SEMI-ANNUAL TECHNICAL SUMMARY
for the period ending 31 MARCH 1967

to
ADVANCED RESEARCH PROJECTS AGENCY

RESEARCH ON ELECTROMAGNETICS FOR PROJECT DEFENDER
ARPA Order No. 529
Program Code No. 5730

Report
R-1295.4-67
for
Office of Naval Research
Contract Nonr-839 (38)

This document has been approved for public release and sale; its distribution is unlimited.

POLYTECHNIC INSTITUTE OF BROOKLYN
SEMI-ANNUAL TECHNICAL SUMMARY
for the period ending 31 MARCH 1967

to
ADVANCED RESEARCH PROJECTS AGENCY

RESEARCH ON ELECTROMAGNETICS FOR PROJECT DEFENDER
ARPA Order No. 529
Program Code No. 5730

Date of Contract: 1 February 1964
Expiration Date: 31 August 1968

Report
R-1295.4-67
for
Office of Naval Research
Contract Nonr-839(38)

Submitted by: Rudolf G. E. Hutter
Principal Investigator
Professor of Electrophysics

POLYTECHNIC INSTITUTE OF BROOKLYN
333 JAY STREET, BROOKLYN N Y. 11201
ACKNOWLEDGEMENT

The work reported herein was sponsored by the Advanced Research Projects Agency, ARPA Order No. 529, Program Code No. 5730, and was monitored by the Office of Naval Research, Washington, D.C. under Contract No. Nonr-839(38).
ABSTRACT

This report contains a compilation of abstracts of papers which were either accepted for publication or were published. The papers are on the subjects of Plasmas, Fluid Dynamics and Electromagnetics. The work described was carried out under an ARPA contract, Order No. 529. This report also contains a listing of papers submitted to journals, lectures, internal reports and staff activities.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Summary of Research</td>
<td>1</td>
</tr>
<tr>
<td>A. Plasmas</td>
<td>1</td>
</tr>
<tr>
<td>B. Fluid Dynamics</td>
<td>5</td>
</tr>
<tr>
<td>C. Electromagnetics</td>
<td>7</td>
</tr>
<tr>
<td>III. ARPA-Related Activities, Lectures, Visiting Professors and Consultants, Papers Submitted to Outside Journals, and Internal Reports</td>
<td>13</td>
</tr>
<tr>
<td>A. ARPA-Related Activities</td>
<td>13</td>
</tr>
<tr>
<td>B. Lectures</td>
<td>14</td>
</tr>
<tr>
<td>C. Visiting Professors and Consultants</td>
<td>16</td>
</tr>
<tr>
<td>D. Papers Submitted to Outside Journals</td>
<td>16</td>
</tr>
<tr>
<td>E. Internal Reports</td>
<td>17</td>
</tr>
<tr>
<td>IV. Personnel</td>
<td>18</td>
</tr>
<tr>
<td>Distribution List</td>
<td>v</td>
</tr>
<tr>
<td>DD Form 1475</td>
<td></td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The Polytechnic Institute of Brooklyn is conducting a broad interdisciplinary theoretical and experimental research program in plasma aerodynamics, electromagnetic scattering theory and experimental plasma research applicable to both the immediate and long-range interests of the ARPA Ballistic Missile Defense Program. Emphasis will be placed on fluid dynamics, electromagnetic radiations and their interaction with media characteristic of the ballistic missile defense environment.

II. SUMMARY OF RESEARCH

A. PLASMAS

Spatial variations of electron temperature in the late helium afterglow in the pressure range 0.55 to 68 torr are measured experimentally. The variations are due to the pressure of an applied standing wave at microwave frequencies. A normalized temperature profile is deduced from variations in the afterglow light quenching during a microwave pulse. Large temperature variations occur at higher pressures and smaller variations are seen at lower pressures. The observations are in good agreement with theory.

A perturbation scheme is devised for investigating the periodic solutions of a nonlinear, second order, ordinary differential equation with an additional small nonlinear term. It is assumed that when the additional term vanishes the solution to the remaining zeroth order nonlinear equation is known. When this is the case, explicit expressions for the first order solution, and the first order correction to the dispersion relation are given in terms of the known zeroth order solution,

The problem of calculating the amount of energy which can be stored in a plasma near the upper hybrid resonance is treated by considering a macroscopic plasma model in which all nonlinear terms are maintained. For frequencies sufficiently close to the hybrid frequency, and for low temperatures, application of the traveling wave hypothesis reduces the macroscopic equations to an ordinary nonlinear differential equation with an additional small nonlinear term. The solution of this equation, by the perturbation procedure described in Part I indicates that nonlinear effects (overtaking and trapping) become more important at lower energy levels as the frequency approaches the hybrid frequency. Explicit expressions are given for the maximum allowable stored energy at hybrid frequency in both a cold and warm plasma.

