ANALYSIS AND SYNTHESIS OF UNEQUALLY SPACED ARRAYS USING THE Z-TRANSFORM

Marc I. Spellman
Bradley J. Strait

Syracuse University Research Institute
Electrical Engineering Department
Syracuse University, Syracuse, New York 13210

Contract No. AF 19(625)-5882

Project No. 8683
Task No. 50830;

Scientific Report No. 3
April 15, 1967

CONTRACT MONITOR: John F. McIlvenna

Distribution of this document is unlimited.
ANALYSIS AND SYNTHESIS OF UNEQUALLY SPACED ARRAYS
USING THE Z-TRANSFORM

Marc I. Spellman
Bradley J. Strait
Syracuse University, Syracuse, New York 13210

ABSTRACT

It is shown that under certain conditions, Z-transform theory can be applied to simplify analysis and synthesis of unequally spaced antenna arrays. The approach provides significant advantages over other techniques since the method yields closed-form expressions for array factors that are otherwise often cumbersome and difficult to work with analytically. The method is useful for both broadside and endfire arrays and allows many of the results originally derived for equally spaced arrays to be applied.
ACKNOWLEDGEMENT

The authors are pleased to acknowledge the helpful suggestions of Professor David K. Cheng of the Electrical Engineering Department, Syracuse University, Syracuse, New York.
I. INTRODUCTION

It has been shown that Z-transform theory can be applied to simplify analysis and synthesis of equally spaced array ensembles [1,2]. The approach provides significant advantages over earlier techniques since the method yields closed-form expressions for array factors corresponding to many equally spaced and unequally excited arrays that are otherwise cumbersome and difficult to work with analytically. The purpose of this report is to show that under certain conditions Z-transform techniques can also be applied for the treatment of unequally spaced arrays.

II. THEORY

Consider a linear array of \(n \) isotropic point sources that are equally excited in amplitude and progressively phased. If the positions of the array elements are defined by a spacing function \(: (s) \) the array factor can be written as

\[
\mathbf{E} = \sum_{k=0}^{n-1} e^{j f(k) \psi} \tag{1}
\]

where

\[
\psi = \beta d \left[\cos \Theta - \cos \Theta_0 \right]
\]

\[
\beta = \frac{2\pi}{\lambda}
\]
\[d = \text{nominal interelement spacing} \]
\[\Theta = \text{angle measured from the array axis} \]
\[\Theta_0 = \text{angle designating direction of maximum radiation} \]
\[\lambda = \text{operating wavelength} \]

If the interelement spacings are nearly uniform across the array it is convenient to write
\[f(s) = s + A g(s) \quad (2) \]
\[|g(s)| \leq 1 \]

so that the array factor becomes
\[E = \sum_{k=0}^{n-1} e^{j k \psi} e^{j A g(k) \psi} \quad (3) \]

If all deviations from uniform spacing are small then \(A \) is small and the small-angle approximations can be used to simplify (3). Thus,
\[E = \sum_{k=0}^{n-1} e^{j k \psi} [1 + j A g(k)] \quad (4) \]

Rewriting (4) using the relationship
\[\psi = \frac{\lambda}{\pi} \left[\sin \psi - \frac{\sin 3\psi}{3^2} + \frac{\sin 5\psi}{5^2} + \ldots \right] \]
\[= \frac{2}{\lambda \pi} \left[(e^{j \psi} - e^{-j \psi}) - \frac{(e^{j 3\psi} - e^{-j 3\psi})}{9} + \ldots \right] \quad (5) \]
valid over \(-\pi/2 < \psi < +\pi/2 \), and substituting \(z = e^{-j \psi} \)
\[E = \sum_{k=0}^{n-1} z^{-k} - \frac{2A}{\pi} \left[(z^{-1} - z^{-3}) - \frac{(z^{-3} - z^{-5})}{9} + \ldots \right] \sum_{k=0}^{n-1} g(k) z^{-k} \quad (6) \]
Recalling that the Z-transform of a function \(f(s) \) can be defined as

\[
Z[f(s)] = \sum_{k=0}^{\infty} f(k) z^{-k}
\] (7)

