APPLICATIONS OF MICROWAVE HEATING TO FOOD PROCESSING AND COOKERY

A Checklist Bibliography

by

Eugene G. Beary

February 1967

UNITED STATES ARMY
NATICK LABORATORIES
Natick, Massachusetts 01760

RECEIVED
AUG 5 1967
CFSTI
APPLICATIONS OF MICROWAVE HEATING TO FOOD PROCESSING AND COOKERY

A Checklist Bibliography
Prepared By
Eugene G. Beary

Bibliographic Series 67-2

Technical Library
U. S. Army Natick Laboratories
Natick, Mass. 01760
February 1967
The references presented in the following pages are issued as a further contribution in the series of bibliographical reports made available as a result of the literature research program being conducted by staff members of the Technical Library, U. S. Army Natick Laboratories.

This checklist bibliography on the Applications of Microwave Heating to Food Processing and Cookery has been compiled to serve as a guide to the literature in a relatively new and useful area of technology. It should prove of value to Government agencies, research organizations and food processors.

ROBERT L. MARTIN
Chief
Technical Library

Distribution of this document is unlimited.
INTRODUCTION

The scope of this literature search includes dielectric or high-frequency heating - under 100 megacycles - as well as the microwave range of heating - 900 to 3,000 megacycles - since the principles formulated during the earlier experimental stages with the low frequencies are carried over to the higher microwave frequency range. The production of microwaves and types of microwave equipment were included to a lesser extent; the most cited references were utilized to represent this area.

The time coverage is from 1942 to November 1966. Patents and company manuals are included to some extent, in addition to the books, journal articles and reports literature. The coverage is almost exclusively English language material.

The compiler feels that this checklist bibliography represents a rather comprehensive view of the subject area.

February 1967

Eugene G. Beary

2. Burn hazards of microwave cookers.

3. Cakes made from new baking mix line heat perfectly in radar ovens.

4. Canadian firm offers liquefrozen meals; leases microwave ovens to mass-feeders.

5. Coming shortly; microwave cooker and ultrasonic dishwasher.

 Food Engineering 23(5):81, 5 May 1951.

7. Cooking by electronics,

8. Cooks meals quickly; new electronic oven uses microwave technique.

9. Customers select, heat frozen entrees in speedy microwave ovens at table.

10. Dining a la radar; dry-freezing of foods by microwave; Raytheon process.
 Business Week :120, May 18, 1957.

11. Electronic cooking device.

12. Electronic cooking hot stuff.

15. Electronic oven.

17. First electronic range offered by Tappan Stove to average consumer.

18. Freeze-drying improved with radar energy.

19. Frozen food cookery-via microwave miracle.

20. Frozen pre-cooked meal heated in 75 seconds.

21. Hager's becomes packer, offers feeders low-cost entree/microwave oven tie-in.

22. How soon will you be installing electronic ranges?

23. Micro-dine frozen vending concept supplies dispenser, oven, food.

24. Microwave applications in the food industry.

25. Microwave cooking warms up.
Electronics 30:12, Sept. 1, 1957.

26. Microwave heating comes out of the kitchen.
Chemical Engineering 71:114, Nov. 9, 1964.

27. Microwave heating produces improved potato cubes.
Food Processing & Marketing 35(422):441, Nov. 1966.

28. Microwave oven makes bid to capture industrial market for mass-feeding.

Roast and brew coffee in nine minutes via electronics. The Hotel Monthly 54:52, Sep. 1946.

Seven significant areas of advance; microwaves and their application in food processing. Food Technology 20(7):915-916, Jul. 1966.

48. ALDOR, T.

49. ALDOR, T. and G. GONDA

50. ALLAIRE, Royal P.

51. ALLAIRE, Royal P.

52. AMERICAN MEAT INSTITUTE FOUNDATION. ANALYTICAL AND PHYSICAL CHEMISTRY DIV.
 Use of dielectric heating for heat preservation of boned ham for canning.
53. AMERICAN MEAT INSTITUTE FOUNDATION. ANALYTICAL AND PHYSICAL CHEMISTRY DIV.
Use of dielectric heating in continuous processing of meat for canning. Report No.1-12, Sep. 1, 1950-June 1, 1953.
Contract: DA-11-009-QM-1356
DA-11-009-QM-18561