The nonlinear interaction of two warm interpenetrating electron and ion streams is treated by investigating the traveling wave solutions to the two fluid macroscopic plasma equations. These equations are reduced to the form of a nonlinear differential equation with an additional small nonlinear term. Application of the perturbation procedure, described in Part I, leads to a nonlinear, amplitude dependent dispersion relation. An examination of this dispersion relation indicates that below a certain critical temperature, there is a range of wavenumbers where the two stream instability levels off before the onset of trapping. This range of wavenumbers decreases with increasing temperature and therefore is largest when the temperature is zero.

Friedman, H. W., "Non-Linear Asymptotic Analysis of the Positive Column", to be published in the Physics of Fluids.

The positive column of a slightly ionized gas discharge confined by cold, insulating walls is described by a set of non-linear fluid
equations. The inertia, space charge and collision terms are retained. A zeroth order solution uniformly convergent to the exact solution in both plasma and sheath regions is derived using asymptotic boundary layer analysis. The value of potential at the wall is calculated by means of kinetic model. It is found that the density at the wall can be a significant fraction of the value at the center and that it vanishes only in the low electron temperature limit. The original Bohm criterion is recovered as a necessary condition for sheath stability and is interpreted as (1) the velocity which asymptotically separates the plasma from the sheath and (2) the maximum ambipolar diffusion velocity.

The one dimensional fluid equations are used to describe a steady state, slightly ionized plasma confined by cold walls. The singularities of the complete two-fluid and approximate one-fluid equations are investigated and compared. It is found that the singularity in the one-fluid equations indicating a transition from plasma to sheath regions disappears in the two-fluid equations and therefore a smooth transition is predicted. Another singularity which is present in the two-fluid but not in the one-fluid equations is shown to be compatible if a constraint relation is satisfied at the singular point. In order that the two-fluid problem be well posed: (1) the boundary conditions are modified to insure that the constraint relation is satisfied and (2) a kinetic model is derived which uniquely specifies the wall potential for a given plasma configuration. The occurrence of a compatible singularity is shown to be analogous to the phenomenon of transonic flow in a convergent-divergent nozzle.

The hypothesis of equal a priori probabilities is essential both in statistical mechanics and in kinetic theory. In the latter, the application of the hypothesis is conditional, as is exemplified by molar disorder in the presence of molecular order conceived by those authors such as Maxwell and Boltzmann in the last century. Previously the author asserted that the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is to be derived by course-graining the Liouville equation under a time-scale assumption. On the other hand, some authors seem to believe that no coarse-graining is necessary because the density of similar systems in the phase space is microscopically symmetric with respect to the interchange of phase coordinates between two similar particles. By the microscopic symmetry (unconditional application of the hypothesis of equal a priori probabilities), however, one must admit the same degeneracy in the states of those particles as in energy eigen-states of Bose-Einstein particles in a closely packed system. The assumption of microscopic symmetry is not plausible in view of the following:

1) A procedure of our experimental observation of kinetic theoretical processes is performed with respect to a single system along the time axis; 2) a finite change in the position and velocity of a particle cannot take place instantaneously; 3) similar particles are indistinguishable, but their states are distinguishable. These three reasons are relevant unconditionally for classical-mechanical systems and conditionally for quantum-mechanical systems. It is shown, in appendix B, that the derivation of the Boltzmann equation cannot be consistent from the BBGKY hierarchy based on the microscopic-symmetry assumption. In conclusion, the symmetry assumption is plausible in kinetic theory only conditionally and locally after coarse-graining operations. This conclusion is not trivial, particularly for ionized gases.

Because of the time scale assumption necessary for its derivation, the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations is not applicable to systems consisting of charged particles,
except for special subsystems. A new class of equations governing the evolutions of charged particles is derived from the Liouville equation and is coarse-grained with respect to time and similar particles. In the zeroth approximation, there are two basic types of inter-particle interactions: One is of the Vlasov type and the other of the Boltzmann type characterizing interactions among nearest neighboring particles. In higher order approximations, mutual perturbations among those basic interactions result in secondary effects; for example, two nearest-neighboring particles exert a force of microscopic order to another particle. Depending on the ratio between the number of electrons and the number of ions in a real system, the simulating model varies. The main purpose of the paper is to present schemes of rational treatment, rather than to provide numerical results in detail for a particular system.

