Collapsible Aluminum Household Effects Shipping Container

Distribution of this document is unlimited.

PROTECTION AGAINST DAMAGE

COLLAPSIBLE

LIGHTWEIGHT

ELIMINATE INDIVIDUAL PACKING & MARKING

PILFER RESISTANT

REDUCE PACKING & HANDLING COST

ARCHIVE COPY

SUPPLY ENGINEERING DIVISION
U.S. Naval Supply Research & Development Facility
Bayonne, New Jersey
TECHNICAL REPORT REVIEW

"EVALUATION OF AN EXPERIMENTAL COLLAPSIBLE ALUMINUM HOUSEHOLD EFFECTS CONTAINER"

Engineering Report #2.2020254
29 December 1950
under
Project No. NTO03016

APPROVAL: Report Approved 12 March 1951

SECURITY CLASSIFICATION: UNCLASSIFIED Distribution of this document is unlimited.

DISTRIBUTION: In accordance with the attached approved distribution list.

REMARKS: This technical report review is inserted as the first page of the subject report as an integral part thereof.

No data, discussions or recommendations included in this research and development report or technical report review shall be construed as indicating a current or anticipated future operating policy of the Bureau of Supplies and Accounts or the Navy Department.

/s/ J. H. TAYLOR, Jr.
Commander, (SC), USN
Director, Research and Development Division
By direction of the Chief of Bureau
EVALUATION OF AN EXPERIMENTAL COLLAPSIBLE
ALUMINUM HOUSEHOLD EFFECTS CONTAINER

AUTHORIZATION: ChBuSanA ltr to OIC, U.S. Naval Supply Research and Development Facility, Naval Supply Depot, Bayonne, New Jersey.

PROJECT GROUP - MT-003-016
PROJECT REPORT - 22020254

CONCLUSION:
1. The aluminum household container is structurally sound.
2. The load capacity may be safely increased from the rated 1800 lbs. (7.5 lbs. per cu.ft.) to 1700 lbs. (15 lbs. per cu.ft.)
3. The sling hooks (lifting lugs) are inadequate and should not be used for handling purposes.
4. Prolonged exposure to weather or salt spray should be avoided.

5. The roof design precludes tiering of containers.
The Bureau of Supplies and Accounts procured an experimental lot of thirty (30) Collapsible Aluminum Household Effects Containers, which were distributed as follows:

- 24 Containers to Naval Supply Center, Oakland, California
- 5 Containers to Naval Supply Depot, Seattle, Washington
- 1 Container to U.S. Naval Supply Research and Development Facility, Bayonne, New Jersey

The experimental container was subjected to a series of accelerated laboratory and field tests, designed to simulate all possible hazards that the container may encounter during warehousing, stevedoring, and transportation operations. The conclusions and recommendations in this report are based on the results of these tests.

Field activities have been requested to submit operational usage data on each container in actual use. When sufficient data is accumulated, it will be evaluated and incorporated in a final report.
ASSEMBLED UNIT

Overall Dimensions - 96-1/2" x 71" x 78" high

Shipping Cube - 310 Cubic Feet

Clear Inside Dimensions - 91" x 66" x 71-1/4" high

Cargo Cube - 243 Cubic Feet

Tare Weight - 535 lbs.

Skid Height - 4".

Assembly Time - 1.5 Man hours

Disassembly Time - 1.1 Man hours
KNOCKDOWN UNIT

Overall Dimensions - 96-1/2" x 71" x 17-1/2"

Shipping Cube - 69.5 Cubic feet

Tare Weight - 535 lbs.

CONSTRUCTION - Drawing No. CC12-2, D.C. Taylor, 407 Zeman Building, Seattle, Washington

The basic construction of the container consists of corrugated aluminum sheets with the corrugations 1/8" deep and with a pitch of 7.67". The unit is assembled with 3/8" - 16 H.C. steel nuts and bolts.
Floor Section - Double aluminum corrugated sheets riveted perpendicular to each other, lower sheet - .064" thick, upper sheet - .032" thick. Loose 3/8" plywood sheet is placed within to act as flooring.

Side Sections - Double aluminum corrugated sheets, .032" thick, riveted perpendicular to each other.

Roof Section - 3/16" aluminum plate riveted to .032" corrugated aluminum sheet.