54. APGAR, J., N. Cox, I. Downey and F. Fenton
Cooking pork electronically. Effect on cooking time, losses, and quality.

55. ARNS, Robert G.
Microwave heating.
U. S. Patent 3,256,101

56. BARTHOLOMEW, J. W., R. G. Harris and Frank Sussex
Electronic preservation of Boston brown bread.

57. BARTHOLOMEW, J. W.
Utility of high frequency heating in the frozen food industry.

58. BECHTEL, J.
Electronic oven speeds service of tasty hospital food.

59. BENGTSSON, N. E.
Electronic defrosting of meat and fish at 35 and 24:0 mcs -- a laboratory comparison.

60. BENGTSSON, N. E.
Experiments with dielectric defrosting of meat and fish.

61. BENJAMIN, H. A. and O. F. Ecklund
Possibilities in electronic sterilization.
Food Industries 18:523-524, Apr. 1946.

62. BERGER, L. R.
An experiment in the electronic cookery of meat.
Food News & Views (Swift & Co.), No. 147, 1958.

63. BERGER, L. R.
More about electronic cookery of meat.
64. BESSER, E. D. and E. L. Piret
Controlled temperature dielectric drying.
Chemical Engineering Progress 51:405-, 1955.

65. BOLLMAN, Marion C., Sadie Brenner, Lois E. Gordon and Mary E. Lambert.
Application of electronic cooking to large-scale feeding.

66. BRADBURY, Samuel
Process for the desiccation of aqueous materials from the frozen state.

67. BROWN, Eugene
Package for electronic cooking.
Canadian Patent 735,735, Unilever Ltd.

68. BROWN, George H., Cyril N. Hoyler and Rudolph A. Bierworth
Theory and application of radio frequency heating.

69. BRYANT, S.
Baking potatoes in the electronic range.

70. BURKE, Robert F. and Robert V. Decareau
Recent advances in the freeze-drying of food products.

71. CAMPBELL, C. L., T. Y. Lin and B. E. Proctor
Microwave vs. conventional cooking.

72. CATHCART, W. H. and J. J. Parker
Defrosting frozen foods by high-frequency heat.
Food Research 11:341-344, 1946.

73. CATHCART, W. H.
Frozen foods defrosted by electronic heat.
Food Industries 18:1524-1525, Oct. 1946.

74. CATHCART, W. Y.
High frequency heating produces mold-free bread.
Food Industries 18:864-865, 1946.

75. CATHCART, W. H., J. J. Parker and H. C. Beattie
The treatment of packaged bread with high frequency heat.
Food Technology 1:174-177, 1947.
76. CAUSEY, Kathryn and F. Fenton
Effect of reheating on palatability, nutritive value, and bacterial count of frozen cooked foods. 1. Vegetables.

77. CAUSEY, Kathryn and F. Fenton
Effect of reheating on palatability, nutritive value, and bacterial count of frozen cooked foods. 2. Meat dishes.

78. CAUSEY, Kathryn, Ella G. Andreassen, Mary E. Hausrath, Carmel Along, Paul E. Ramstad and Faith Fenton.
Effect of thawing and cooking methods on palatability and nutritive value of frozen ground meat. I. Pork.

79. CAUSEY, Kathryn, Mary E. Hausrath, Paul E. Ramstad and Faith Fenton
Effect of thawing and cooking methods on palatability and nutritive value of frozen ground meat. II. Beef.

80. CAUSEY, Kathryn, Mary E. Hausrath, Paul E. Ramstad and Faith Fenton
Effect of thawing and cooking methods on palatability and nutritive value of frozen ground meat. III. Lamb.
Food Research 15:256-261, 1950.

81. CHAPMAN, Velma J., Joanne O. Putz, Gladys L. Gilpin, James P. Sweeney and Jacob N. Eisen
Electronic cooking of fresh and frozen broccoli.

82. COPSON, David A., Barbara R. Neumann and Aaron L. Brody
Browning methods in microwave cooking.

83. COPSON, David A.
Methods and apparatus for radio-frequency freeze-drying.

84. COPSON, David A.
Microwave energy in food procedures.

85. COPSON, David A. and Robert V. Decareau
Microwave energy in freeze-drying procedures.

86. COPSON, David A.
87. COPSON, David A.
 Microwave irradiation of fruit juices.

88. COPSON, David A.
 Microwave irradiation of orange juice concentrate for enzyme
 inactivation.
 Food Technology 8:397-399, Sep. 1954.

