P.P.</th>
<th>Sample</th>
<th>P.C.</th>
<th>P.P.</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r_c^2)</td>
<td>(r_c^2)</td>
<td>(D_{kk})</td>
<td>(q_k^2)</td>
<td>(r_c^2)</td>
<td>(r_c^2)</td>
<td>(D_{kk})</td>
<td>(q_k^2)</td>
<td>(r_c^2)</td>
</tr>
<tr>
<td>1</td>
<td>.02</td>
<td>.12</td>
<td>1.3</td>
<td>.5</td>
<td>.00</td>
<td>.21</td>
<td>1.3</td>
<td>1.0</td>
<td>.09</td>
</tr>
<tr>
<td>2</td>
<td>-.02</td>
<td>.26</td>
<td>.9</td>
<td>.5</td>
<td>.06</td>
<td>.33</td>
<td>.7</td>
<td>.7</td>
<td>.19</td>
</tr>
<tr>
<td>3</td>
<td>-.01</td>
<td>.32</td>
<td>.7</td>
<td>.7</td>
<td>.10</td>
<td>.41</td>
<td>.6</td>
<td>1.1</td>
<td>.33</td>
</tr>
<tr>
<td>4</td>
<td>.03</td>
<td>.37</td>
<td>.4</td>
<td>.4</td>
<td>.11</td>
<td>.46</td>
<td>.3</td>
<td>.9</td>
<td>.46</td>
</tr>
<tr>
<td>5</td>
<td>.07</td>
<td>.38</td>
<td>.1</td>
<td>.5</td>
<td>.22</td>
<td>.48</td>
<td>.2</td>
<td>.9</td>
<td>.49</td>
</tr>
<tr>
<td>6</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td>.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.22</td>
<td></td>
<td></td>
<td></td>
<td>.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.34</td>
<td></td>
<td></td>
<td></td>
<td>.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.33</td>
<td></td>
<td></td>
<td></td>
<td>.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
<td>.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample \(\rho^2 \) \hspace{1cm} \(\rho^2 \) \hspace{1cm} \(\rho^2 \)

Sample \(\pi^2 \) \hspace{1cm} \(\pi^2 \) \hspace{1cm} \(\pi^2 \)
Table 30

Several Criteria (N = 75) q_k^2 Distribution Increasing

<table>
<thead>
<tr>
<th>$\pi^2 = .2$</th>
<th>$\pi^2 = .5$</th>
<th>$\pi^2 = .8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t or k</td>
<td>P.C. P.P. Sample</td>
<td>P.C. P.P. Sample</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>r_c^2</td>
<td>r_c^2</td>
<td>D_{kk}^2</td>
</tr>
<tr>
<td>1</td>
<td>-.01 .17 .12 .2</td>
<td>-.00 .26 1.4 .4</td>
</tr>
<tr>
<td>2</td>
<td>.00 .20 1.0 .7</td>
<td>.04 .33 .8 .5</td>
</tr>
<tr>
<td>3</td>
<td>.01 .27 .5 .8</td>
<td>.08 .43 .7 .7</td>
</tr>
<tr>
<td>4</td>
<td>.01 .34 .4 1.1</td>
<td>.10 .46 .3 1.7</td>
</tr>
<tr>
<td>5</td>
<td>.05 .36 .1 .7</td>
<td>.16 .48 .1 2.2</td>
</tr>
<tr>
<td>6</td>
<td>.08 .21</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.39</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.36</td>
<td></td>
</tr>
</tbody>
</table>

Sample ρ^2: .65 .67 .70
Sample π^2: .35 .56 .68
Consider first $N = 75$ (Tables 28 to 30). When $\hat{x}^2 = 0.2$, the first few principal predictors are far superior to the first few principal components in average cross-validity. This is true whether the q_k^2 distribution is decreasing, level, or increasing. The reason is that the principal predictors account for only 20% of the predictor variance when $\hat{x}^2 = 0.2$. The largest principal components therefore reflect variance mostly independent of the principal predictors and therefore the largest principal components are not good predictors. The principal predictors, though of small variance, are good predictors and multiple regression on them cross-validates well.

