The effects of ambient pressure on tolerance of mammals to air blast

Edward G. Damon, Charles S. Gaylord, William Hicks, John T. Yelverton, Donald R. Richmond, and Clayton S. White

This work, an aspect of investigations dealing with the Biological Effects of Blast from Bombs, was supported by the Defense Atomic Support Agency of the Department of Defense.

(Reproduction in whole or in part is permitted for any purpose of the United States Government.)

Lovelace Foundation for Medical Education and Research Albuquerque, New Mexico

August 1966

ARCHIVE COPY
THE EFFECTS OF AMBIENT PRESSURE ON TOLERANCE OF MAMMALS TO AIR BLAST

Edward G. Damon, Charles S. Gaylord, William Hicks, John T. Yelverton, Donald R. Richmond, and Clayton S. White

This work, an aspect of investigations dealing with the Biological Effects of Blast from Bombs, was supported by the Defense Atomic Support Agency of the Department of Defense.

(Reproduction in whole or in part is permitted for any purpose of the United States Government.)

Lovelace Foundation for Medical Education and Research Albuquerque, New Mexico

August 1966
FOREWORD

This report presents the results of experiments designed to investigate the relationship between animal tolerance to air blast and the ambient pressure existing at time of exposure. The tolerance of rats, guinea pigs, dogs, and goats exposed in shock tubes to reflected pressures with durations of 16 to 35 msec at experimental ambient pressures ranging from 5 to 42 psia was explored. The results indicated the effects of ambient pressure on mammalian response to "sharp"-rising overpressures of "long" duration were quite significant; viz., lethal overpressure varied by factors of 4 to 5.

The findings may be applied to problems involving the scaling of biological blast effects to differences in altitude - potential blast exposure in pressurized or evacuated locations. They are also of significance in the evacuation of blast-produced casualties by air or other methods involving ambient pressure changes.

This study is part of a broad program, the aims of which are the accurate prediction of human tolerance to air blast and the development of appropriate procedures for the diagnosis, prognosis, and treatment of blast injuries.
ABSTRACT

Seventy-six dogs, 43 goats, 211 rats, and 155 guinea pigs were exposed to reflected shock pressures at ambient pressures ranging from 5 to 42 psia in air-driven shock tubes. Animal tolerance, expressed as LD₅₀-one-hour overpressures, rose progressively as the ambient pressure was increased.

By analysis of the results of this study, combined with those from previous shock-tube investigations, a general equation for the regression of LD₅₀ pressure on ambient pressure for mammals was derived. From this equation and previous estimates of the LD₅₀ pressure for man's tolerance to overpressures of 400-msec duration at an ambient pressure of 12 psia, an equation relating LD₅₀ pressure to ambient pressure was developed for the 70-kg mammal.
ACKNOWLEDGMENTS

The authors wish to express their appreciation to the personnel of the Department of Comparative Environmental Biology for their able technical assistance in conducting the study.

Appreciation is also expressed to Mr. Wilmer R. Kerzee, Dr. E. Royce Fletcher, Mr. Ray W. Albright, and Mr. Edward A. Spelich for conducting the probit and regression analyses.
TABLE OF CONTENTS

Foreword .. 1
Abstract .. ii
Acknowledgments ... iii
Introduction ... 1
Materials and Methods 1
 General .. 2
 Shock Tubes .. 2
 12-Inch Diameter Shock Tube 2
 24-40-Inch Diameter Shock Tube 2
 Pressure-Time Measurements 2
 Pressure-Time Sequences 5
 Experimental Animals 5
 Analysis of the Data 5
Results ... 9
 Pathological Findings 9
 Results of the Probit Regression Analyses 9
Discussion ... 9
 Effects of Ambient-Pressure Changes on Animal Tolerance to Air Blast 9
 Estimates for the 70-Kg Mammal 17
 Pressure Ratio .. 19
 Practical Implications 19

LIST OF TABLES

1. Animals Exposed to Air Blast at Different Ambient Pressures 3
2. Results of Probit Analysis 10
3. Effects of Ambient Pressure on Tolerance of Mammals to Air Blast 15