89. COPSON, David A.
 Microwave sublimation of foods.

90. COPSON, David A.
 Some aspects of orange-juice processing by super voltage cathode
 rays and by microwave radiations.

91. CORFIELD, G.
 Developments in microwave ovens.
 Gas 41:15, Jan. 1965.

92. CORNING GLASS WORKS, HOME ECONOMICS DEPARTMENT.
 Cooking with the electronic range. Corning, New York,
 Corning Glass Works, 1956.

93. COTTERILL, Owen J. and Isabelic Delaney.
 Microwave heating for the determination of total solids in
 liquid egg products.

94. CRYODRY, SUBSIDIARY OF ARMOUR AND COMPANY
 (1966)

95. DECAREAU, Robert V.
 For microwave heating tune to 915 mc or 2450 mc.

96. DECAREAU, Robert V.
 How microwaves speed freeze-drying.

97. DECAREAU, Robert V.
 Limitations and opportunities for high frequency energy in the
 freeze-drying process. In: Freeze-Drying of Foods. (F. R.
 Fisher, ed.) Proceedings of a Conference, Chicago, Ill.,
98. DECAEAREAU, Robert V.
Microwave freeze-drying.

99. DEFENSE DEPARTMENT, BUREAU OF SHIPS
Microwave techniques; prepared by NDRG, Div. 14, Radiation Laboratory, Massachusetts Institute of Technology, 1950.

100. DESSEL, M. M., E. M. Bowersox, W. S. Jeter
Bacteria in electronically cooked foods.

101. DULBERGER, Leon H.
Microwave at the kitchen door.

102. EASTMAN, Lester F.
Superpower tubes - their capabilities and limitations.

103. EHEART, M. S. and C. Gott
Chlorophyll, ascorbic acid and pH changes in green vegetables cooked by stir-fry, microwave, and conventional methods and a comparison of chlorophyll methods.

104. EHEART, M. S. and C. Gott
Conventional and microwave cooking of vegetables. Ascorbic acid and carotene retention and palatability.

105. EICKELBERG, E. W.
Electronic heating for frozen foods.

106. EITEL-McCULLOUGH INC.
Microwave literature.
San Carlos, Calif., Eitel-McCullough, Inc.

107. FEDERAL COMMUNICATIONS COMMISSION
Part 18 - Industrial, Scientific and Medical Services.

108. FENTON, F.
Research on electronic cooking.
Journal of Home Economics 49(9):709-716, 1957 (Nov.)

109. FLEMING, Hugh
Effect of high frequency fields on micro-organisms.
110. FLOSDORF, Earl W.
Process for the desiccation of labile aqueous materials.
U.S. Patent 2,605,554, Lyophile-Cryochem Corp.

111. GALL, B.O.M., and R. A. LaPlante
Methods of application of microwave energy in industrial
Proceedings of a Conference, Chicago, Ill., April 12-14, 1961,
1962.

112. GAT'KE, N. N.

113. GORDON, J., I. Noble
Comparison of electronic vs. conventional cooking of vegetables.
Flavor, color, and ascorbic acid retention.

114. HANKINSON, M. P.
Electronic heating cuts cooking time.
New Jersey Agriculturè 30:4, Mar. 1948

115. HARPER, J. C., C. O. Chichester and T. E. Roberts
Freeze-drying of foods; dielectric heating applied to dehydrated
food production.

116. HARPER, J. C. and C. O. Chichester
Freeze drying - application of dielectric heating.
In Research and Development Associates Food and Container Institute.
Freeze-Dehydration of Foods; a Military Industry Meeting, Sep.20-21,

117. HARPER, J. C. and A. L. Tappel
Freeze-drying of food products.
Advances in Food Research 7:171-234, 1957.

118. HARPER, J. C. and C. O. Chichester
Microwave spectra and physical characteristics of fruit and
animal products relative to freeze-dehydration. Rpt. no.6 (Final).