Framing - All framing members are made of aluminum extrusions and have the following shapes:

- **Floor Framing** - 1-1/4" x 2" x 1-1/4" x 3/16" Z Section
- **Corner Posts** - 1-1/4" x 2" x 1-1/4" x 3/16" Z Section
- **Roof Framing** - 1" x 3-1/4" x 1/8" angle
- **Side Panel Framing** - 1-1/4" x 1-1/4" x 1/8" angle

Skids - Two 4" x 2.66" structural aluminum I beams with 10" x 2-1/2" openings for fork trucks.

Sling Hooks - Four 1" eye bolts, 3/8" shank, bolted to floor frame members.
METHOD OF TEST

1. Determination of Characteristics
 a. Weight and Cube

 The container was weighed and all pertinent dimension taken to ascertain the shipping and cargo cube of the container when fully assembled, as well as the shipping cube when the container is knockdown.

 b. Time required for Assembly and Disassembly

 The container was assembled and disassembled by two men using 9/16" box wrenches. The assembly time included the unbolting of the roof from the lower side panels and complete erection of the unit. Similarly, the disassembly time included the complete dismantling of the unit, placing the upper side panels into the lower section, and bolting the roof on the lower side panels.

2. Weather Resistance Test

 To simulate a heavy rain, the container was subjected to a water spray from a 1-1/2" fire hose equipped with a fog nozzle. The spray was directed at the test unit from various directions and angles for a period of thirty minutes. At the conclusion of the test, a side panel was removed and the interior of the unit was examined for evidence of water entry.
3. **Load Test**

The container was loaded to its rated capacity of 1800 lbs. with a well balanced load so that shifting was held to a minimum. The deflection in the floor section was then determined.

4. **Handling Test**

 a. The loaded container was lifted with a 6000 lb. fork truck and transported approximately 50 feet. Ease of entry of forks into openings in skids was noted.

 b. Two wire slings were placed under the floor of the container adjacent to the skids. The loaded unit was then lifted by a crane. Resistance of the bottom edges of the container to crushing was noted.

 c. The container was placed on 6" wood rollers. The test unit was moved approximately 50 ft. on these rollers. Particular attention was paid to the deflection of the skids at the fork truck openings.

5. **Edge Drop Test**

One skid of the test unit was placed on a 6" x 8" timber approximately 8 feet long. The other side of the container was lifted by fork truck and a 4" x 4" x 18" block was placed vertically under one corner. The container was examined in this position and any undue deflection or warping noted. The 4" x 4" x 18" block was then pulled out from under the unit.
allowing the container to strike the pavement with a fall of 18". This operation was repeated by placing the block under each of the four corners successively, and then repeated again using a 1/4" x 1/4" x 24" block.

At the conclusion of the test the floor was examined for further deflection.

6. Stevedoring Test

a. This test was designed to determine the suitability of the container for stevedoring operations. It was exposed to simulated conditions which might be encountered due to faulty cargo handling equipment, improper operation by personnel, or unavoidable circumstances when being loaded on or unloaded from cargo ships. The test was divided into three parts.

(1) Shub Test - The loaded container was lifted approximately 25 ft. above the ground by a crane equipped with wire slings. The brake of the crane was released and the container lowered at full speed until it reached a point approximately 5 feet above ground. At that time, the brake was applied suddenly and the load brought to a quick halt. This test was repeated twice.

(2) Drop Test - The loaded container was lifted by a crane equipped with slings to a point 18" above the ground. The brake of the crane was released and the test unit dropped freely with the skids
striking the concrete pavement squarely. This operation was repeated a second time with the container falling freely from a point 24" above the ground.

(3) Swing Test - To simulate a container striking the ship's side during hoisting and loading operation, the test unit was held by a crane approximately one foot above the ground next to a substantially solid wall. The container was pulled away from the wall a distance of approximately 10 feet with a cable attached to a fork truck and equipped with a quick release mechanism. The release mechanism was activated and the container was allowed to strike the wall squarely on a side panel. The operation was repeated and the container so held that it struck the wall squarely at a corner.

At the conclusion of these tests, the container was examined for floor deflection and other damage. It was dismantled to determine ease of disassembly.

A 125% overload was added, making a total load of 4000 lbs. in the test unit, and tests No. 3 through 6 inclusive were repeated. At the conclusion of the second series of tests, the container was re-examined and again disassembled and assembled.