A bi-orthogonality relation is presented between the eigenfunctions of the operator representing the linearized anisotropic multifluid description of a cylindrical warm plasma and the eigenfunctions of the corresponding adjoint operator. This bi-orthogonality relation is used to describe the solution to the plasma equations when the plasma is excited by general sources, as well as to decompose a known solution into the appropriate eigenfunction expansion.

B. FLUID DYNAMICS

Microwave resonant cavities operated in the TM$_{010}$ mode and constituting a part of the driven section of a pressure driven shock tube are used in this investigation. With argon as the driven gas (at a pressure of approximately 0.001 to 0.02 atm) and
hydrogen as the driver gas, the shock Mach number is varied over a range between 10.5 and 13.5. With the cavities operated in the S-band region, an electron density of the order of 5×10^7 to 1×10^{10} el/cm3 can be measured. Using two cavities in tandem, tuned for the same resonant frequency and separated by a known distance, a measure of the precursor velocity is obtained. Several experiments are performed to determine the nature of the electron precursor, i.e., whether the precursor is caused by large scale diffusion of electrons from behind the incident shock or by radiation effects. It was found that electron precursor densities as high as 10^8 el/cm3 were measured as far as 1/2 m in front of the shock, the electron precursor velocity is equal to the shock velocity, and the electron precursor in front of the shock is generated by radiation emitted from the ionized gas behind the incident shock.

Electron number densities were measured behind the incident shock wave in a pressure driven shock tube by a microwave resonant cavity technique and by electrostatic probes. The driven gas was air at initial pressures of .5 and 1mm Hg, and the shock Mach number was varied from 7 to 10. Electron neutral collision frequency as also determined by the microwave technique. The experimental measurements were compared with other measurements and with theory.

An experimental study has been performed to obtain the near wake characteristics of a sharp, 10° half angle cone at angle of attack in a hypersonic free stream environment. The tests were conducted at a free stream Reynolds number \(\text{Re}_D = 0.55 \times 10^6 \) corresponding to a laminar near wake for the zero angle of attack condition. The inviscid flow field, including trailing shock configuration, and the viscous core behavior are compared to the corresponding data obtained at zero angle of attack. The major effects of the non-zero angle of attack are seen to occur in the mixing processes as indicated by centerline variations in static and stagnation pressure ratios. The recovery of these parameters to their free stream conditions for the cone at angle of attack appears to follow the turbulent, rather than the laminar, behavior for the corresponding cone at zero inclination.

Zinman, W. G., "Comment on Experimental Precursor Studies"

It is shown how a two step process in which the first step is the absorption of a resonance quanta might account for the experimental result of Wilson and Leederman. They showed that the apparent photon mean free path is independent of the initial argon pressure in a shock tube.

C. ELECTROMAGNETICS

Berger, H. and J. V. E. Griemsmann, "Comments on 'Guided Waves in a Sirle Moving Medium' ", to be published in the Proceedings of IEEE.

This letter presents comments on a recent letter by Shiozawa which, in brief, are: (1) Du and Compton have published the solutions to the same problem, (2) Shiozawa presents an improper basis for the use of phase invariance and its consequences, and (3) Shiozawa's solution for \(v = u \) is not valid.

This paper presents a theoretical examination of the influence of dispersive media on the time-harmonic, modal field structure of the electromagnetic waves in a cylindrical waveguide of arbitrary cross-section when the medium is in relative motion with respect to the waveguide walls. The modal field structure observed both in the reference frame F' attached to the medium, and in the reference frame F attached to the waveguide walls, are determined in closed form. The results presented for the modal fields observed in F are valid when the medium moves with a velocity that is small compared with $c_0 = (\varepsilon_0 \mu_0)^{-1/2}$, and other specified reference velocities. Contact is made with the classical relativistic discussion of TEM waves in moving media by the introduction of the Fresnel drag coefficient. The theory is applied to the special cases of (a) non-dispersive moving media, and (b) a moving, low temperature, idealized plasma.