119. HARVEY, A. F.
Industrial, biological and medical aspects of microwave radiation.
Institution of Electrical Engineers, Proceedings 107, pt.B:565-566,
120. HART, V. G.
 Stormont-Vail Hospital reports on use of microwave ovens with raw

121. HARTMAN, J.
 What microwave cooking can and can't do. Modern Hospital 97:138, Nov. 1961.

122. HARTSHORN, Leslie

123. HARVEY, Arthur F.

124. HEADLY, M. E. and M. Jacobson

125. HOLLAND, John M.

126. HOLLAND, John M.

127. HOOVER, Maurice W., Anthony Markantonatos and William N. Parker

128. HOOVER, Maurice W., Anthony Markantonatos and William N. Parker

129. HOSHAL, Edward M.

130. HOTPOINT HOME ECONOMICS INSTITUTE
131. JACKSON, J. M.
 Electronic sterilization of canned foods?

132. JACKSON, S., Suzanne L. Rickter and C. E. Chichester
 Freeze-drying of fruit.

133. JASKI, T.
 Magnetron; industrial power generator; chief non-radar
 application at present is in cooking foods.

134. JASON, A. C. and H. R. Sanders
 Dielectric thawing of fish.
 International Congress of Refrigeration, 10th, Copenhagen,

135. JASON, A. C. and H. R. Sanders
 Dielectric thawing of fish.
 I. Experiments with frozen herrings.

136. JASON, A. C. and H. R. Sanders
 Dielectric thawing of fish.
 II. Experiments with frozen white fish.

137. JEPPSON, M. R.
 Consider microwaves to speed drying, cooking, canning, baking
 and thawing.

138. KELVINATOR INSTITUTE
 Electronic range demonstration.
 Detroit, American Motors Corporation, 1956.

139. KINN, T. P.
 Basic theory and limitations of high frequency heating equip¬
 ment.

140. KOSTIKOWSKY, F. V., B. L. Herrington and A. C. Dahlberg
 The pasteurization of American cheddar cheese by radio¬
 frequency heat.

141. KRAJEWSH, Edward Z.
 Microwave cooking.
 U. S. Patent 3,230,864
 Litton Precision Products, Inc.

152. LONG, Florren E., Fred B. Shaw and Harvey C. Lisle
Flexible package sterilization.
U. S. Patent 3,261,140
Continental Can Co.

Effect of microwaves on vegetative cells, spores, and the
transformation of DNA.

154. MAES, E., F. P. Pietermaït and W. VanDijck
Quelques essais concernant la cuisson du pain dans un champ
electrique a haute frequentce. (Trials on bread baking in a
high frequency electric field.)

155. MARSHALL, N.
Electronic cookery of top round of beef.

156. MORSE, Philip W. and H. Earl Revercomb
UHF heating of frozen food.

157. MOYER, James C. and Elmer Stotz
The blanching of vegetables by electronics.

158. MOYER, James C. and Kenneth C. Holgate
Cooling after water and electronic blanching.

159. MOYER, James C. and Elmer Stotz
The electronic blanching of vegetables.

160. NEUZIL, Martha and Ruth E. Baldwin
Effects of the electronic method of cookery on the quality of
shortened cakes.

161. NEUZIL, Martha
The effects of the electronic method of cookery on the quality
of shortened cakes.
Master's thesis -- State University of Iowa, Iowa City, Iowa,
1962.

162. NICHOLS, N.
Brand new way to cook.
163. NOBLE, I. and L. Gomez
Vitamin retention in meat cooked electronically. Thiamine and riboflavin in lamb and bacon.

164. NOONE, A. A.
Alert students now to the wonders of electronic cookery.
Forecast for Home Economists 72:34-37, Nov. 1956.

165. PETCHEL, G.
Cakes baked in 90 seconds.

166. PHILLIPS, L., I. Delaney and M. Mangel
Electronic cooking of chicken.

167. POLLAK, George A. and Louise C. Foin
Comparative heating efficiencies of a microwave and a conventional electric oven.

168. PROCTOR, Bernard E. and Samuel A. Goldblith
Electromagnetic radiation fundamentals and their applications in food technology.
Advances in Food Research 3:119-196, 1951.

169. PROCTOR, Bernard E. and S. A. Goldblith
Radar energy for rapid food cooking and blanching and its effect on vitamin content.

170. PUSCHNER, Herbert
Heating with microwaves; fundamentals, components and circuit technique; translated from German by E. Grubbs.

