A COMPARISON OF THE FALLOUT MASS-SIZE DISTRIBUTIONS CALCULATED BY LOGNORMAL AND POWER-LAW MODELS

by

E.C. Freiling
ABSTRACT

Fallout mass-size distributions presently used at USNRDL are compared with new distributions suggested by recent investigations. Available data is unable to define the distribution parameters well enough to distinguish between lognormal and power-law distribution models.
Problem

To determine the differences between newly-proposed fallout mass-size distributions and distributions now in use.

Findings

Differences are trivial in comparison with the effects of current uncertainties in the distribution parameters. Planned sensitivity analyses need not explicitly treat the newly-proposed power-law distributions except as a matter of convenience.
INTRODUCTION

The purpose of this report is to compare formulas for the size distribution of particle mass in the fallout from land-surface bursts. The distribution equations to be compared are basically the newly-proposed power-law distribution and the lognormal distribution, although modifications of each are involved. Cumulative forms of the distributions will be emphasized. Interest in such a comparison arises from the need to assess the impact of new information and suggestions (mainly due to Russell)1 on present prediction techniques. The mass-size distribution is of basic importance for predicting fractionation effects because, being equivalent to the volume-size distribution, it is primary input data.

At this Laboratory both total particle mass and active particle mass are considered to have the same lognormal distribution, even though there may be some fifteen times as much inactive material as active material.2 The power-law distribution, proposed by Russell,1 refers only to total mass. The land-surfaces involved are both silicate (Nevada Test Site-NTS) and coral (Eniwetok Proving Grounds-EPG).

The results of the mathematical comparison offered here will throw light upon the need of a sensitivity analysis for more detailed comparison.
For purposes of fallout prediction, the information required for input can be conveniently discussed in terms of cumulative logarithmic-probability graphs because any single-valued distribution curve on such a graph is automatically normalized to 100 %. Let us say that the predictor is interested in the distribution of Mo99 in a local fallout field. Even though his computer can reasonably handle hundreds of particle-size classes, the data on which his input is based need not be so detailed. Presumably he knows enough about the device to state the total quantity of Mo99 present. His next most urgent need is to know what fraction of this came down locally, or at early times, or in large particles. This corresponds to placing a point on the graph in the region of 25 to 50-µ diameter particles. Such a point might conceivably come from several sources, e.g.,

1. Prediction techniques in vogue,
2. Partition inferred from the radiochemical analysis of cloud and ground samples,
3. Integration of contours of Mo99 surface density on the ground.

Assuming a number is available to place this point, he still needs 199 more numbers. These can be obtained from

1. Prediction techniques in vogue,
2. Determining Mo99 distribution with particle size in a representative sample of the local field,
3. Integration of contours of particle surface density as a function of size, plus a knowledge of the relative Mo99 content of different particle-size classes,
4. Determining Mo99 distribution with particle size in a cloud sample which contains representative proportions both of the particles chosen above and of larger particles.

The more observational data that can be incorporated, the less reliance need be placed on choice one and moreover, the better the quality of choice one that can be offered. If as few as five well-distributed points were available from observations, the predictor would be in good shape.
These same considerations apply to the distribution of other particle properties: individual radionuclides, mass, or fraction of the unpartitioned, unfractionated normalization factor. Unfortunately, it is invariably necessary to rely on choice one to some extent. It is therefore incumbent upon the predictor to keep current the comparison of his techniques with published observations.

THE LOGNORMAL DISTRIBUTION

To illustrate the notation we may introduce the lognormal distribution by saying that, if the probability is $P_M(a,b)$ that a randomly chosen particle in a distribution has a mass x: $a < x < b$, then the equations

$$P_M\{a,b\} = \int_a^b P_M(x) \, dx$$

$$P_M\{x,x+dx\} = P_M(x) \, dx$$

define the probability density function $P_M(x)$, and for the lognormal distribution,

$$P_M(x) \, dx = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{\ln x - \mu_M}{\sigma}\right)^2\right\} \, d\ln x . \tag{1}$$

The parameters μ_M and σ are best determined from a cumulative log-probability plot of the mass distribution. If a straight line gives a reasonable fit to the cumulative weight, then

$$\mu_M = \ln x_M$$

(where x_M is the particle diameter at 50 %)

$$\sigma = \ln \frac{x_{M+}}{x_M} = \ln \frac{x_M}{x_M^{-}}$$
where x^+ and x^- are the particle diameters one sigma unit larger and smaller than x (i.e., at 84.13% and 15.87%, respectively). The mass distribution currently in use at NRDL uses the lognormal distribution with parameters $x^* = 100 \mu$ and $\sigma = 1.68$.