LIST OF FIGURES

1. Diagram of 24-40-Inch Diameter Shock Tube .. 3
2. Typical Pressure-Time Waveform Recorded by Gauge 3 inches from Plate 4
3. (a-b) Overall Pressure-Time Profiles at Ambient Pressures of 7 and 12 psia 6
3. (c-d) Overall Pressure-Time Profiles at Ambient Pressures of 15 and 18 psia 7
4. Probit Mortality Lines for Rats Exposed to Reflected Pressures of 16-Msec Duration at Various Ambient Pressures ... 11
<table>
<thead>
<tr>
<th>List of Figures (Continued)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Probit Mortality Lines for Guinea Pigs Exposed to Reflected Pressures of 16-Msec Duration at Various Ambient Pressures</td>
<td>12</td>
</tr>
<tr>
<td>6. Probit Mortality Lines for Dogs Exposed to Reflected Pressures of 35-Msec Duration at Various Ambient Pressures</td>
<td>13</td>
</tr>
<tr>
<td>7. Probit Mortality Lines for Goats Exposed to Reflected Pressures of 35-Msec Duration at Various Ambient Pressures</td>
<td>14</td>
</tr>
<tr>
<td>8. Effects of Ambient Pressure on Mammalian Tolerance to "Long"-Duration Overpressures</td>
<td>16</td>
</tr>
<tr>
<td>9. Predicted Effects of Ambient Pressure on Tolerance of the 70-Kg Mammal to "Long"-Duration Overpressures</td>
<td>18</td>
</tr>
</tbody>
</table>
THE EFFECTS OF AMBIENT PRESSURE ON TOLERANCE OF MAMMALS TO AIR BLAST

Edward G. Damon, Charles S. Gaylord, William Hicks, John T. Yelverton, Donald R. Richmond, and Clayton S. White

INTRODUCTION

Investigations have established that injuries from exposure to air blast occur more often in air-containing organs than in other regions of the body. As the lungs are very delicate air-containing structures and are more susceptible to blast injury than other vital organs, most of the causes of death from primary-blast effects, such as coronary and cerebral air embolism and pulmonary insufficiency may be traced directly or indirectly to pulmonary injuries.

A proposed biophysical mechanism of air-blast injury, which has gained increasing consideration in recent years, is that injury results from implosion of tissue and fluids into gas-containing organs as an effect of violent compression of the body by the positive phase of a blast wave. This concept suggests a direct relationship between the extent of lung injury and the change in volume which lungs undergo when subjected to a blast load. Furthermore, the degree of change in lung volume, in relation to the magnitude of the blast overpressure, would be affected by the ambient pressure existing in the lungs at the time of blast exposure.

Experiments involving exposure of mice to air blasts at different atmospheric pressures have verified that ambient pressure does affect animal tolerance to air blast. Therefore, studies were extended to include other mammalian species in order to devise methods of defining the effects of ambient pressure on human tolerance to air blast.

This report presents the results of experiments in which rats, guinea pigs, goats, and dogs were exposed at different ambient pressures to long-duration reflected pressures in shock tubes.

MATERIALS AND METHODS

General

The effects of ambient pressure on animal tolerance to air blast were explored by exposing rats, guinea pigs, dogs, and goats to shock waves at altered ambient pressures in shock tubes. Previous studies have shown that compression or decompression of animals soon after blast exposure significantly affected the lethality. Therefore, in this study, all animals were held at the experimental ambient pressure (P) for one hour following blast exposure before returning them to the ambient pressure level (P) of the laboratory. Lethality was assessed during this one-hour-hold period.
Shock Tubes

12-Inch Diameter Shock Tube

The 12-inch diameter shock tube used for exposing rats and guinea pigs has been described in a previous report. For the present study, the endplate of the tube was fitted with a transparent window for observation of the animals during the post-shot, one-hour-hold period. Each animal was exposed to a reflected shock wave in a wire-mesh cage mounted inside the shock tube against the endplate. Procedural details for conducting these exposures have been reported.