171. RADAR RESEARCH ESTABLISHMENT (GT. BRIT.)
A bibliography on microwaves, by A. F. Harvey, Apr. 1956,
114p, 2240 refs. unclassified.
AD 104 307

172. RADIO FREQUENCY CO., INC., MEDFIELD, MASS.
Microwave oven, 4p., 1966.

173. RAYTHEON RADARANGE DEPARTMENT
Principles of microwave cooking.

174. RECTOR, T. M. and A. C. Shuman
Food physics.
175. ROSENSWEET, A.

He's cooking with microwaves! Tappan Stove Company's electronic range.

176. SAMUELS, C. E. and E. H. Wiegard

Radio frequency blanching of cut corn and freestone peaches.

177. SATCHELL, F. E. and D. M. Doty

High frequency dielectric heating for defrosting frozen pork bellies.
American Meat Institute Foundation Bulletin no. 12, 1951.

178. SCHMIDT, W.

Heating of food in microwave cooker.

179. SCHMIDT, W.

Microwave generators coupled to a loaded cavity for dielectric heating of foodstuffs.

180. SCHMIDT, W.

Mikrowellengeneratoren mit abgeschlossenen Arbeitsraum zur dielektrischen Erwärmung von Nahrungsmitteln und Industrieprodukten.

181. SCHWAN, Herman P.

NASA CR-48312
AD 600 263
(Contract Nonr-551(05))

182. SHERMAN, V. W.

Electronic cooking and sterilization of foods.

183. SHERMAN, V. W.

Electronic heat in the food industries.

184. SHERMAN, V. W.

Electronics in the food industry.

185. SHIELDS, J. P.

Electronic range in the home.
186. SKOWRON, J. F., Brown, W. C., MacMaster, G. H.
Super power of Amplitron.

187. SLATEF, L. E.
High frequency looms as improved cooking method; Di-Thermal processing.

188. STEINHAUS, J. F.
Glo-ball development.

189. STEVENS, H. B. and F. Fenton
Dielectric vs. stewpan cookery.
Comparison of palatability and vitamin retention in frozen peas.

190. STILES, Philip G.
New technology makes possible new poultry products.
Poultry Processing 68:10-11, 94-95, Sep. 1962.

191. STREET, M. B. and H. K. Surratt
Effect of electronic cookery upon the appearance and palatability of a yellow cake.

192. SUSSMAN, L.
Evaluation of electronic cooking device (Radarange) for submarines.

194. SZÖKE, K. and T. Aldor
Über den Vitamin-C-Verlust bei Anwendung verschiedener Kockverfahren. (Loss of vitamin c in different cooking procedures.)

195. THE TAPPAN STOVE COMPANY
What is microwave cooking?
196. THOMAS, Miriam H., Sadie Brenner, Adalene Eaton, and Virginia Craig
Effect of electronic cooking on nutritive value of foods.

197. TOBY, G.
Drying process.

198. TRESSLER, Donald K. and Evers, Clifford F.
The freezing preservation of foods.

199. TRI-SERVICE CONFERENCE ON THE BIOLOGICAL EFFECTS OF MICROWAVE RADIATION PROCEEDINGS

200. VAN ZANTE, H. J. and H. Nakayama
The effect of microwave energy on the internal temperatures
of agar and food cylinders.

201. VAN ZANTE, H. J.
Techniques for electronic cooking research.

202. VAN ZANTE, H. J.
What about electronic ranges?

203. VON HIPPEL, A. R., ed.
Dielectric materials and applications. New York, Wiley,

204. WEBBER, Owen
Challenges for institutional planning.

205. WELCH, A. W.
The whys of electronic cooking.

206. WENGER, W.
Use of dielectric heating for sterilization, pasteurization,
cooking and enzyme control in foods and drugs.

207. WESTINGHOUSE ELECTRIC CORPORATION
7-minute electronic range demonstration.
Mansfield, Ohio, Westinghouse Electric Corp. 1957.
208. WHIRLPOOL CORPORATION
Basic information on the RCA Whirlpool electronic range.
(St. Joseph, Michigan, Whirlpool Corp.) (undated)

209. WHITE, Anne and Betty C. Hobbs
Report on the effect of cooking by radio frequency waves on bacteria in food.

210. WILDEMAHN, Max
Device for heating sausages and the like by very high-frequency energy.

211. WIEGAND, E. H.
New frozen food technology.

212. WILLETT, R.
Electronic cooking with paper service saves costs.

213. WILLIAMS, Beverly E.
Diathermal treatment in the curing and smoking of meats.

214. WILLIAMS, Christine, Joan Yen and Faith Fenton
Effects of radiation and of cooking on the quality of baby beef liver.