The detailed modal field structure has been determined for electromagnetic waves propagating in a uniform, cylindrical, lossless waveguide of arbitrary cross-section filled with a moving media. The medium is assumed to be homogeneous, isotropic, and non-dissipative, but may be dispersive. The medium moves uniformly, with a constant speed v, parallel to the axis of the waveguide. The solutions obtained are exact, closed form functions of the space variables, time, the modal wave frequency and propagation factor, and hold for any value of the magnitude of v, from zero up to the speed of light in vacuum. The electromagnetic power flow in the waveguide is investigated, and it is demonstrated that it displays characteristics which differ considerably from those associated with the stationary medium case. The general theory is applied to several types of moving media including (1) nondispersive media, and (2) the idealized low temperature plasma.

It is demonstrated that the necessary and sufficient condition for a moving media not to exhibit a drag effect on electromagnetic waves propagating through that media is that the media display the dispersion generally associated with the cold, homogeneous, isotropic plasma. Because at sufficiently high frequencies all real media (in the linear approximation) display the above dispersion it follows that in those circumstances the drag effect is absent.

Compton and Tai have published a generalization of Poynting's theorem for media moving with non-relativistic velocity, and have given physical interpretations for various terms of their resultant equation. In the present note Compton and Tai's result is transformed into another form which suggests a very different interpretation. The discussion includes relativistic velocities.

Rigorous generic integral solutions for the fields radiated by phased line distributions of electric or magnetic currents in the presence of two arbitrarily anisotropic half-spaces are evaluated asymptotically by the saddle point technique. The resulting field constituents are shown to be interpretable invariantly as geometric-optical (incident, reflected and refracted) and diffracted (lateral wave) contributions. These fields are then derived directly from ray-optical arguments, thereby providing a justification for this procedure without intervention of the rigorous formulation. Because of the general validity of ray-optical concepts in connection with asymptotic solutions in the far zone, use of ray techniques is then advocated also for more complicated configurations which are not amenable to rigorous analysis.

Based on a rigorous integral representation, the far fields radiated by an electromagnetic point source in the presence of a planar interface between two arbitrary homogeneous, lossless, anisotropic half-spaces are evaluated. An invariant ray-optical interpretation is given to the stationary point contributions (direct, reflected or transmitted rays) and to the branch curve contributions (lateral rays) to the asymptotic evaluation. The invariant form of the results highlights the local character of the ray-optical fields and permits one to postulate a generalization of the ray-optical method of analysis to the problem of reflection and transmission at a gently curved interface, which is generally not amenable to a rigorous analysis.

Ray-optical concepts are introduced for propagation of electromagnetic and electroacoustic waves in an unbounded compressible plasma, and are then applied to the analysis of radiation in the presence of plane or curved interfaces and obstacles. The method involves tracing of the electromagnetic and acoustic rays through the medium, due account being taken of coupling in source regions, at boundaries, and at scattering centers. The formulas for reflected, refracted, and diffracted fields derived in this manner are verified for special cases by the rigorous treatment in part II, thereby providing confidence in the validity of the procedure.

Different two-dimensional geometries involving bounded, homogeneous, isotropic, compressible plasma regions are considered,
and exact integral representations are developed for the electromagnetic and dynamical fields due to various excitations. Specifically, the geometries include plane and cylindrical interfaces, and also a perfectly conducting half plane embedded in the plasma. Asymptotic analysis of the exact solutions by the steepest-descent method leads to results which may be cast into a ray-optical form. It is shown that the geometric-optical and diffraction fields derived in this manner agree with those obtained in part I by direct application of ray-optical procedures. This conclusion lends substance to the validity of the ray-optical method and suggests its utility for even more general configurations which are not readily subjected to rigorous analysis.

Ott, E. and J. Shmoys, "Transient Aspects of Transition Radiation", to be published in the Quarterly of Applied Mathematics.

When a charged particle moving at uniform velocity crosses a boundary between two media with different electrical properties, a pulse of electromagnetic energy is emitted. This phenomenon is basically unlike either bremsstrahlung or the Cerenkov effect in that the charge will radiate even though it does not accelerate or move faster than the phase velocity of light in the medium.

Various theoretical and experimental aspects of transition radiation have recently been the subject of extensive study. It has been proposed that the effect might be useful in the generation of microwave power and as a diagnostic tool for the study of metals and plasmas.

It is clear that the effect is fundamentally a transient process. It is, therefore, surprising that the transient character of the fields has hardly received notice. Previous investigators have concentrated on determining the frequency spectrum of the radiation fields. We, on the other hand, will deal directly with the problem of finding the fields as a function of time.