SUMMARY OF TEST RESULTS

1. Assembly and Disassembly

Initial assembly of the Collapsible Aluminum Household Effects Container disclosed that five bolt holes did not line up. These holes
were enlarged in order that the container could be fully assembled. Bolting the upper and lower side panels together was awkward and time consuming due to the small clearance around the bolt heads. These bolts are located between the aluminum corrugations and it is necessary to use 9/16" box wrenches to effectively turn them. Even then, the bolts can only be turned less than 90 degrees at one time.

2. Weather Resistance

The weather resistance test disclosed that a small amount of water seeped in between the horizontal angles connecting the upper and lower side panels. This condition is undesirable if the loaded container is to be exposed to the elements for any practical length of time.

3. Load Test

There was no appreciable deflection in the floor of the container when it was loaded, as rated, with 1800 lbs. When the load was increased to 4000 lbs., the maximum deflection in the floor was approximately 1/4". This deflection is not excessive and the aluminum corrugations were not stressed beyond their elastic limit.

4. Handling

The lifting lugs, or sling hooks for this container consist of four 1" eye bolts with 3/8" shanks bolted to the floor framing sections. They
could not be tested since one was torn off the container during transit from the west coast and another so weakened that it snapped when a slight force was applied to it. In lieu of the lifting lugs, two wire slings were placed under the container, parallel and adjacent to the skids, and the unit was then lifted by a crane. In addition to being lifted by a crane, the Handling Test indicated the loaded unit can be readily handled by a fork truck or moved a short distance as into the wings of a ship by wooden rollers.

5. Edge Drop and Stevedoring

The container when loaded either with 1800 lbs. or 4000 lbs. withstood the Edge Drop Test and Stevedoring Tests in an excellent manner. The unit was slightly damaged during these tests. The damage consisted of minor deformation of corrugations, bending of roof corner, etc., and did not impair the further utilization of the container.

At the conclusion of the tests the container was disassembled, unloaded, inspected, and reassembled again without too much difficulty. Only one bolt could not be replaced.

CONCLUSIONS AND RECOMMENDATIONS

The tests to which the container was subjected indicate that it is structurally sound. The manufacturer's rated load of 1800 lbs. equals
approximately 7.5 lbs. per cubic foot. This is a low capacity rating. Since the container is structurally sound and successfully withstood the tests with a 4000 lbs. load, it is recommended that the rated capacity of this container be increased to 15 lbs. per cubic foot or 3700 lbs.

The eye bolt "sling hooks" are inadequate for lifting the container with a crane and should not be used for that purpose. Instead two wire slings should be placed under the container parallel and adjacent to the skids when the unit is to be lifted with a crane. The present sling hooks might be used to secure the unit to the deck of a truck, railway car or ship.

No means are provided in the interior of the container to fasten household articles to the floor or sides. It is recommended that either bars be welded to the interior corrugations of the side panels or some other means be provided to secure household articles within the container. This will require that one side panel be designated and so stenciled that it be the last panel bolted to the loaded container and the first panel unbolted when the container is to be unloaded.

If it is anticipated that the containers will be exposed to the elements for appreciable lengths of time, it is recommended that a thin gasket be secured to the lower framing angle of the upper side panels. This will provide a tight horizontal joint between side panels, and eliminate water from entering along that joint. If, however, the
anticipated usage of the container is such that it will seldom be exposed to the elements, the weather resistance, as presently constructed, is sufficient.

The roof design of the container is such that it precludes tiering of the containers, one on another, or placing of heavy loads on the roof.
Addendum to Evaluation of an Experimental Collapsible Aluminum Household Effects Container

SUPPLY ENGINEERING DIVISION
U.S. Naval Supply Research & Development Facility
Naval Supply Depot
Bayonne, N.J.
TECHNICAL REPORT REVIEW

"ADDENDUM TO EVALUATION OF AN EXPERIMENTAL COLLAPSIBLE ALUMINUM HOUSEHOLD EFFECTS CONTAINER"

PROJECT GROUP - NTO03-016(a)
AUTHORIZATION - SE52-15
PROJECT REPORT - 2-02905:

APPROVAL: Report Approved 1 April 1952

SECURITY CLASSIFICATION: UNCLASSIFIED

DISTRIBUTION: In accordance with the attached approved distribution list.

REMARKS: This technical report review is inserted as the first page of the subject report as an integral part thereof.

No data, discussions or recommendations included in this research and development report or technical report review shall be construed as indicating a current or anticipated future operating policy of the Bureau of Supplies and Accounts or the Navy Department.