(6) can be rewritten in final form as

\[
E = Z[u(s) - u(s-n)] - \frac{2A}{\pi} [(z^{-1}) - \left(\frac{z^{-3}}{9}\right) + \ldots] Z[g(s)(u(s)-u(s-n))]
\] (8)

where \(u(s) \) is the unit step function. When the function \(g(s)[u(s)-u(s-n)] \) is Z-transformable and when only a few of the terms in (5) are used, (8) will be in closed form. The final expression can then be analyzed using standard techniques. [1,2]

As an example consider the function

\[
g(s) = \sin \left(\frac{2\pi s}{n-1}\right)
\] (9)

defining a form of space-tapered array. If only the first term of (5) is used and if \(A \) is small to provide nearly uniform spacing it can be shown using (8) that

\[
E = \frac{1-z^{-n}}{1-z^{-1}} - \frac{2A}{\pi} \frac{\sin \left(\frac{2\pi}{n-1}\right) z^{-1} - z^{-(n-1)} + z^{-(n+1)}}{(1 - 2 \cos \left(\frac{2\pi}{n-1}\right) z^{-1} + z^{-2})}
\] (10)

an expression which is valid regardless of the total number of array elements.

In Z-transform notation the general problem of synthesizing an equally excited unequally spaced array to provide an array factor approximating that of a given unequally excited but uniformly spaced array is quite straight-forward. Suppose an equally spaced array with excitation amplitudes defined by the function \(h(s) \) is given. The array factor \(E_1 \) is given by
\[E_1 = 2[h(s)(u(s) - u(s-n))] \]

(11)

If the deviations from unity of the function \(h(s) \) are not too great an appropriately normalized equally excited unequally spaced array can be derived that provides an array factor approximating that given in (11). Equating (11) with (8) and solving for the spacing function yields

\[z[A_g(s)(u(s) - u(s-n))] = \frac{\pi}{2} \frac{Z[(h(s)-1)(u(s) - u(s-n))]}{(z^{-1} - z)} \]

(12)

if only the first term in (5) is used. Dividing out the right-hand side yields a series of terms in \(z^{-1} \) from which proper spacings can be determined. It should be noted, however, that an exact solution to (12) is not always possible. A general discussion of this problem and of the types of excitation functions \(h(s) \) that can be approximated in this manner is included in the next section.

Use of (5) can be justified only over the portion of the visible range given by \(-\pi/2 < \psi < +\pi/2\). In general this range includes the main beam and inner sidelobes of the array pattern. Unless modified these procedures are not applicable outside of the restricted range. However, it has been shown in several examples that when the objective is to achieve a narrow beam and low sidelobes the outer sidelobe structure is not adversely affected by the use of (5) and the small-angle approximations in the analytical method. [3]

An example of the correspondence indicated in (12) is illustrated in Fig. 1. Figure 1a is a plot of the array factor given in (10) with \(n = 16 \) and \(A = 0.2 \) corresponding to an equally excited unequally spaced array. Figure 1b is a plot of the array factor corresponding to the
equivalent equally spaced unequally excited array. The amplitude
distribution was determined by solving (12) for \(h(s) \) with \(g(s) \) as given
in (9) with \(n = 16 \). The close agreement between the two patterns over
the nominal visible range of \(0 \leq \psi \leq \pi \) is noted.

III. DISCUSSION

For an exact solution to (12) with \(g(0) = 0 \) it is necessary that
the \((n-1) \) spacing parameters \(g(i) \) satisfy

\[
\begin{align*}
 h(0) &= 1 - \frac{2A}{\pi} g(1) \\
 h(1) &= 1 - \frac{2A}{\pi} g(2) \\
 &\vdots \\
 h(i) &= 1 + \frac{2A}{\pi} [g(i-1) - g(i+1)] \quad \text{for } i = 2, 3, \ldots, (n-2) \\
 &\vdots \\
 h(n-1) &= 1 + \frac{2A}{\pi} [g(n-2)] \\
 0 &= g(n-1)
\end{align*}
\]

The first \((n-1)\) of these can be solved yielding

\[
\begin{align*}
 \frac{2A}{\pi} g(i) &= \frac{i+1}{2} - h(0) - h(2) - \ldots - h(i-1) \quad (i \text{ odd}) \\
 \frac{2A}{\pi} g(i) &= \frac{i}{2} - h(1) - h(3) - \ldots - h(i-1) \quad (i \text{ even})
\end{align*}
\]