The situation changes, however, as \hat{x}^2 increases to 0.5 and 0.8. When $\hat{x}^2 = 0.8$ and the q_k^2 distribution is decreasing or level (not increasing), there is practically no difference between the two prediction methods in the average cross-validity for $t = 1, \ldots, 5$. When $\hat{x}^2 = 0.8$, the five principal predictors account for a total of 80% of the predictor variance and therefore the principal components of the predictors are very similar to the principal predictors. Therefore the principal components and principal predictors cross-validate equally well.

An exception occurs for the increasing q_k^2 distribution when $\hat{x}^2 = 0.8$ (Table 30). Here the principal predictors cross-validate much better than the first few principal components. The reason is that the first principal predictor (largest q_k^2 and hence test predictor) is the smallest principal predictor in terms of associated
predictor variance (q_1^2 is the smallest q_k^2). The principal predictor method of regression properly picks this first principal predictor as the best predictor. The principal component method of prediction however chooses the principal predictors in reverse order since the principal predictor with largest predictor variance ($= 0\%$) is the fifth principal predictor and the fourth principal predictor has the next largest variance ($= 20\%$), etc. Note that there is a large increase in average cross-validity between $t = 4$ and $t = 5$ principal components in this case. The fifth principal component is approximately collinear with the first principal predictor which is the best predictor. On the other hand, when $\pi^2 = 0.2$, the large increase in average cross-validity using principal components does not occur until $t = 8$ or 9.

The results when $\pi^2 = 0.5$ are intermediate between those for $\pi^2 = 0.2$ and $\pi^2 = 0.8$. Furthermore, the results for $N = 20$ (Tables 25 to ??) are similar to the $N = 75$ results just described except that the effects are not as clear due to instability of the weights with small N. An interesting effect is shown in two cases, however (Table 25, $\pi^2 = 0.5$ and Table 27, $\pi^2 = 0.2$). This effect is not dependent on sample size and could have occurred for $N = 75$. In both cases the average cross-validity when all factors are included in the regression is essentially zero since the predictors are dependent. The population Σ_{xx} which was generated in these two cases was almost singular. This was shown by the difficulty in inverting
it. Every time a matrix is inverted in the simulation program, the result is checked by multiplying the inverse by the original matrix and comparing the result with the identity matrix. The largest difference, in absolute value, between corresponding elements in the two matrices is printed as \(\text{WINV} \). Most generated \(\Sigma_{xx} \) matrices yield \(\text{WINV} = 0.00001 \) or less. In the two cases mentioned above, \(\text{WINV} = 0.003 \) and \(0.0001 \), respectively, indicating approximate dependence of the predictors in the population. This dependence appears in the generated samples as well.

In the two singular cases, prediction from the principal components, for \(t < 10 \), is successful. However, for all values of \(t \), the cross-validities using the principal predictors as predictors are practically zero. The \(t \) largest principal components (\(t < 10 \)) are independent and their weights cross-validate well. This is an advantage of prediction from the principal components of the predictors—the effect of dependence of the predictors can be eliminated. However the weights on the principal predictors are not stable in the singular case, regardless of the number of principal predictors included in the regression.

Even though variation of the population parameters has an appreciable effect on prediction by the two reduced rank methods, for practical application of these results it would be necessary to determine from samples what the population parameters are. Can these parameters be estimated? The sample \(\hat{\theta}_k^2, k = 1, \ldots, 5 \) and \(\hat{\pi}^2 \) are estimates of
the corresponding population parameters and are shown in Tables 25 to 30. In general the sample q_k^2 distribution is similar to the population distribution. This is shown most clearly for large sample size ($N = 75$). When the population q_k^2 distribution is decreasing, the largest sample q_k^2 generally occurs for $k = 1$. When the q_k^2 distribution is level, the sample q_k^2 are approximately equal. When the q_k^2 distribution is increasing, the largest sample q_k^2 normally occurs for $k = 5$. It is therefore possible to decide, on the basis of the $(q_k^2, k = 1, \ldots, m)$ in the derivation sample, whether the principal predictors cross-validate better than the principal components or whether there will be little difference between the two methods.

As an additional aid in making this determination, it is important to estimate π^2. This may be done from the value of π^2 computed in the derivation sample. It can be seen from the tables that the sample π^2 is a rough measure of the population value, there is a tendency for the sample value to shift nearer 0.5 than the population value.

Since the population $(d_{kk}^2, k = 1, \ldots, 5)$ were not varied in these simulation studies, the sample D_{kk}^2 shown in the tables are relatively constant from sample to sample. These parameters will be discussed further in the next section.