/s/ J.H. TAYLOR, JR.
Commander, (SC) USN
Director, Research and Development Division
By direction of the Chief of Bureau
ADDENDUM TO EVALUATION OF AN EXPERIMENTAL
COLLAPSIBLE ALUMINUM HOUSEHOLD EFFECTS CONTAINER

AUTHORIZATION: ChBuSandA ltr to Oinc, USNSRDF, Bay, N. J.,
File CW-3 all/3 dtd 23 July 1951

PURPOSE: Summation and evaluation of field reports and recommendations, to determine modifications for maximum utility of the container in the transportation of household effects.

CONCLUSION: Minor modification and reinforcement using similar materials will permit conformance to recommendations received in field service reports.
SUMMATION OF FIELD REPORTS

1. Twenty-nine containers were distributed about October 1950 to the Naval Supply Center, Oakland, and the Naval Supply Depot, Seattle, to be used in normal transportation of household effects by common carrier. The using facilities were furnished forms and requested to supply data for field service evaluation and compilation by NSHDF.

2. Fifty-nine separate reports have been received to date covering twenty-seven of the containers, two have yet to be heard from, while the thirtieth is on hand in the laboratory, to be held for further development work.

3. Seventeen separate suggestions have been tabulated with frequency of mention as shown in Table A:

<table>
<thead>
<tr>
<th>TABLE A</th>
<th>Number of Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional support required on bottom for protection against the forks.</td>
<td>5</td>
</tr>
<tr>
<td>A metal or plywood plaque to be provided for stenciling or attaching shipping identification and codes.</td>
<td>4</td>
</tr>
<tr>
<td>Stronger bolting or fastening on the opening side. In some cases the threads stripped under load.</td>
<td>4</td>
</tr>
<tr>
<td>Provide interior fittings to permit strapping and bracing of a part load. These could be straps, bars, strap eyes or eye bolts.</td>
<td>2</td>
</tr>
<tr>
<td>Provide additional bracing for the top to support a load.</td>
<td>2</td>
</tr>
</tbody>
</table>
TABLE A

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Number of Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnish a third skid in the center for additional protection of the bottom</td>
<td>2</td>
</tr>
<tr>
<td>against damage by fork trucks.</td>
<td></td>
</tr>
<tr>
<td>Top panel should be furnished in heavier gauge to resist cutting by sharp top</td>
<td>2</td>
</tr>
<tr>
<td>loads.</td>
<td></td>
</tr>
<tr>
<td>Provide leveling blocks under flooring to prevent springing, so that bolting</td>
<td>2</td>
</tr>
<tr>
<td>will be easy.</td>
<td></td>
</tr>
<tr>
<td>Use standard thread so that the bolts are easily replaceable from stock bins.</td>
<td>1</td>
</tr>
<tr>
<td>Place recessed handles in panels to eliminate handling hazard in assembly and disassembly.</td>
<td>1</td>
</tr>
<tr>
<td>The bottom portion of the front panel should be a permanent part of the base to prevent misalignment.</td>
<td>1</td>
</tr>
<tr>
<td>"Bolting" on front panel should be reversed so that vibration will not loosen the bolts and drop them out.</td>
<td>1</td>
</tr>
<tr>
<td>Use standard nuts and bolts through drilled holes instead of bolts in tapped holes.</td>
<td>1</td>
</tr>
<tr>
<td>Develop a larger size container capable of carrying 3 or 4 rooms, this container was called a 1½ to 2 room size.</td>
<td>1</td>
</tr>
<tr>
<td>Attach bolts by a short length of chain.</td>
<td>1</td>
</tr>
<tr>
<td>Furnish a small container for excess bolts when not in use.</td>
<td>1</td>
</tr>
<tr>
<td>Place a pad eye on each corner of the top so that wire straps may be run through while loading and unloading on shipboard.</td>
<td>1</td>
</tr>
</tbody>
</table>

Twenty-five of the reports characterized the containers as either satisfactory, good or excellent. Twenty-five of the reports made no special comment, only filling in the blanks furnished.
5. Some selected comments:

1. On container #3, NAS, Pensacola, considered the aluminum containers more satisfactory than plywood which are frequently received from overseas in poor condition, i.e., the bottom pulled out and exposing the contents. Out of every fifty plywood containers received at Pensacola, approximately one is reusable.

2. On container #5, N. Y. Naval Shipyard, Brooklyn, estimates most shipments of household effects within continental United States are by moving van. Therefore these containers were recommended for overseas shipments and consigned only to naval activities for use in return shipments.