215. WOODROOF, J. G.
Cooking with electronics.

216. YANG, Ho-Ya, Jerome H. Johnson and E. H. Wiegand
Electronic pasteurization of wine.

Freeze-drying with radiant energy.
Chemical Engineering Progress 48:21-, 1952.

218. ZOBEL, M.
Anwendung von Hochfrequenz-energie, besonders des Mikrowellenbereiches. Einschätzung dieses Verfahrens vom Ernährungs- und Kochwissenschaftlichen Standpunkt. (The use of high-frequency energy, especially in the microwave range. Evaluation of the technique from the aspects of nutrition and cooking.)
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldor, T.</td>
<td>48, 49, 194</td>
</tr>
<tr>
<td>Allaire, R. P.</td>
<td>50, 51</td>
</tr>
<tr>
<td>Along, C.</td>
<td>78</td>
</tr>
<tr>
<td>American Meat Institute Foundation Analytical & Physical Chem. Div.</td>
<td>52, 53</td>
</tr>
<tr>
<td>Andreassen, E. G.</td>
<td>78</td>
</tr>
<tr>
<td>Apgar, J.</td>
<td>54</td>
</tr>
<tr>
<td>Ams, R. G.</td>
<td>55</td>
</tr>
<tr>
<td>Bagshawe, K. D.</td>
<td>144</td>
</tr>
<tr>
<td>Baldwin, R. E.</td>
<td>160</td>
</tr>
<tr>
<td>Bartholomew, J. W.</td>
<td>56, 57</td>
</tr>
<tr>
<td>Beattie, H. C.</td>
<td>75</td>
</tr>
<tr>
<td>Bechtel, J.</td>
<td>58</td>
</tr>
<tr>
<td>Bell, J. W.</td>
<td>149</td>
</tr>
<tr>
<td>Bengtsson, N. E.</td>
<td>59, 60</td>
</tr>
<tr>
<td>Benjamin, R. A.</td>
<td>61</td>
</tr>
<tr>
<td>Berger, L. E.</td>
<td>62, 63</td>
</tr>
<tr>
<td>Besser, E. D.</td>
<td>64</td>
</tr>
<tr>
<td>Bierworth, R. A.</td>
<td>68</td>
</tr>
<tr>
<td>Bollman, M. C.</td>
<td>65</td>
</tr>
<tr>
<td>Bowersox, E. M.</td>
<td>100</td>
</tr>
<tr>
<td>Bradbury, S.</td>
<td>66</td>
</tr>
<tr>
<td>Brenner, S.</td>
<td>65, 196</td>
</tr>
<tr>
<td>Brody, A. L.</td>
<td>82</td>
</tr>
<tr>
<td>Brown, E.</td>
<td>67</td>
</tr>
<tr>
<td>Brown, G. H.</td>
<td>68</td>
</tr>
<tr>
<td>Brown, W. C.</td>
<td>186</td>
</tr>
<tr>
<td>Brunner, G. D.</td>
<td>149</td>
</tr>
<tr>
<td>Bryant, S.</td>
<td>69</td>
</tr>
<tr>
<td>Burke, R. F.</td>
<td>70</td>
</tr>
<tr>
<td>Campbell, C. L.</td>
<td>71</td>
</tr>
<tr>
<td>Cathcart, W. H.</td>
<td>72, 73, 74, 75</td>
</tr>
<tr>
<td>Causey, K.</td>
<td>76, 77, 78, 79, 80</td>
</tr>
<tr>
<td>Chapman, V. J.</td>
<td>81</td>
</tr>
<tr>
<td>Charles, V. R.</td>
<td>143</td>
</tr>
<tr>
<td>Chichester, C. O.</td>
<td>115, 116, 118, 132</td>
</tr>
<tr>
<td>Copson, D. A.</td>
<td>82, 83, 84, 85, 86, 87, 88, 89, 90</td>
</tr>
<tr>
<td>Corfield, G.</td>
<td>91</td>
</tr>
<tr>
<td>Corning Glass Works, Home Economics Department</td>
<td>92</td>
</tr>
<tr>
<td>Cotterill, O. J.</td>
<td>93</td>
</tr>
<tr>
<td>Cox, N.</td>
<td>54</td>
</tr>
<tr>
<td>Craig, V.</td>
<td>196</td>
</tr>
<tr>
<td>Cryodry, subsidiary of Armour Co.</td>
<td>94</td>
</tr>
<tr>
<td>Dahlberg, A. C.</td>
<td>140</td>
</tr>
<tr>
<td>Decareau, R. V.</td>
<td>70, 85, 95, 96, 97, 98</td>
</tr>
</tbody>
</table>
Defense Department, Bureau of Ships 99
Delaney, I. 93, 166
Dessel, M. M. 100
Doty, D. M. 177
Downey, T. 54
Dulberger, L. H. 101
Eastman, L. F. 102
Eaton, A. 196
Ecklund, O. F. 61
Eheart, M. S. 103, 104
Eickelberg, E. W. 105
Eisen, J. N. 81
Eitel-McCullough Inc. 106
Evers, C. F. 198