This section has shown that prediction from the principal predictors is an effective method of prediction,
particularly when the q_k^2 distribution is increasing or π^2 is small. In other cases prediction from the principal components is almost as successful as prediction from the principal predictors. The only case in which prediction from the principal components is superior to prediction from the principal predictors is when the predictors are dependent.

4.2. Study of Real Data

The calculations described in the preceding section were also performed on some samples of real data. The data were collected in 1961 by the Educational Testing Service, Princeton, N. J., from 1205 boys in academic high schools. The 21 variables employed in the multiple regression calculations are listed in Table 31. There are two sets of eight predictors each and one set of five criterion variables. The first set of predictors, called the S-predictors, consists of six variables from the Sequential Tests of Educational Progress (STEP) and two variables from the School and College Ability Tests (SCAT). The second set of predictors, called the T-predictors, consists of eight variables from the Tests of General Interest (TGI). The criterion variables are two variables from the Scholastic Aptitude Test (SAT), two variables from the College Entrance Examination Board (CEEB), and the rank in the high school class.

Eight samples were drawn at random from the pool of 1205 subjects. Four of the samples were of size $N = 20$.
Table 31

E. T. S. Variables

S-predictors

<table>
<thead>
<tr>
<th>STEP Mathematics</th>
<th>STEP Science</th>
<th>STEP Social Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP Reading</td>
<td>STEP Listening</td>
<td>STEP Writing</td>
</tr>
<tr>
<td>SCAT Verbal</td>
<td>SCAT Quantitative</td>
<td></td>
</tr>
</tbody>
</table>

T-predictors

<table>
<thead>
<tr>
<th>TGI Industrial Arts</th>
<th>TGI Home Arts</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGI Physical Education</td>
<td>TGI Biological Science</td>
</tr>
<tr>
<td>TGI Music and Art</td>
<td>TGI History-Literature</td>
</tr>
<tr>
<td>TGI Entertainment</td>
<td>TGI Public Affairs</td>
</tr>
</tbody>
</table>

Criteria

<table>
<thead>
<tr>
<th>SAT Verbal</th>
<th>SAT Mathematical</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEB English Composition</td>
<td>CEEB American History</td>
</tr>
<tr>
<td>Rank in High School Class</td>
<td></td>
</tr>
</tbody>
</table>
(Samples 1, 2, 3, 4) and the other four samples were of size \(N = 75 \) (Samples 5, 6, 7, 8). Four double cross-validations were performed (two for each sample size) using the \(S \)-predictors. Then the same samples were used in four double cross-validations using the \(T \)-predictors.

Tables 32 \((N = 20)\) and 33 \((N = 75)\) are a summary of the calculations made on these samples; the calculations were the same as those made on the simulation samples in Section 4.1. Correlation matrices were used. Again, only the validation of \(C_1 \) on \(C_2 \) is reported.

In most of the samples, the principal predictors (P. P.) validate more poorly than the principal components (P. C.) and in the two cases where the first principal predictor validates better than the first principal component, the improvement is not great. Another feature of these data is the nearly constant average cross-validity of the principal predictors for \(t = 1, \ldots, 5 \). Even though, in some cases, a few principal components are far superior to including all predictors in the regression, in no case is the first principal predictor significantly better than all predictors.

These findings can be understood by considering the estimates of the parameters \(\rho^2, \pi^2, (D_{kk}^2, k = 1, \ldots, 5), \) and \((q_k^2, k = 1, \ldots, 5) \). In all four derivation samples, the sample \(\pi^2 \) is at least 0.87 for the \(S \)-predictors and at least 0.78 for the \(T \)-predictors. Therefore these samples correspond approximately to the \(\pi^2 = 0.8 \) cases of Section 4.1. Furthermore the sample \(q_k^2 \) distributions are in all
Table 32
E. T. S. Samples (N = 20)

<table>
<thead>
<tr>
<th>Sample 1 validated on Sample 2</th>
<th>Sample 3 validated on Sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t or k</td>
<td>P.C.</td>
</tr>
<tr>
<td>r²</td>
<td>r²</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>.56</td>
</tr>
<tr>
<td>2</td>
<td>.55</td>
</tr>
<tr>
<td>3</td>
<td>.56</td>
</tr>
<tr>
<td>4</td>
<td>.53</td>
</tr>
<tr>
<td>5</td>
<td>.52</td>
</tr>
<tr>
<td>6</td>
<td>.52</td>
</tr>
<tr>
<td>7</td>
<td>.51</td>
</tr>
<tr>
<td>8</td>
<td>.44</td>
</tr>
</tbody>
</table>