3. On container #24, N.C. Norfolk advises the top was damaged, i.e., one foot long cut apparently made by a sharp instrument. There may have been an attempt at pilferage on this box car shipment, however, as nothing was reported missing, the second skin or inside corrugation may have saved the contents.

4. In no case was there any report of damage to the contents that could be assigned to the container construction.

6. The following modifications are applied to the design of the container to accommodate the most advantageous modifications recommended, and with a view toward using similar materials:

1. An XH aluminum sheet between the I beam skins and against the bottom corrugation for protection against fork truck forks.
2. A .064 aluminum plaque 18" x 24" placed on one long panel to permit marking with shipping identification and codes.

3. Bolt specifications changed to 1/16" - 14 NC for increased strength, and one hole per fastening elongated to allow for inaccuracies in drilling.

4. Two vertical aluminum straps, 1" x 1/8", per side, from top to bottom to permit tie-down of the load.

5. An additional corrugation added to the roof, below and at right angles to the present corrugation.

6. Top panel flat sheet increased to .064 aluminum.

7. Two rope handles per panel recessed within corrugations to permit safe handling of panels.

8. An open top .032 aluminum box 32" x 32" x 32" placed in one corner to hold excess bolts (and nuts) when disassembled.

7. The modification of this container for overseas transportation would require, as a minimum, attention to redesign and strengthening the unit for tying or loading on top, and provision for lifting, such as sling hooks or eyes, or some type of lifting lug. At present, NERDF has a sub-project NT003-016(a) to develop a similar container suitable for overseas use.

8. The containers were intended for movements within the continental United States. However, nine of the containers did manage to move by sea transportation. These were:

 #6 from Norfolk to Puerto Rico

 #10 from Oakland to Pearl Harbor
#11, 16, 17 from Oakland to Fray 564
#25, 28 from San Diego to Norfolk (via LST)
#20 from Norfolk to Guantanamo Bay and return
#29 from Norfolk to Guantanamo Bay

9. (a) Appended is a shipment history by container number, date, destination, weight and carrier.
(b) The revised drawing is appended.

10. Discussion

The .064" sheet under the bottom between the skids was considered necessary for protection against scuffing. Several pictures were furnished by using facilities showing gouging and scuffing from forks. It was noted in the laboratory test container that fifteen rivets in the bottom had failed around the corners. This occurred because the I beam skids were cut 1\(\frac{1}{4}\) inches too short on each end, and therefore did not support the Z beam frame around the bottom. This was a deviation from the drawing, which called for the skids to be brought out right to the edge of the container and therefore supporting the Z beam and the entire panel load.

The marking plaque should also assist in indicating the front for loading and unloading.

Bolting size was increased from 3/8" - 16 NC to 7/16" - 14 NC to accommodate requests for stronger bolting. Some reports stated that threads stripped under load when closing container. Evidently the mating surfaces were drawn together and one or two
turns taken by hand on the bolts, and upon releasing the load the threads stripped. This condition was probably aggravated by the fact that the bolting was not as originally specified, 3/8" - 24 NF being furnished instead of 3/8" - 16 NC, in which case each individual bolt thread was weaker.

The heavier roof sheet and the extra roof corrugation were considered desirable for increased durability, should the carrier attempt to use the cube above the container.

After the initial assembly by Oakland and Seattle, we have no further reports on assembly and disassembly, and conclude the containers were not shipped collapsed.