Federal Communications Commission 107
Fenton, F. 54, 76, 77, 78, 79, 80, 108, 151, 189, 214
Fleming, H. 109
Flosdorff, E. W. 110
Foin, L. C. 167
Frank-Kamenetskii, D. A. 153
Gall, B. O. M. 111
Gat’ko, N. N. 112
Gilpin, G. L. 81

Goldblith, S. A. 168, 169
Gomez, L. 163
Gonda, G. 49
Gordon, J. 113
Gordon, L. E. 65
Gott, C. 103, 104
Guy, A. W. 149

Hallmark, E. L. 142
Hankinson, M. P. 114
Harper, J. C. 115, 116, 117, 118
Harris, R. G. 56
Hart, V. G. 120
Hartman, J. 121
Hartshorn, L. 122
Harvey, A. F. 119, 123
Hausrath, M. E. 78, 79, 80
Headly, M. E. 124
Herrington, B. L. 140
Hobbs, B. C. 209
Holgate, K. G. 158
Holland, J. M. 125, 126
Hoover, M. W. 127, 128
Hoshall, E. M. 129

Hotpoint Home Economics Institute 130
Hoyler, C. N. 68

21
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson, J. M.</td>
<td>131</td>
</tr>
<tr>
<td>Jackson, S.</td>
<td>132</td>
</tr>
<tr>
<td>Jacobson, M.</td>
<td>124</td>
</tr>
<tr>
<td>Jaski, T.</td>
<td>133</td>
</tr>
<tr>
<td>Jason, A. C.</td>
<td>134, 135, 136</td>
</tr>
<tr>
<td>Jeppson, M. R.</td>
<td>137</td>
</tr>
<tr>
<td>Jeter, W. S.</td>
<td>100</td>
</tr>
<tr>
<td>Johnson, J. H.</td>
<td>216</td>
</tr>
<tr>
<td>Johnston, V. C.</td>
<td>149</td>
</tr>
<tr>
<td>Kelvinator Institute</td>
<td>138</td>
</tr>
<tr>
<td>Kinn, T. P.</td>
<td>139</td>
</tr>
<tr>
<td>Kosikowsky, F. V.</td>
<td>140</td>
</tr>
<tr>
<td>Krajewski, E. Z.</td>
<td>141</td>
</tr>
<tr>
<td>Kylen, A. M.</td>
<td>142, 143</td>
</tr>
<tr>
<td>Lacey, B. A.</td>
<td>144</td>
</tr>
<tr>
<td>La Fond, C. D.</td>
<td>145</td>
</tr>
<tr>
<td>Lambert, M. E.</td>
<td>65</td>
</tr>
<tr>
<td>LaPlante, R. A.</td>
<td>111</td>
</tr>
<tr>
<td>Leatherman, A. F.</td>
<td>146, 147</td>
</tr>
<tr>
<td>Lebre, E. G.</td>
<td>148</td>
</tr>
<tr>
<td>Lehmann, J. F.</td>
<td>149</td>
</tr>
<tr>
<td>Lenart, T.</td>
<td>150</td>
</tr>
<tr>
<td>Lim, E.</td>
<td>151</td>
</tr>
<tr>
<td>Lin, T. Y.</td>
<td>71</td>
</tr>
<tr>
<td>Lisle, H. C.</td>
<td>152</td>
</tr>
<tr>
<td>Long, F. E.</td>
<td>152</td>
</tr>
<tr>
<td>Lystsov, V. N.</td>
<td>153</td>
</tr>
<tr>
<td>MacMaster, G. H.</td>
<td>186</td>
</tr>
<tr>
<td>Maes, E.</td>
<td>154</td>
</tr>
<tr>
<td>Mangel, M.</td>
<td>166</td>
</tr>
<tr>
<td>Markantonatos, A.</td>
<td>127, 128</td>
</tr>
<tr>
<td>Marshall, N.</td>
<td>155</td>
</tr>
<tr>
<td>Marshall, W. R.</td>
<td>217</td>
</tr>
<tr>
<td>McGrath, B. H.</td>
<td>142, 143</td>
</tr>
<tr>
<td>McLellan, M. E.</td>
<td>144</td>
</tr>
<tr>