In order to illustrate the essential characteristics of the processes involved, a specific problem will be considered. For the problem selected an exact closed form solution is obtained in a form amenable
to physical interpretation. It is found that before the time of impact the entire field may be represented in terms of an image picture, which is a generalization of the static case. Even after impact the image picture remains valid, but only in certain regions of space. At impact, a sudden burst of energy is liberated. This energy then propagates outward from the impact point in a manner to be discussed later. It is to be expected that the solution of the present problem will aid in the understanding of transition radiation in more complicated configurations, for which no closed form solution is available.

The method used to evaluate the transient is patterned after that given by Felsen³. A representation of the solution in terms of Fourier integrals will be obtained; these will be then reduced to such a form that they can be evaluated by inspection.

The utilization of refractive index surfaces in conjunction with the Clemmow, Mullaly, Allis (CMA) diagram greatly simplifies the determination of the regions of Cerenkov radiation and the types of waves emitted in a cold, collisionless, electron magnetoplasma. Also, the physical insight gained by this approach is used to explain the qualitative behavior of the power spectrum.

An exact solution of Maxwell's equations is given for the problem of a magnetic line source parallel to the axis of a perfectly conducting cylinder in an inhomogeneous uniaxial medium of infinite extent. The inhomogeneity is due to the curvature of the lines of force of the static magnetic field responsible for the anisotropy of the medium. These lines of force are taken to be concentric with the cylinder. The exact solution is transformed, for frequencies above the plasma frequency and for large cylinder radius, to a more rapidly convergent form.
which is given a geometric interpretation. The geometric interpretation can then be used to obtain approximate solutions when the magnetic field and the scatterer are more complicated and do not admit an exact solution of Maxwell's equations.

III. ARPA-RELATED ACTIVITIES, LECTURES, VISITING PROFESSORS AND CONSULTANTS, PAPERS SUBMITTED TO OUTSIDE JOURNALS, AND INTERNAL REPORTS

A. ARPA-RELATED ACTIVITIES

Dean Martin H. Bloom, member of the Atomic and Molecular Physics Panel of the Institute for Defense Analyses

Dean Bloom is Associate Editor of the Journal of Ballistic Missile Defense Research, published by IDA for ARPA

Professor Rudolf Hutter has taken part informally in meetings and project reviews of the ARPA-ECM Electronic Components Subcommittee, headed by Col. Benjamin I. Hill of ARPA

Participation at outside meetings relevant to the program included the following talks:

a) 8th Annual Meeting, American Physical Society, Division of Plasma Physics, Boston, Mass., November 1965:

J. Freidberg, "Nonlinear Temperature Effects in the Two Stream Instability"

L. B. Felsen

R. G. E. Hutter

T. Koga, "The Symmetry Assumption of the Density of a System in the Phase Space -- the Hypothesis of Equal A Priori Probability in Kinetic Theory"

S. Lederman

E. Levi

J. Shmoys
K. Stuart, "Observations of Resistive Instabilities in a Toroidal Plasma"
D.S. Wilson

b) Defense Ionospheric Studies Symposium, San Juan, Puerto Rico, November 1966:
L.B. Felsen

c) Symposium on Plasma Turbulence, Institute for Defense Analyses, Arlington, Va., November 1966:
L.B. Felsen
R.G.E. Hutter

d) BMD Experimental Measurements Meeting, The Pentagon, Washington, D.C., November 1966:
M.H. Bloom, "Langmuir Probe Measurements"

e) Sperry Rand Research Center, Sudbury, Mass., January 1967:
H. Farber
R.G.E. Hutter
R. Pepper

f) Technical discussions at ARPA, Washington, D.C., March 1967:
M.H. Bloom
R.J. Cresci

B. LECTURES

There have been many formal seminars and informal discussion groups; a partial listing is given here:

October 1966:

Dr. H.T. Nagamatsu General Electric Research and Development Center
Hypersonic Boundary Layer Transition in the Mach Number Range 9.1-16
November 1966:

Dr. M. Baron
Paul Weidlinger Consult.
Engr.