24-40-Inch Diameter Shock Tube

The shock-tube arrangement in which dogs and goats were exposed is shown in Figure 1. The tube consisted of a compression chamber 24 in. in diameter and 3 ft long, and an expansion chamber 43 ft 10 in. in length constructed of three sections: (1) a 20-ft length of 24-in. diameter pipe connected to the compression chamber, (2) a transition section 46 in. in length which increased the diameter of the tube from 24 to 40.5 in., and (3) a test section having a diameter of 40.5 in. and a length of 20 ft. A storage-tank reservoir, connected to the expansion chamber, was used to hold the desired pre-shot pressure level in the expansion chamber by adding to or reducing pressure as required.

A diaphragm, consisting of sheets of Du Pont Mylar® plastic, separated the compression and expansion chambers. Each sheet of Mylar (0.01 in. thick) had a bursting pressure of approximately 20 psi in this tube. The compression-chamber pressure, necessary to produce the desired reflected overpressure dose, was achieved by using an appropriate number of plastic sheets.

The dogs and goats were mounted against the endplate closing the test section, right-side-on to the incident shock with a restraining harness constructed of l-in. nylon webbing. Electrocardiograph (ECG) leads were attached to the animals and passed through a hole in the endplate to a Sanborn Twin-Beam ECG. The ECG output was monitored visually on a cathode-ray oscilloscope to determine the time of death of each animal.

Pressure-Time Measurements

Three piezoelectric pressure transducers were used on each test—two to measure the peak reflected pressures and one to record the pre-shot and post-shot pressure-time events. Details of pressure-gauge recording and calibrating systems have been previously reported.

For measuring peak reflected pressures, two pressure gauges containing sensors of lead metaniobate (Model ST-2, Susquehanna Instruments, Bel Air, Md.) were mounted flush with the inside wall of the tube 3 in. upstream from the endplate. This arrangement placed the gauges directly above the back of the animal. The mean of the peak reflected pressures recorded by the two gauges was taken as the overpressure dose for a given test. A typical pressure-time waveform recorded by one of these gauges is shown in Figure 2.

Pre-shot and post-shot, pressure-time events were recorded with a quartz piezoelectric pressure transducer (Model PZ-14, Kistler Instrument Corp., N. Tonawanda, N. Y.) mounted in the wall of the tube 9 in.
Figure 1. Diagram of 24-40-Inch Diameter Shock Tube.
Figure 2. Typical Pressure-Time Waveform Recorded by Gauge 3 Inches from Endplate.
upstream from the endplate. The signal from this gauge was passed via a Kistler Amplifier-Calibrator into a cathode-ray oscilloscope. The sweep on the oscilloscope was set at 5 sec/cm and manually triggered to record the following:

1. pressure change from P_0 to P_1,
2. decompression from the immediate post-shot, static pressure level (P_b) to P_1, and
3. decompression from P_1 to P_0. This step was performed after the animal was dead (as determined by the ECG) or, in the case of survivors, one hour following the shot.

Pre-shot and post-shot pressurization and decompression times were also measured with a stopwatch.

Pressure-Time Sequences

The sequences of pressure-time events to which the animals were exposed in each experiment are illustrated in Figures 3 a-d. Presented in these figures are the mean times and pressures for the tests conducted at experimental ambient pressures of 7, 12, 15, and 18 psia.

Referring to Figure 3d, the mean rise-time (the change in pressure from P_0 to P_1, i.e., t_1) was 7 seconds. The time at P_1 pre-shot (t_2) was 443 seconds. With the arrival of the shock wave, the pressure rose near-instantaneously to the reflected shock level (ΔP). The positive-phase duration of the initial reflected wave was 36 msec (t_3). Following the shot, the pressure became stabilized in the tube at 30 psia, P_b. It was retained at this level for 17 seconds (t_4) before it could be returned to P_1 in 6 seconds (t_5). The animals were then retained at this pressure level for one hour (t_6), after which they were decompressed to P_0 in 7 seconds (t_7).

Experimental Animals

The number, type, and body-weight data for animals exposed in this study are given in Table 1. Both sexes were used in all groups.

In order to check for possible effects of the pre-shot and post-shot pressure changes to which the animals were subjected, controls were exposed to the most rigorous combinations of increase, hold, and release of pressure (minus the blast) experienced by the test animals. No effects from these pressure changes were detected in the control animals.

Fatalities were autopsied soon after death; survivors were sacrificed on the day following exposure.