S-predictors

Sample p² | .78 | .87
Sample π² | .87 | .90

T-predictors

| Sample p² | .54 | .78
Sample π² | .78 | .80

...
Table 33

E. T. S. Samples ($N = 75$)

<table>
<thead>
<tr>
<th>Sample 5 validated on Sample 6</th>
<th>Sample 7 validated on Sample 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.C.</td>
<td>P.P.</td>
</tr>
<tr>
<td>r_c^2</td>
<td>r_c^2</td>
</tr>
<tr>
<td>1</td>
<td>.65</td>
</tr>
<tr>
<td>2</td>
<td>.66</td>
</tr>
<tr>
<td>3</td>
<td>.66</td>
</tr>
<tr>
<td>4</td>
<td>.64</td>
</tr>
<tr>
<td>5</td>
<td>.64</td>
</tr>
<tr>
<td>6</td>
<td>.64</td>
</tr>
<tr>
<td>7</td>
<td>.63</td>
</tr>
<tr>
<td>8</td>
<td>.63</td>
</tr>
</tbody>
</table>

S-predictors

Sample ρ^2: .70

Sample π^2: .88

T-predictors

Sample ρ^2: .51

Sample π^2: .78
cases but one heavily weighted on \(q_1^2 \), thus indicating an extremely decreasing \(q_k^2 \) distribution. Returning to the corresponding simulation examples in Section 4.1, it is seen that the E. T. S. results do not differ greatly from the last columns of Tables 25 \((N = 20)\) and 28 \((N = 75)\).

The failure of the principal predictors in the E. T. S. samples can be further explained by the sample \(D_{kk}^2 \) distribution. In all cases, \(D_{ll}^2 \) is at least 80% of the total predictable variance and therefore the \(D_{kk}^2 \) distribution in the E. T. S. data is weighted more in favor of \(D_{ll}^2 \) than the populations considered in Section 4.1. This means that the first principal component is very similar to the first principal predictor and hence prediction from the principal components is effective.

In the next section some simulation models will be considered that more closely match the E. T. S. data, particularly in the \(D_{kk}^2 \) distribution.

4.3. Simulation of Real Data

The E. T. S. data samples differ from the simulated data in Section 4.1 in several respects. The \((D_{kk}^2, k = 1, \ldots, 5)\) distribution is much more concentrated on \(D_{ll}^2 \) in the E. T. S. data than in Section 4.1 where the population \(D_{kk}^2 \) distribution was fixed as \((1.2, 0.8, 0.6, 0.3, 0.1)\). The distribution of \((q_k^2, k = 1, \ldots, 5)\) in the E. T. S. data is similar to the decreasing \(q_k^2 \) distribution in Section 4.1 although, in most cases, the E. T. S. data had an even larger \(q_1^2 \) .
The S-predictors were superior to the T-predictors; the approximate population ρ^2 for the S-predictors might be estimated to be 0.65 and for the T-predictors about 0.45. Other parameters were roughly estimated for the two sets of predictors and are shown in Table 34. These parameters were used to generate population and sample correlation matrices using the simulation program. Two populations (First Σ and Second Σ) were generated for the S-predictor simulation and two populations (Third Σ and Fourth Σ) were generated for the T-predictor simulation. One pair of sample correlation matrices was generated for each population ($N = 75$ in all cases). The results of the validation of C_1 on C_2 for each of the four populations are shown in Table 35.

If these tables are compared with the corresponding Table 33 for the real data, it will be seen that the real and simulation results correspond closely. By adjusting the parameters it would be possible to make the match even better, but the simulation using the parameters in Table 34 is presented here since this simulation was the first attempted. The close similarity of the simulation results to the results from the E. T. S. data shows that the simulation model is basically sound.
Table 34