Appendix: (a) Shipment History
(b) Revised drawing
<table>
<thead>
<tr>
<th>CONTAINER NUMBER</th>
<th>SHIPPED</th>
<th>FROM</th>
<th>TO</th>
<th>RECEIVED</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GROSS NET CARRIER</td>
</tr>
<tr>
<td>2</td>
<td>4 Jan 51</td>
<td>NGS Seattle</td>
<td>N Gus Pac WashDC</td>
<td>18 Jan 51</td>
<td>2731 2201 50 ft DD Box Car</td>
</tr>
<tr>
<td></td>
<td>13 Jun 51</td>
<td>N Gus Pac WashDC</td>
<td>NAS Pensacola</td>
<td>2 Jun 51</td>
<td>2300 1770 MEC Box Car</td>
</tr>
<tr>
<td>3</td>
<td>4 Jan 51</td>
<td>NGS Seattle</td>
<td>N Gus Pac WashDC</td>
<td>18 Jan 51</td>
<td>2740 2210 50 ft DD Box Car</td>
</tr>
<tr>
<td></td>
<td>19 Nov 51</td>
<td>N Gus Pac WashDC</td>
<td>NAS Pensacola</td>
<td>22 Jun 51</td>
<td>2685 2155 MEC Box Car</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSG San Diego</td>
<td></td>
<td>2155 1680 Box Car</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>NGS Seattle</td>
<td>Charleston N.O.</td>
<td>14 Mar 51</td>
<td>2220 1690 Truck-Enclosed Van</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. Car.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30 Jan 51</td>
<td>NGS Seattle</td>
<td>N S Shpyd Bklyn</td>
<td>26 Feb 51</td>
<td>1830 1300 Natl Crldg Corp-Box Car</td>
</tr>
<tr>
<td></td>
<td>26 Mar 51</td>
<td>NGS Shpyd Bklyn</td>
<td>NGS Clearfield</td>
<td></td>
<td>2460 1930 Ft Car</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ogden Utah</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGS Clearfield</td>
<td>NGS Shpyd Bklyn</td>
<td>5 Jun 51</td>
<td>2460 1930 Box Car</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ogden U.</td>
<td>NGS Shpyd Bklyn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Sept 51</td>
<td></td>
<td>NGS San Diego</td>
<td></td>
<td>2385 1855 Box Car</td>
</tr>
<tr>
<td>6</td>
<td>4 May 51</td>
<td>NGS Seattle</td>
<td>NGS Los Angeles</td>
<td>15 May 51</td>
<td>2424 1894 40 ft SD Box Car</td>
</tr>
<tr>
<td></td>
<td>10 Jul 51</td>
<td>NGS San Pedro</td>
<td>NGS Norfolk Va</td>
<td>4 Sept 51</td>
<td>2507 1977 50 ft DD Box Car</td>
</tr>
<tr>
<td></td>
<td>1 Oct 51</td>
<td>NGS Norfolk Va</td>
<td>NGS San Juan PR</td>
<td>19 Oct 51</td>
<td>2280 1750 USS Note Court</td>
</tr>
<tr>
<td>7</td>
<td>21 Jun 51</td>
<td>NGS Or Lakes III</td>
<td>NGS San Diego Cal</td>
<td>1960 1430 Box Car</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO REPORT</td>
<td></td>
<td></td>
<td>2150</td>
<td>1620</td>
</tr>
<tr>
<td></td>
<td>15 Sept 51</td>
<td>NGS Or Lakes III</td>
<td>NGS San Diego Cal</td>
<td>1960 1430 Box Car</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NO REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6 Mar 51</td>
<td>OIC FTB NSG UKld</td>
<td>NGS Shpyd Bklyn</td>
<td>26 Mar 51</td>
<td>1968 1438 Box Car 40' 6"</td>
</tr>
<tr>
<td>10</td>
<td>21 Jun 51</td>
<td></td>
<td>NGS Upton Ill.</td>
<td></td>
<td>2655 2025 Box Car</td>
</tr>
<tr>
<td></td>
<td>NO REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Jul 51</td>
<td>NGS Or Lakes III</td>
<td>Oakland for Pearl Harbor</td>
<td>2500 1960 RR Car</td>
<td></td>
</tr>
<tr>
<td>CONTAINER NUMBER</td>
<td>SHIPPED</td>
<td>FROM</td>
<td>TO</td>
<td>RECEIVED</td>
<td>WEIGHT GROSS</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>11</td>
<td>Nov 51</td>
<td>FTB Oakland</td>
<td>Fray 564 via SS Hawaiian Builder</td>
<td></td>
<td>3225</td>
</tr>
<tr>
<td>12</td>
<td>21 Jun 51</td>
<td>Upton Ill</td>
<td>NSD San Diego</td>
<td></td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>NO REPORT</td>
<td>NSD Gr Lakes</td>
<td>NSD San Diego</td>
<td></td>
<td>2210</td>
</tr>
<tr>
<td>13</td>
<td>19 Jun 51</td>
<td>FTD NSC Oakland</td>
<td>NSD San Diego</td>
<td></td>
<td>2110</td>
</tr>
<tr>
<td>14</td>
<td>21 Jun 51</td>
<td>Upton Ill</td>
<td>NSD San Diego</td>
<td>24 Apr 51</td>
<td>2385</td>
</tr>
<tr>
<td>15</td>
<td>17 Apr 51</td>
<td>NSD San Diego</td>
<td>FTD NSC Norfolk</td>
<td>30 Jul 51</td>
<td>1940</td>
</tr>
<tr>
<td>16</td>
<td>21 Jun 51</td>
<td>NSD Gr Lakes Ill</td>
<td>CIC FTB NSG Oakland for Pearl Harbor</td>
<td></td>
<td>2525</td>
</tr>
<tr>
<td></td>
<td>NO REPORT</td>
<td>NSD Gr Lakes</td>
<td>NSD San Diego</td>
<td></td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>NO REPORT</td>
<td>NSC Oakland Cal</td>
<td>Fray 564 via USNS Gen Aultman</td>
<td></td>
<td>1760</td>
</tr>
<tr>
<td>17</td>
<td>31 Oct 51</td>
<td>FTD NSC Oakland</td>
<td>Fray 564 via USNS Gen Aultman</td>
<td></td>
<td>2185</td>
</tr>
<tr>
<td>18</td>
<td>16 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>NSD San Diego</td>
<td></td>
<td>1620</td>
</tr>
<tr>
<td>19</td>
<td>NO REPORT</td>
<td>NSD San Diego</td>
<td>NSD San Diego</td>
<td></td>
<td>1620</td>
</tr>
<tr>
<td>20</td>
<td>3 Jul 51</td>
<td>NSC Norfolk</td>
<td>N Gun Fac WashDC</td>
<td>12 Jul 51</td>
<td>1980</td>
</tr>
<tr>
<td>22</td>
<td>Aug 51</td>
<td>NSC Norfolk</td>
<td>USN Acad Annapolis</td>
<td></td>
<td>1980</td>
</tr>
<tr>
<td>22</td>
<td>Sept-Oct</td>
<td>NSC Norfolk</td>
<td>NSD Guantanamo Bay Sept-Oct Cuba</td>
<td></td>
<td>1980</td>
</tr>
<tr>
<td>22</td>
<td>9 Nov 51</td>
<td>Guantanamo Bay Cuba</td>
<td>NSC Norfolk</td>
<td></td>
<td>1980</td>
</tr>
<tr>
<td>CONTAINER NUMBER</td>
<td>SHIPPED</td>
<td>FROM</td>
<td>TO</td>
<td>RECEIVED</td>
<td>WEIGHT</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>----</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>21</td>
<td>14 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>Phil N Shpyd Phil</td>
<td></td>
<td>2725</td>
</tr>
<tr>
<td>22</td>
<td>2 Jun 51</td>
<td>FTD NSC Oakland</td>
<td>N Sub Base Group</td>
<td></td>
<td>2270</td>
</tr>
<tr>
<td>23</td>
<td>14 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>Phil N Shpyd Phil</td>
<td></td>
<td>1810</td>
</tr>
<tr>
<td>24</td>
<td>14 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>NSC Norfolk</td>
<td>9 Jun 51</td>
<td>2592</td>
</tr>
<tr>
<td>25</td>
<td>14 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>Phil N Shpyd Phil</td>
<td></td>
<td>1640</td>
</tr>
<tr>
<td>26</td>
<td>26 Apr 51</td>
<td>FTD NSC Oakland</td>
<td>NAS Millington Term</td>
<td>NO REPORT</td>
<td>1056</td>
</tr>
<tr>
<td>27</td>
<td>3 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>N Gun Fac Wash DC</td>
<td>4 Dec 51</td>
<td>2435</td>
</tr>
<tr>
<td>28</td>
<td>17 Apr 51</td>
<td>FTD NSC Oakland</td>
<td>USN Acad Annapolis</td>
<td></td>
<td>2210</td>
</tr>
<tr>
<td>29</td>
<td>3 Jul 51</td>
<td>FTD NSC Oakland</td>
<td>USN Acad Annapolis</td>
<td>Oct 51</td>
<td>2225</td>
</tr>
<tr>
<td>30</td>
<td>22 Jan 51</td>
<td>FTD NSC Oakland</td>
<td>NAS McAlester Okla</td>
<td>6 Feb 51</td>
<td>1780</td>
</tr>
</tbody>
</table>
SHIPMENT BY SEA TRANSPORTATION - TABULATION