Analysis of the Data

The reflected pressures required to produce 50-per cent lethality (LD50) for each experiment were determined by probit analysis of the one-hour-lethality data. 19 Statistical analyses indicated no significant differences in the slopes of the probit regressions for the various tests at the 95-per cent confidence level. As a result of these analyses, a set of parallel probit regressions for each species was fitted to the data for all of the experiments. LD50 pressures and their 95-per cent fiducials were obtained from these parallel regressions.
Figure 3 (a-b). Overall Pressure-Time Profiles at Ambient Pressures of 7 and 22 Psia.
Figure 3 (c-d). Overall Pressure-Time Profiles at Ambient Pressures of 15 and 18 Psi.
<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental Ambient Pressure, psig</th>
<th>Number of Animals</th>
<th>Body Weight, grams</th>
<th>Mean & Range</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (Sprague Dawley)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>28</td>
<td>201.1</td>
<td>(170-227)</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>40</td>
<td>188.5</td>
<td>(167-235)</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>14.7</td>
<td>27</td>
<td>174.9</td>
<td>(157-230)</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td>76</td>
<td>192.1</td>
<td>(170-219)</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>42.0</td>
<td>40</td>
<td>195.2</td>
<td>(160-271)</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>211</td>
<td>191.0</td>
<td>(157-271)</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>Guinea Pigs (English Breed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>43</td>
<td>515.5</td>
<td>(400-893)</td>
<td>144.4</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>76</td>
<td>589.7</td>
<td>(403-892)</td>
<td>158.6</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>38</td>
<td>421.6</td>
<td>(400-471)</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>53</td>
<td>631.5</td>
<td>(397-499)</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>45</td>
<td>633.4</td>
<td>(400-500)</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>259</td>
<td>491.5</td>
<td>(397-892)</td>
<td>127.5</td>
<td></td>
</tr>
<tr>
<td>Dogs (Mongrel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>31</td>
<td>16.7</td>
<td>(15-24.7)</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>15</td>
<td>17.9</td>
<td>(10.2-25)</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>30</td>
<td>17.1</td>
<td>(11.6-27.3)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>17.0</td>
<td>(10.2-27.3)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Goats (Mixed Breed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>29</td>
<td>21.7 kg</td>
<td>(15-32.3)</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>14</td>
<td>31</td>
<td>(14.5-41.8)</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>24.8</td>
<td>(14.5-41.8)</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

Pathological Findings

The types of lesions sustained by the animals exposed to air blast at different ambient pressures were not different from those generally reported in the literature on Blast Biology. The major types of injuries exhibited were lung hemorrhage, arterial air embolism, hemothorax, pneumothorax, hemorrhage of the spleen, kidneys, liver, walls of the gastrointestinal tract, intercostal regions, and sinuses, and rupture of the eardrums, sometimes with disruption of the auditory ossicles.

Results of the Probit and Regression Analyses

Results of the probit analysis are summarized in Table 2. Presented are the probit equation constants, LD50 pressures, and ambient pressures for each experiment. The results indicate that for each species the LD50 pressures rose with increasing ambient pressure. Parallel dose-response curves fitted to the data are presented in Figures 4-7.

All tolerance values obtained to date for the five species of animals used in ambient-pressure studies are presented in Table 3. Regressions of the form, $\log y = a + b \log x$ (where y = the LD50 pressure in psig, a = the intercept constant, b = the regression coefficient, and x = the experimental ambient pressure in psia) were obtained for each species from these data. Because the slopes of these regressions were not significantly different at the 95-per cent confidence level, a set of regressions having common slopes was fitted to the data. These curves and their equations are shown in Figure 8.