Estimated Parameters Used to Simulate E. T. S. Data

\[n = 3 \]
\[m = 5 \]
\[n_s = 8 \]
\[v_x = 0.01 \]
\[e_x = 0.005 \]
\[v_y = 0.01 \]
\[e_y = 0.005 \]
\[H = 75 \]

number of E's per predictor type = 2
number of C_1, C_2 pairs per E = 1

S-predictors (First E and Second E)

\[\rho^2 = 0.65 \]
\[D_{11}^2 = 3.0, D_{22}^2 = 0.1, D_{33}^2 = 0.05, \]
\[D_{44}^2 = 0.05, D_{55}^2 = 0.05 \]
\[\pi^2 = 0.85 \]
\[q_1^2 = 5.0, q_2^2 = 0.6, q_3^2 = 0.4, q_4^2 = 0.4, q_5^2 = 0.4 \]

T-predictors (Third E and Fourth E)

\[\rho^2 = 0.45 \]
\[D_{11}^2 = 2.0, D_{22}^2 = 0.1, D_{33}^2 = 0.05, \]
\[D_{44}^2 = 0.05, D_{55}^2 = 0.05 \]
\[\pi^2 = 0.75 \]
\[q_1^2 = 1.5, q_2^2 = 0.5, q_3^2 = 0.4, q_4^2 = 0.3, q_5^2 = 0.3 \]
Table 35
Simulation of E. T. S. Samples (N = 75)

S-predictors

<table>
<thead>
<tr>
<th></th>
<th>First I</th>
<th>Second I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample A validated on Sample B</td>
<td>Sample C validated on Sample D</td>
</tr>
<tr>
<td>P.C. P.P. Sample</td>
<td>t or k</td>
<td>r^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r_c</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>.56</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>.58</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>.60</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>.60</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>.61</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>.60</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>.61</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>.62</td>
</tr>
</tbody>
</table>

Sample \(\rho^2 \): .71
Sample \(\pi^2 \): .86

T-predictors

<table>
<thead>
<tr>
<th></th>
<th>Third I</th>
<th>Fourth I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample E validated on Sample F</td>
<td>Sample G validated on Sample H</td>
</tr>
<tr>
<td>P.C. P.P. Sample</td>
<td>t or k</td>
<td>r^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r_c</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>.39</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>.39</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>.40</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>.40</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>.41</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>.42</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>.44</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>.39</td>
</tr>
</tbody>
</table>

Sample \(\rho^2 \): .54
Sample \(\pi^2 \): .76

Sample \(\rho^2 \): .72
Sample \(\pi^2 \): .89

Sample \(\pi^2 \): .76
Sample \(\pi^2 \): .75
CHAPTER 5

SUMMARY AND CONCLUSIONS

The several methods of multiple regression discussed in this study are designed to provide optimal weights for predictor variables. The weights are optimal in the sense that, in new samples, the weighted linear combination of the predictors has the highest possible correlation with the criterion variable. By means of cross-validation, it is possible to estimate the correlation in new samples using only data in a (divided) original sample.

For any given problem it is important to decide which prediction method gives the best weights. If one exhaustively tries all prediction methods it is straightforward, using cross-validation, to pick the best linear combination of the predictors. But there are some disadvantages to this procedure. It is lengthy even with a computer; there is capitalization on chance results; and the procedure does not provide a way to generalize to new variables or new populations.

It is apparent that no one method of prediction will be optimal for all possible predictor and criterion distributions. Even if one method, for example prediction from the principal components, were superior, it would still be necessary to decide the number of components to include in the regression. Burket's (1964) work included the computation of statistics which were of some assistance in
deciding how many principal components to include in the regression. The present study considered some fundamental parameters of the population distribution which are relevant to the choice of prediction method and the number of components to include in the regression.

In order to study the effect of these parameters on prediction, the distributions were simulated on a computer. The parameters were systematically varied and the prediction methods were compared for each parameter set by applying the weights to cross-validation samples.

In Section 3.3 the accuracy of the sample multiple correlation and cross-validity as measures of the population multiple correlation and cross-validity were studied. The squared sample multiple correlation, r^2, is an overestimate of the squared population multiple correlation, ρ^2. The bias tends to decrease with increasing sample size and to increase with increasing number of predictors and increasing ρ^2. The bias is correctly estimated by formulas of Wishart (1931) and Wherry (1931). The sample and population cross-validities are approximately equal and underestimate ρ^2. The sample cross-validity is therefore a good estimate of the population cross-validity but not of the population multiple correlation.