Dr. C. Mow
Aero-Astronautics Dept.
The Rand Corporation

Prof. W. R. Sears
Cornell University

Prof. F. H. Abernathy
Harvard University

Dr. M. Camac
AVCO Everett Research
Laboratory

Prof. P. A. Libby
University of California
San Diego

Dr. R. Zirkind

Particle in Cell Method Studies and
Their Application to High Velocity
Impact Problems

Another Boundary Layer Phenomenon
in Magneto-Fluid-Dynamics

A Method of Analysis of Propagation in
Stratified Gyrotropic Media

Interaction Between Free Electrons and
Light

December 1966:

Dr. C. C. Mow
Aero-Astronautics Dept.
The Rand Corporation

Prof. F. H. Abernathy
Harvard University

Dr. M. Camac
AVCO Everett Research
Laboratory

Prof. P. A. Libby
University of California
San Diego

Dr. R. Zirkind

On the Transient Response of an Inclusion
and Elastic Wave Scattering Phenomena

Recent Developments in Bluff Body Wakes
for Incompressible and Hypersonic
Flows

Gas Dynamic Measurements with Electron
Beams

Some New Solutions in Laminar Boundary
Layer Theory

Optical Diagnostics of Plasmas

January 1967:

Dr. W. S. Ament
Naval Research Laboratory
Washington, D. C.

Prof. L. Crocco
Princeton University

E. Ott

Dr. K. Stuart

How Valid is the Monte Carlo Method for
Electromagnetic Multiple Scattering
Problems?

Non-Linear Periodic Oscillations in
Gaseous Systems

Transient Radiation in Inhomogeneous
Plasmas

The Toroidal Discharge

February 1967:
Prof. D. J. Rose
Dept. of Nuclear Engrg.
Mass. Inst. of Technology

Dr. R. Monti
University of Naples and
P.I.B.

March 1967:

Dr. F. N. Frenkiel
Applied Math. Lab.
David Taylor Model Basin

Prof. C. K. Chu
Columbia University

Dr. A. Hessel
Applied Math. Lab.

Mr. E. Labuda
Bell Laboratories

Dr. M. P. Bachynski
RCA Victor Labs., Ltd.
Montreal, Ont., Canada

Prof. R. Dorfman
University of Maryland

C. VISITING PROFESSORS AND CONSULTANTS

Dr. Toyoki Koga
Dr. Ilya Prigogine (University of Brussels)
Dr. Rudolfo Monti (University of Naples)

Dr. Nathan Marcuvitz (New York University)

D. PAPERS SUBMITTED TO OUTSIDE JOURNALS

Koga, T., "Derivation of the Boltzmann Equation as a Test Case of Kinetic-Theoretical Schemes", submitted to Reviews of Modern Physics

E. INTERNAL REPORTS

Coordinated by R. Hutter, "Research on Electromagnetics for Project DEFENDER", Semi-Annual Technical Summary for the period ending 30 September 1966, PIBMRI-1295.3-66

Cronson, H., "On Experimental Study of Microwave Heating in the Helium Afterglow", PIBMRI-1348-66, Polytech. Institute of Brooklyn

IV. PERSONNEL

M. H. Bloom: Professor
 Dean of Engineering
 Director, Gas Dynamics Research

R. J. Cresci: Professor

G. Dormant: Assistant Professor

H. Farber: Associate Professor

L. B. Felsen: Professor

J. W. E. Griessmann: Professor

A. Hessel: Associate Professor

R. G. E. Hutter: Professor
 Principal Investigator

D. Jacenko: Research Associate

K. R. Jolls: Assistant Professor

T. Koga: Visiting Professor

S. Leigerman: Associate Professor

L. Levey: Assistant Professor

L. Levi: Professor

T. Pepper: Research Associate

M. C. Petersor: Assistant Professor

S. Ksenbaun: Instructor

E. L. Rubin: Associate Professor

P. E. Seram: Assistant Professor

P. M. Storza: Assistant Professor

J. Shmoys: Associate Professor

N. Trentacoste: Research Assistant

D. S. Wilson: Assistant Professor

D. D. H. Yee: Assistant Professor
Research or Electromagnetics for Project DEFENDER

Semi-Annual Technical Summary for period ending 31 March 1967

Principal Investigator: Rudolf G. E. Hutter

This report contains a compilation of abstracts of papers which were either accepted for publication or were published. The papers are on the subjects of Plasmas, Fluid Dynamics and Electromagnetics. The work described was carried out under an ARPA contract, Order No. 529. This report also contains a listing of papers submitted to journals, lectures, internal reports and staff activities.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. A meaningful title cannot be selected without classification. Show title classification in all capitals in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedure, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating organization. This number must be unique in this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (other than the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized.

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document and its significance. It may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the security classification of the information in the paragraph, represented as (T), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 215 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.