DISCUSSION

Effects of Ambient-Pressure Changes on Animal Tolerance to Air Blast

The results of this study, which indicate that five species of mammals exhibit uniformly increasing tolerance to air blast with increasing ambient pressure, are directly applicable to animal response to "sharp"-rising reflected pressures of "long" duration. The data apply only indirectly to situations involving animal exposure to non-ideal waveforms or blast waveforms having positive-phase durations shorter than 1-2 msec for mice, 2-3 msec for guinea pigs and rats, and about 15 msec for dogs and goats. 20, 21

Results obtained here were comparable to those reported by Kolder and Wohlzogen involving explosive compression of rats from initial pressures of 1-3 atmospheres to final pressures of 2-12 atmospheres, with rise time to final pressure near 1 msec, and animals returned to normal atmospheric pressure in approximately 3 seconds after the test (1 atmosphere = 14.7 psia). 22 LD50 values for initial pressures of 1, 2, and 3 atmospheres computed from probit regression equations were 34.5, 69.0, and 100.4 psig, respectively. These values compare favorably with rat LD50 pressures of 38.8, 68.8, and 96.3 psig for initial pressures of 1, 2, and 3 atmospheres, respectively, in the present study.
<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental Ambient Pressure, F_1 (pola)</th>
<th>Number of Animals</th>
<th>LD$_{50}$ One-Hour Reflected Pressure, AP (pria)</th>
<th>Probit Equation Constants, Intercept, a</th>
<th>Slope, b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>7.0</td>
<td>28</td>
<td>22.0</td>
<td>-14.890</td>
<td>14.810</td>
</tr>
<tr>
<td>Rat</td>
<td>12.0</td>
<td>40</td>
<td>30.1</td>
<td>-17.637</td>
<td>14.810</td>
</tr>
<tr>
<td>Rat</td>
<td>14.7</td>
<td>77</td>
<td>41.7</td>
<td>-18.945</td>
<td>14.810</td>
</tr>
<tr>
<td>Rat</td>
<td>19.0</td>
<td>76</td>
<td>46.1</td>
<td>-19.631</td>
<td>14.810</td>
</tr>
<tr>
<td>Rat</td>
<td>42.0</td>
<td>40</td>
<td>55.4</td>
<td>-20.013</td>
<td>14.810</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>5.0</td>
<td>43</td>
<td>13.6</td>
<td>-11.776</td>
<td>14.810</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>7.0</td>
<td>76</td>
<td>20.6</td>
<td>-14.397</td>
<td>14.810</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>12.0</td>
<td>70</td>
<td>34.6</td>
<td>-17.796</td>
<td>14.810</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>18.5</td>
<td>53</td>
<td>54.1</td>
<td>-20.663</td>
<td>14.810</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>60.0</td>
<td>48</td>
<td>104.2</td>
<td>-24.884</td>
<td>14.810</td>
</tr>
<tr>
<td>Dog</td>
<td>7.0</td>
<td>31</td>
<td>31.3</td>
<td>-17.154</td>
<td>14.810</td>
</tr>
<tr>
<td>Dog</td>
<td>12.0</td>
<td>15</td>
<td>51.7</td>
<td>-10.616</td>
<td>14.810</td>
</tr>
<tr>
<td>Dog</td>
<td>18.0</td>
<td>30</td>
<td>79.4</td>
<td>-22.361</td>
<td>14.810</td>
</tr>
<tr>
<td>Opossum</td>
<td>7.0</td>
<td>24</td>
<td>25.2</td>
<td>-15.761</td>
<td>14.810</td>
</tr>
<tr>
<td>Opossum</td>
<td>15.0</td>
<td>14</td>
<td>56.9</td>
<td>-20.980</td>
<td>14.810</td>
</tr>
</tbody>
</table>
Figure 4. Probit Mortality Lines for Rats Exposed to Reflected Pressures of 16-Msec Duration at Various Ambient Pressures.
Figure 5. Probit Mortality Lines for Guinea Pigs Exposed to Reflected Pressures of 16-Msec Duration at Various Ambient Pressures.
Figure 6. Probit Mortality Lines for Dogs Exposed to Reflected Pressures of 35-Msec Duration at Various Ambient Pressures.
Figure 7. Probit Mortality Lines for Goats Exposed to Reflected Pressures of 35-Msec Duration at Various Ambient Pressures.
TABLE 1