The dependence of the cross-validation of the principal components of the predictors on the distribution parameters was considered in Section 3.4. The technique used was to calculate the number of principal components which produce maximum cross-validity. This number, called
\(t_{\text{max}} \), was studied as a function of four parameters—the sample size, \(N \), the number of predictors, \(n \), the squared population multiple correlation, \(\rho^2 \), and the average criterion-related predictor variance, \(\tau^2 \). It was found that \(t_{\text{max}} \) is an increasing function of \(N \) and \(\rho^2 \) and a decreasing function of \(n \) and \(\tau^2 \). This means that a few (1 or 2, say) principal components will be more effective than many components when \(N \) is small, \(n \) is large, \(\rho^2 \) is small, and \(\tau^2 \) is large.

Many prediction problems in psychology involve multiple criteria, no one of which can be considered to be the criterion. A convenient way to avoid choosing one criterion, and at the same time, achieve some synthesis of the criteria, is to weight each standardized criterion equally and to optimize the prediction of all criteria simultaneously. The effectiveness of any prediction method can then be estimated from the average squared cross-validity.

Two prediction methods were compared in this way. The first, prediction from the largest principal components of the predictors, does not use criterion information in the selection of the components and may be used for one or several criteria. The second, prediction from the principal predictors, uses criterion information to calculate the principal predictors themselves. This method optimizes the average squared multiple correlation in the derivation sample.

It was found, for the distributions studied, that the principal predictors had superior or equal cross-
validities to the principal components except when the predictors were approximately dependent. The superiority of principal predictors was particularly evident when \(\pi^2 \) was small and the \(q_k^2 \) distribution was increasing, meaning that the first principal predictor accounted for much less of the predictor variance than the last principal predictor. However this combination of parameters—\(\pi^2 \) small and the \(q_k^2 \) distribution increasing—may occur rarely, if at all, in real multivariate distributions. In the sample of real ability and interest data from the Educational Testing Service, \(\pi^2 \) was very large and the \(q_k^2 \) distribution was decreasing with heavy concentration on \(q_1^2 \). In these data, as in the corresponding simulation data, the principal components were superior to the principal predictors.

This result is similar to Burkette's (1964) finding that the principal components correlating greatest with the criterion do not validate as well as the largest principal components. It appears to be an advantage to select linear combinations of the predictors independently of criterion information in order to maximize cross-validity.

In order for the conclusions of a simulation study to apply to real prediction situations, it must be shown that the simulated distributions are similar to real distributions in relevant characteristics. Several sections of this study were concerned with this demonstration. In Section 3.1 it was shown that, when the population multiple correlation is zero, the simulation sample statistics (multiple correlation and cross-validity) obey known
statistical laws. In Section 3.2 it was shown that changes in the covariance matrix of the predictors, keeping the multiple correlation constant, have no effect on the correlation statistics. Finally, in Section 4.3, several models and samples were generated in order to match the E. T. S. data more closely. The results from this simulation were almost identical to the E. T. S. results.

It would be interesting to determine if other real data have different values of π^2 and different q_k^2 distributions than the E. T. S. data and to see if calculations using these variables obey the laws discovered in simulation. It is also necessary to extend the calculations to larger numbers of predictors and criteria. Such work would be a further check on the effectiveness of the simulation model which was used in this study.
REFERENCES

THE PARAMETERS OF CROSS-VALIDATION

The validation of predictor weights, derived in one sample, by computing the correlation of the weighted sum of the predictors with the criterion in new samples is called cross-validation. The technique applies to any method of calculating the predictor weights. In this study three prediction methods were compared by cross-validation—multiple regression on the predictors, on the principal components of the predictors, and on the principal predictors. Prediction from the principal predictors is only possible when there are several criterion variables.

In order to discover the parameters of the multivariate distribution which affect the choice of prediction method and the number of principal components or principal predictors to include in the regression, a large number of distributions were simulated on a computer and samples generated from these distributions. The population distributions varied in the following parameters: n, the number of predictors; m, the number of criteria; r^2, the squared multiple correlation in the case of one criterion or the average squared multiple correlation of m criteria when $m > 1$; and \bar{r}^2, the average predictor variance related to the criteria.

A typical calculation consisted of the following steps: generation of a population distribution for a set of values of the parameters; generation of two samples of size N from this population; calculation, in one sample, of the predictor weights for one or more prediction methods; and validation of these weights in the second sample. A large number of populations were generated, varying in the values of the parameters.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-validation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple regression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criterion variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>