<table>
<thead>
<tr>
<th>CONTAINER NUMBER</th>
<th>SHIPPED</th>
<th>FROM</th>
<th>TO</th>
<th>WEIGHT CROSS</th>
<th>NET</th>
<th>GARDENER</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 Oct 51</td>
<td>MSC Norfolk</td>
<td>San Juan PR</td>
<td>2230</td>
<td>1750</td>
<td>USS Bouteoscourt</td>
</tr>
<tr>
<td>10</td>
<td>10 Jul 51</td>
<td>NSD Cr Lakes Ill</td>
<td>Pearl Harbor</td>
<td>2210</td>
<td>1680</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Nov 51</td>
<td>FTB Oakland</td>
<td>Frey 564</td>
<td>3225</td>
<td>2695</td>
<td>SS Hawaiian Builder</td>
</tr>
<tr>
<td>15 (with 28)</td>
<td>7 Jun 51</td>
<td>NSD San Diego</td>
<td>Norfolk</td>
<td>1940</td>
<td>1410</td>
<td>LST 1079</td>
</tr>
<tr>
<td>16</td>
<td>31 Oct 51</td>
<td>NSC Oakland</td>
<td>Frey 564</td>
<td>1760</td>
<td>1230</td>
<td>USNB Gen Aultman</td>
</tr>
<tr>
<td>17</td>
<td>31 Oct 51</td>
<td>NSC Oakland</td>
<td>Frey 564</td>
<td>2185</td>
<td>1655</td>
<td>USNB Gen Aultman</td>
</tr>
<tr>
<td>20</td>
<td>Sept-Oct</td>
<td>NSC Norfolk</td>
<td>NSD Guantanamo Bay Cuba</td>
<td>USS Cerduba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9 Nov 51</td>
<td>NSD Guantanamo Bay Cuba</td>
<td>NSC Norfolk</td>
<td>USS Cerduba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 (with 15)</td>
<td>7 Jun 51</td>
<td>NSD San Diego</td>
<td>Norfolk</td>
<td>2225</td>
<td>1695</td>
<td>LST 1079</td>
</tr>
<tr>
<td>29</td>
<td>Sept-Oct</td>
<td>NSC Norfolk</td>
<td>NSD Guantanamo Bay Cuba</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14 x 4" 3 ANGLES