EFFECTS OF AMBIENT PRESSURE ON TOLERANCE OF MAMMALS TO AIR BLAST

<table>
<thead>
<tr>
<th>Experimental Ambient Pressure, (p_i) (p.s.i.)</th>
<th>Monkey</th>
<th>Rat</th>
<th>Guinea Pig</th>
<th>Dog</th>
<th>Camel</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD100 Pressure</td>
<td>Reflected Shock Pressure, (AP) (p.s.i.)</td>
<td>(AP/P_i)</td>
<td>Reflected Shock Pressure, (AP) (p.s.i.)</td>
<td>(AP/P_i)</td>
<td>Reflected Shock Pressure, (AP) (p.s.i.)</td>
</tr>
<tr>
<td>5</td>
<td>10.3</td>
<td>2.96</td>
<td>2.12</td>
<td>2.72</td>
<td>2.32</td>
</tr>
<tr>
<td>7</td>
<td>20.3</td>
<td>(2.73-3.57)</td>
<td>2.14</td>
<td>(2.90-1.40)</td>
<td>2.14</td>
</tr>
<tr>
<td>12</td>
<td>21.0</td>
<td>(2.66-2.77)</td>
<td>2.57</td>
<td>(2.69-1.69)</td>
<td>2.14</td>
</tr>
<tr>
<td>14.7</td>
<td>21.0</td>
<td>(2.66-2.77)</td>
<td>2.82</td>
<td>(2.69-1.69)</td>
<td>2.14</td>
</tr>
<tr>
<td>15</td>
<td>24.3</td>
<td>(2.67-2.81)</td>
<td>2.57</td>
<td>(2.69-1.69)</td>
<td>2.14</td>
</tr>
<tr>
<td>16.5</td>
<td>64.5</td>
<td>(2.63-2.69)</td>
<td>2.91</td>
<td>(2.78-1.44)</td>
<td>2.14</td>
</tr>
<tr>
<td>18</td>
<td>55.5</td>
<td>(2.63-2.69)</td>
<td>2.91</td>
<td>(2.78-1.44)</td>
<td>2.14</td>
</tr>
<tr>
<td>20</td>
<td>204.3</td>
<td>(2.63-2.69)</td>
<td>2.06</td>
<td>(2.78-1.44)</td>
<td>2.14</td>
</tr>
<tr>
<td>22</td>
<td>91.7</td>
<td>(2.63-2.69)</td>
<td>2.06</td>
<td>(2.78-1.44)</td>
<td>2.14</td>
</tr>
</tbody>
</table>

*95% per cent confidence limits.
1 Data from Reference 14.
* Data from Reference 17.
Figure 8. Effects of Ambient Pressure on Mammalian Tolerance to "Long"-Duration Overpressures.
The animal exposures in these experiments differed from the true blast situation in the open in that the pressure in the shock tube, after each shot, momentarily stabilized (11-17 seconds) at a static level above that of the pre-shot ambient pressure before it could be reduced to the experimental ambient-pressure level. This difference, however, was probably of little biological significance because the LD50 values obtained in the studies for guinea pigs and dogs at the normal ambient pressure (12 psia) were in good agreement with those previously obtained from animal-blast exposures free of such aberrations; for example, the 34.6- and 53.7-psig values for guinea pigs and dogs, respectively, in the present study, as compared with 34.5 and 52.9 psig for these species exposed in a shock tube with open vents at 12 psia to overpressures of near 400-msec duration. Additional similar comparisons suggest that it was the initial "sharp" rise in pressure and the duration of the positive phase of the blast wave that were significant in causing lethal blast injuries, and not the immediate post-shot pressure events to which these animals were subjected. Because lethality was assessed during the one-hour, post-shot period in which survivors were held at the experimental ambient-pressure level before returning them to the normal atmospheric pressure level, the mortality data can be considered free of any bias due to this last pressure change.

The partial pressure of oxygen (P02) in the ambient air during the post-shot, one-hour-old period was dependent upon the experimental ambient pressure (P1). Control experiments indicated that animals not subjected to blast injury tolerated the lowest and highest pressures (with their attendant PO2 values) for the times involved in the experiments without detectable effects. Possible effects of differences in the PO2 on one-hour survival of blast-injured animals in experiments of this type have not yet been investigated.