The remaining two of (13) are for \(n \) even

\[
\begin{align*}
 h(n-1) &= 1 + \frac{n-2}{2} - h(1) - h(3) - \ldots - h(n-3) \\
 \frac{2A}{\pi} g(n-1) &= 0 = \frac{n}{2} - h(0) - h(2) - \ldots - h(n-2)
\end{align*}
\]

and for \(n \) odd
\[h(n-1) = 1 + \frac{n-1}{2} - h(0) - h(1) - \ldots - h(n-5) \]
\[2A_n g(n-1) = 0 = \frac{n-1}{2} - h(1) - h(3) - \ldots - h(n-2) \]

Rearranging terms, for \(n \) even (15) becomes
\[h(1) + h(3) + \ldots + h(n-1) = \frac{n}{2} \]
\[h(0) + h(2) + \ldots + h(n-2) = \frac{n}{2} \]

and, for \(n \) odd (16) reduces to
\[h(0) + h(2) + \ldots + h(n-1) = \frac{n+1}{2} \]
\[h(1) + h(3) + \ldots + h(n-2) = \frac{n-1}{2} \]

Then, since the normalization condition
\[\sum_{i=0}^{n-1} h(i) = n \]

must be satisfied it is evident that a solution to (17) is possible if either of the equations in (17) or (13) is satisfied.

If the amplitude distribution \(h(s) \) is symmetrical about the center of the array then for \(n \) even
\[h(0) = h(n-1) \]
\[h(1) = h(n-2) \]
\[\vdots \]
\[h(\frac{n}{2} - 1) = h(\frac{n}{2}) \]

and for \(n \) odd
\[h(0) = h(n-1) \]
\[h(1) = h(n-2) \]
\[\vdots \]
\[h(\frac{n-5}{2}) = h(\frac{n+1}{2}) \]
Inserting (20) and (21) into the normalization condition (19) yields

\[\sum_{i=0}^{n-1} h(i) = 2[h(0) + h(2) + \ldots + h(n-2)] = n \]

(22)

for \(n \) even, and

\[\sum_{i=0}^{n-1} h(i) = 2[h(0) + h(1) + \ldots + h(\frac{n-3}{2})] + h(\frac{n-1}{2}) = n \]

(23)

for \(n \) odd. Thus, it can be said that for \(n \) even an exact solution to (12) is possible if the equivalent amplitude distribution \(h(s) \) is symmetrical about the array center. For \(n \) odd an exact solution is possible only if either of the relations in (18) is satisfied in addition to the normalization condition.

IV. CONCLUSION

It has been shown that under certain conditions the Z-transform can be used to simplify the analytical treatment of unequally spaced antenna arrays. The method applies to both analysis and synthesis problems and allows many of the results originally derived for equally spaced arrays to be applied.

REFERENCES

Fig. 1a - The Array Factor Given in (10) with $n = 16$, $A = 0.2$.

Fig. 1b - The Array Factor of the Equivalent Unequally Excited Array.
REPORT TITLE
ANALYSIS AND SYNTHESIS OF UNEQUALLY SPACED ARRAYS USING THE Z-TRANSFORM

AUTHOR(S)
Spellman, Marc I.
Strait, Bradley J.

REPORT DATE
April 15, 1967

ABSTRACT
It is shown that under certain conditions, Z-transform theory can be applied to simplify analysis and synthesis of unequally spaced antenna arrays. The approach provides significant advantages over other techniques since the method yields closed-form expressions for array factors that are otherwise often cumbersome and difficult to work with analytically. The method is useful for both broadside and endfire arrays and allows many of the results originally derived for equally spaced arrays to be applied.
INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. Report the group number. Also, where applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If the original title cannot be selected without classification, enter this classification in all capitals immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial. If writer, also rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

9. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

10. **&. &. PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

11. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

12. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (other than the originator or by the sponser), enter this number(s).

13. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through "
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through "

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter the abstract giving a brief and factual summary of the document indicative of the report. It may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.