The mass-distribution curve favored at NRDL is based upon (1) the assumption of constant volume-specific activity and (2) activity-size data from 75 to 3300 μ. An argument can be made for assuming constant surface-specific activity instead of constant volume-specific activity. The effect of this will be discussed below.

THE POWER DISTRIBUTION

In an unclassified section of a classified report, Russell describes his analysis of Johny Boy cloud samples, which analyses led him to the conclusion that the mass of the debris was so distributed that, down to about 90 μ, equal size increments contained equal masses:

$$P_M(a,b) \propto (b-a)$$

or

$$P_M = \text{constant}$$

On the assumption of constant particle density and the usual spherical-particle approximation, this leads to a frequency distribution function

$$P_N\{x,x+dx\} = P_N(x)dx = k_N x^{-3}dx$$

where k_N is a normalization factor.

Further investigation, especially by Nathans,* indicated variations from the power of three, so for generality we write

$$P_N\{x,x+dx\} = k_N x^{-q}dx$$

$$P_M\{x,x+dx\} = k_M P_M(x) dx = k_M x^{3-q} dx$$

which bears little resemblance to Equation 1. The value of q appears to lie between 3 and 4.

*M. W. Nathans, Tracerlab, Inc., private communication.
Completion of the distribution equation requires that some upper limit x_{max} be set to the particle size. Thus the form of the equation becomes

$$P_M(a, b) = \frac{b}{a} \int_a^{x_{\text{max}}} x^{-q} \, dx \int_0^{x_{\text{max}}} x^{-q} \, dx$$

Various considerations led Russell to choose a value of 1000 μ for x_{max}, although References 2 and 3 indicate a higher value would be more appropriate.

Figure 1 compares the power distribution with the lognormal distribution for several cases. The power distribution is plotted for typical values of $q = 3.0$ and 3.5, both with a cutoff of $x_{\text{max}} = 1000$ μ. A curve for $q = 3.0$ and $x_{\text{max}} = 2000$ μ shows the effect of a reasonable change in cutoff diameter.

For the case of $q = 3.0$ and $x_{\text{max}} = 1000$ μ the mass distribution is extremely simple. The fraction of mass in particles of diameter x or less is then

$$P_M(0, x) = \frac{x(\mu)}{1000}$$

For the case of $q = 3.5$ and $x_{\text{max}} = 1000$ μ it is not much more complicated:

$$P_M(0, x) = \frac{1}{1.682^2 \sqrt{2\pi}} \int_0^x \exp \left\{ -\frac{1}{2} \left[\frac{\ln \left(x \right)}{1.682} \right]^2 \right\} \, d \ln x$$

For the lognormal distributions the equations are derived according to the method of Reference 4:

$$P_M(0, x) = \frac{1}{1.682^2 \sqrt{2\pi}} \int_0^x \exp \left\{ -\frac{1}{2} \left[\ln \left(x \right) / 1.693 \right]^2 \right\} \, d \ln x$$

for constant volume-specific activity and

$$P_M(0, x) = \frac{1}{1.682^2 \sqrt{2\pi}} \int_0^x \exp \left\{ -\frac{1}{2} \left[\ln \left(x \right) / 1.693 \right]^2 \right\} \, d \ln x$$

for constant surface-specific activity.
Fig. 1 Comparison of Extended Distributions
THE TRUNCATED DISTRIBUTIONS

The Truncated Power Law

It was immediately evident to Russell that the power-law distribution was physically unrealistic as shown. Thus as $x \to 0$, the distribution predicts an infinite number of particles. Therefore Russell chose a value of 1μ for the lower cutoff diameter x_{min}, giving the final form of the distribution as

$$P_M(a,b) = \frac{\int_{b}^{a} x^{3-q} \, dx}{\int_{1}^{1000} x^{3-q} \, dx}$$

The small size cutoff has since been well documented by Nathans' work.