Estimates for the 70-Kg Mammal

As the curves presented in Figure 8 have common slopes, their regression coefficient was used in deriving the following general equation for mammals:

\[\log y = a + 0.828 \log x \]

where:
\(y \) = the LD50 pressure in psig
\(a \) = the intercept constant for a particular species
\(x \) = the ambient pressure at exposure in psia

An equation for the 70-kg mammal was then derived from this general equation. The estimated LD50 pressure of 52 psi at an ambient pressure of 12 psia, as previously reported, 20 for the 70-kg mammal was used in order to obtain the intercept constant for the regression. The resultant curve and its equation, presented in Figure 9, may tentatively be used for estimating human tolerance to "sharp"-rising overpressures of "long" duration at different ambient pressures. It should be noted that all data on which the regression is based were obtained from blast exposure of animals against reflecting surfaces.
Figure 9. Predicted Effects of Ambient Pressure on Tolerance of the 70-Kg Mammal to "Long"-Duration Overpressure.

REGRESSION EQUATION:

\[\log y = 0.823 + 828 \log x \]

where:
- \(y \) = LD_50 PRESSURE, psig
- \(x \) = AMBIENT PRESSURE, \(P_1 \), psia
Pressure Ratio

The data in Table 3 indicate that the ratio of the LD₅₀ reflected pressure (ΔP) to the experimental ambient pressure (P_i) generally decreased with increasing ambient pressure. This trend was clearly indicated by the mouse and rat data, but was less evident from the data for the other three species.

The fact that the LD₅₀-ΔP/P_i pressure ratio did not tend to remain constant with changes in P_i was indicated in 10 of 16 experiments at altered ambient pressures where the LD₅₀-ΔP/P_i ratio was outside the 95-per cent confidence limits of this ratio for the given species at normal ambient pressure (12 psia). As the majority of these data do not indicate that the LD₅₀ pressure ratio is a constant for each species, the curves and regression equations presented in Figures 8 and 9 should be used for scaling LD₅₀ pressures to differences in ambient pressure instead of using the normal LD₅₀-pressure ratio as a factor for biological blast scaling as tentatively suggested in an earlier work.14

Practical Implications

The results of these studies have significant implications in assessing hazards from blast exposures in pressurized or evacuated spaces, such as caisson tunneling and mining operations, cabins of aircraft aloft, space capsules, and perhaps underwater for certain conditions of exposure. For example, if a given biological response, such as 50-per cent lethality, results from exposures to "long"-duration blast waves with peak pressures near 60 psi at a sea-level surface, then where an ambient air pressure of 3 atmospheres exists, peak pressures of slightly more than 150 psi would be required to produce the same effect; e.g., underwater tunneling has been carried out above and below the ambient pressures noted here and explosions in such locations, all other factors being comparable, would be less hazardous than at sea level.

The meaning of the present study as far as underwater blast is concerned is more difficult to assess for a number of reasons. Among them are complicating events such as the depth of the water and explosive charge; the location of the target with respect to the water surface and the bottom; positive reflections from the latter, the magnitude of which—among other things—is a function of the nature of the bottom; and negative reflections from the surface, which critically influence the duration of the overpressure, the pulse being very short for near-surface locations and progressively longer with increasing depth. Also, there is the fact that the durations of blast overpressures in water are generally much shorter than in air. Too, there are no doubt differences in the efficiency with which energy is imparted to a biological target by blast waves in air on the one hand and in water on the other. Such factors make it clear that a straightforward increase in blast tolerance may or may not occur for exposures at increasing depths underwater. Without question, the matter is complex and is hardly within the scope of the experiments reported and discussed here.

Implicit in the present study, but documented elsewhere6, 10, 14, 15 is the fact that post-exposure pressure changes have important effects on
chances of survival of those injured by blast. As movement and evacuation of blast casualties may entail subjecting them to changing ambient pressures, those who treat blast casualties should know and remember that decompression is very hazardous to blast patients, particularly if it occurs soon after injury such as during early air evacuation. In contrast, immediate or early compression has reduced mortality significantly in experimental animals and no doubt would be effective in man; viz., blast injury occurring in flight in aircraft would subsequently be benefitted by flying at the lowest practical altitude.