<td>Morse, P. W.</td>
<td>156</td>
</tr>
<tr>
<td>Moyer, J. G.</td>
<td>157, 158, 159</td>
</tr>
<tr>
<td>Nakayama, H.</td>
<td>200</td>
</tr>
<tr>
<td>Neumann, B. A.</td>
<td>82</td>
</tr>
<tr>
<td>Neuzil, M.</td>
<td>160, 161</td>
</tr>
<tr>
<td>Nichols, N.</td>
<td>162</td>
</tr>
<tr>
<td>Noble, T.</td>
<td>113, 163</td>
</tr>
<tr>
<td>Noone, A. A.</td>
<td>164</td>
</tr>
<tr>
<td>Parker, J. J.</td>
<td>72, 75</td>
</tr>
<tr>
<td>Parker, W. N.</td>
<td>127, 128</td>
</tr>
<tr>
<td>Petchel, G.</td>
<td>165</td>
</tr>
<tr>
<td>Phillips, L.</td>
<td>166</td>
</tr>
<tr>
<td>Pietermaat, F. P.</td>
<td>154</td>
</tr>
</tbody>
</table>

22
Piret, E. L. 64
Pollack, G. A. 167
Procter, B. E. 71, 168, 169
Füschner, H. 170
Putz, J. O. 81
Radar Research Establishment (Gt. Brit.) 171
Radio Frequency Co., Inc. 172
Ramstad, P. E. 78, 79, 80
Raytheon Radarange Dept. 173
Rector, T. M. 174
Revercomb, H. E. 156
Rickter, S. L. 132
Roberts, T. E. 115
Rosensweet, A. 175
Samuels, C. E. 176
Sanders, H. R. 134, 135, 136
Satchell, F. E. 177
Schleter, J. M. 143
Schmidt, W. 178, 179, 180
Schwan, H. P. 181
Shaw, F. B. 152
Shchedrina, M. V. 153
Sherman, V. W. 182, 183, 184
Shields, J. P. 185
Shuman, A. C. 174
Skowron, J. F. 186
Slater, L. E. 187
Steinhaus, J. F. 188
Stevens, H. B. 189
Stiles, P. G. 190
Stotz, E. 157, 159
Street, M. B. 191
Stutz, D. E. 146
Surratt, H. K. 191
Sussex, F. 56
Sussman, L. 192
Sweeney, J. P. 81
Szoke, K. 194
Tappan Stove Company 195
Tappel, A. L. 117
Thomas, M. H. 196
Tooby, G. 197
Tressler, D. K. 198
VanDijck, W. 154
VanDuyne, F. O. 143
VanZante, H. J. 200, 201, 202
VonHippel, A. R. 203
Webber, O. 204
Welch, A. W. 205
Wenger, W. 206
This checklist bibliography contains 216 references to the literature on both the dielectric (under 100 megacycles) and the microwave (900 to 3,000 megacycles) ranges of heating as they apply to food processing and cookery. References to the production of microwaves and to types of microwave equipment were included to a lesser extent. The time coverage is 1942 to November 1966. The citations are arranged alphabetically by personal author.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooking</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal processing</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foods</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwaves</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibliographies</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>