WELD & PKL "U" TYPE BRONZE & COPPER LEAD NOSE VSC

FRAME
SEE PANELS (UPPER & LOWER)

14 x 1/4 x 1/2 WELDS -
14 x 1/4 x 3/8 Z SECTIONS

END FILED - FRAME (UPPER & LOWER)
NOTES

MATERIAL: ALUMINUM ALLOYS 6061-O, .032" INDUSTRIAL ALCLAD

PITCH = .87 DEEP

EXTRUSIONS:

1/8" x 1/8" ANGLE 61S-T6
1/4" x 3/8" x 1/8" ANGLE 63S-T6
1/4" x 1/4" x 1/8" Z 61S-T6
4" x 2 66" BEAM 61S-T6

PLATE = 3/16" 52 S-H 32
SEAT = .032" & .064" 52 S-H 32
COUNTERSUNK = 1/8" SP 5-H 32

NUTS & BOLTS 1/5" x 1/4" N.C. STEEL - CAP. PLATE

ALTERNATE BOLTS & PERMANENT THREADED FITTINGS

ANCHERS - FLAT 1/6" x 1/6" 25-H 19

PLATS: SIDE & END PANELS - CORR. TO CORR. RIVET EVERY THIRD PITCH IN BOTH DIRECTIONS.

TOP - EVERY OTHER PITCH & STAGGER BETWEEN ROWS.

BOTTOM - EVERY THIRD PITCH END-WISE & EVERY OTHER PITCH LENGTH-WISE.

SIDE & END PANELS CORR. TO ANGLES - EVERY OTHER PITCH.

I-BEAM & PLATE TO CORR. EVERY OTHER PITCH

STAGGER ACROSS 6 OF BEAM.
BOTTOM PANEL BOLTED
THIS END ONLY-
OPPOSITE END RIVETED

ONE RUN OF DRILLED
BOLT HOLES ELONGATED,
ON ONE SIDE OF ALL
BOLTED JOINTS

C-C & D-D
TWO .032" SHEETS OR ONE .064"}

2" DIA. SHACKLE HOLE

TOP PANEL ONLY

NUT PLATE SELF LOCKING

ALTERNATE FASTENING

PLAN VII
In one corner only

3/8" Fir Plywood

68.31"

A-A

Plan View

K
ALUMINUM IDENTIFICATION PLAQUE .064" X 18" X 24"