Finally, though the results of the present study clearly indicate ambient pressure is a physical parameter of major importance in specifying blast effects, investigations to date have been limited to assessing animal response to "sharp"-rising overpressures of "long" duration. Further work will be required to demonstrate that ambient pressure variation is of significance either for non-ideal waveforms or for blast overpressures enduring for quite short periods of time.
REFERENCES

DISTRIBUTION

ARMY AGENCIES

Chief of Research and Development, Life Sciences Division, Dept. of the Army, ATTN: CRDLS, Washington, D.C. 20310 (1 copy)
Chief of Research and Development, with the Army, ATTN: CRDNCB, Washington, D.C. 20310 (1 copy)
Assistant Chief of Staff for Intelligence, Dept. of the Army, ATTN: DFISS, Washington, D.C. 20310 (1 copy)
Chief of Engineers, Department of the Army, ATTN: ENGTE-E, Washington, D.C. 20315 (1 copy)
Directorate of Transportation, U.S. Army Materiel Command, Washington, D.C. 20315 (1 copy)
Commanding General, Medical Research and Development Command, Dept. of the Army, ATTN: MEDDH-N, Main Navy Building, Washington, D.C. 20360 (1 copy)
Commanding General, Medical Research and Development Command, Dept. of the Army, ATTN: MEDPS-CS, Main Navy Bldg., Washington, D.C. 20360 (1 copy)
Commanding General, Medical Research and Development Command, Dept. of the Army, ATTN: MEDDH-RE, Main Navy Bldg., Washington, D.C. 20360 (1 copy)
U.S. Army CDC Artillery Agency, Washington, D.C. 20360 (1 copy)
President, Aviation Test Board, U.S. Army Aviation Center, Fort Rucker, Alabama 36362 (1 copy)
Assistant Chief of Staff for Force Development, Dept. of the Army, ATTN: Directorate of CBR and Nuclear Operations, Washington, D.C. 20310 (1 copy)
Commandant, U.S. Army C&GS College, ATTN: Archives, Fort Leavenworth, Kansas 66027 (1 copy)
Commandant, U.S. Army Air Defense School, ATTN: Command & Staff Dept., Fort Bliss, Texas 79906 (1 copy)
Commanding Officer, U.S. Army CDC Armor Agency, Fort Knox, Kentucky 40120 (1 copy)
Commanding Officer, U.S. Army CDC Artillery Agency, Fort Sill, Oklahoma 73503 (1 copy)
Commanding Officer, U.S. Army CDC Infantry Agency, Fort Benning, Georgia 31905 (1 copy)
Commanding Officer, U.S. Army CDC CBR Agency, Fort McClellan, Alabama 36205 (1 copy)
Commandant, U.S. Army CBR, Weapons School, Dugway Proving Ground, Dugway, Utah 84022 (1 copy)
Commanding General, Army Medical Service School, Brooke Army Medical Center, ATTN: DCCO, Fort Sam Houston, Texas 78234 (1 copy)
Commanding General, The Engineer Center, ATTN: Asst Cmndt Engineer School, Fort Belvoir, Virginia 22060 (1 copy)
Commanding General, 9th Hospital Center, ATTN: CO, U.S. Army Nuclear Medicine Research Det., Europe, APO New York 09180 (1 copy)
Commanding Officer, U.S. Army Chemical Research and Development Lab., Edgewood Arsenal, Maryland 21040 (1 copy)
Commandant, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, D.C. 20012 (5 copies)
Commanding General, U.S. Army Natick Laboratories, ATTN: Technical Library, Natick, Massachusetts 01760 (1 copy)

23
The Effects of Ambient Pressure on Tolerance of Mammals to Air Blast

Seven-hundred dogs, 43 goats, 211 rats and 235 guinea pigs were exposed to reflected shock pressures at ambient pressures ranging from 5 to 42 pali in air-driven shock tubes. Animal tolerance, expressed as LD₅₀—one-hour overpressures rose progressively as the ambient pressure was increased.

By analysis of the results of this study, combined with those from previous shock-tube investigations, a general equation for the regression of LD₅₀ pressure on ambient pressure for mammals was derived. From this equation and previous estimates of the LD₅₀ pressure for man's tolerance to overpressures of 400-msec duration at an ambient pressure of 12 pali, an equation relating LD₅₀ pressure to ambient pressure was developed for the 70-kg mammal.