The Truncated Lognormal Distribution

If pressed to the limit, the lognormal distribution will predict some finite (if fractional) number of particles of any size, no matter how large or small. A means of truncating the lognormal distribution at the small particle sizes x_{min} was employed in Reference 4. This involved simply making the substitution

$$x \to x - x_{\text{min}}$$

in the distribution function. If a cutoff at larger sizes is desirable, one needs another means of making the logarithmic term infinite. This can be easily supplied by first writing

$$\ln x = - \ln \frac{1}{x}$$

and making the substitution

$$\frac{1}{x} \to \frac{1}{x} - \frac{1}{x_{\text{max}}}$$

which is equivalent to making the substitution

$$x \to \frac{x}{1 - x/x_{\text{max}}}$$
An obvious way to incorporate both cutoffs simultaneously is to make the single substitution

\[x - x_{\text{min}} \]

\[x \rightarrow \frac{x}{1 - x/x_{\text{max}}} \]

Appendix A describes how truncated graphs can be constructed from the parameters \(\mu \) and \(\sigma \) with a minimum of effort.

Comparison

Figure 2 compares the lognormal and power-law distributions in truncated form. For comparison, all distributions are truncated at 1 \(\mu \) and 1000 \(\mu \). With the truncated power-law distribution it is possible to show the graph for \(q = 4 \). Therefore, Fig. 2 shows the full extent of uncertainty due to the uncertainty in \(q \). For the case of \(q = 4 \):

\[
P_M \{0, x\} = \int_{1}^{x} d \ln x /
\int_{1}^{1000} d \ln x
\]

\[= \frac{1}{3} \log_{10} x(\mu) \]

It is noteworthy that this \(q = 4 \) distribution is also the distribution of surface that would correspond to the \(q = 3 \) mass or volume distribution.

The truncated lognormal distributions are shown for the assumptions of both constant volume-specific activity and constant surface-specific activity. The former lies well within the range of power-law distributions.

Variation in \(x_{\text{max}} \)

As indicated above, the value of \(x_{\text{max}} \) is not well known. The above equations are easily adapted to other values. Choosing 500 and 2000 for illustrations only gives the values shown in Table 1. The sensitivity to \(x_{\text{max}} \) is seen to be strongly dependent on the value of \(q \). Thus, the effect on \(P_M \{0, x\} \) ranges from a factor of 1.2 for \(q = 4 \) up to a factor of four for \(q = 3 \).
Fig. 2 Comparison of Truncated Distributions; Effect of Uncertainty in Exponent
TABLE 1

Effect of Varying x_{max} on Power-Law Equations with Various Exponents

<table>
<thead>
<tr>
<th>Cutoff Diameter (x_{max})</th>
<th>$P_M {0,x}$</th>
<th>$q = 3.0$</th>
<th>$q = 3.5$</th>
<th>$q = 4.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 μ</td>
<td>x^{-1}</td>
<td>$\frac{V_{\text{max}}}{1.4}$</td>
<td>$\frac{1}{2.7} \log_{10} x$</td>
<td></td>
</tr>
<tr>
<td>1000 μ</td>
<td>x^{-1}</td>
<td>$\frac{\sqrt{x-1}}{30.6}$</td>
<td>$\frac{1}{3} \log_{10} x$</td>
<td></td>
</tr>
<tr>
<td>2000 μ</td>
<td>x^{-1}</td>
<td>$\frac{\sqrt{x-1}}{43.7}$</td>
<td>$\frac{1}{3.3} \log_{10} x$</td>
<td></td>
</tr>
</tbody>
</table>

SIGNIFICANCE

As Fig. 1 illustrates, for the particle size range of 10-800 μ, the extended power-law distributions for exponents of 3.0 and 3.5 lie between the lognormal curves based upon constant surface-specific activity and constant volume-specific activity. Below 10 μ, the divergence of the power-law distribution from the area bounded by the lognormal lines is at most about 4% of the total mass. Above 800 μ, this divergence varies with large particle cutoff, and for a cutoff of 2000 μ the divergence is less than 5%.

Figure 2 shows that, for truncated distributions, the lognormal curve based on the assumption of constant volume-specific activity lies well within the range of uncertainty in power-law exponents and does not differ greatly from the curve based on an exponent of 3.5. Although the lognormal curve for the assumption of constant surface-specific activity lies outside the range of uncertainty in power-law exponents, it does not differ greatly from the curve based on an exponent of 3.0.

Figure 3 is a striking illustration of the similarity that can be achieved between the truncated power-law distribution and the truncated lognormal distribution. This figure compares the $q = 3.5$ power-law
Fig. 3 Achievable Similarity Between Power-Law and NRDL Lognormal Distributions. Lognormal parameters are $x_M = 500 \mu$, $x_M' = 30 \mu$, $x_{\min} = 1 \mu$, $x_{\max} = 1000 \mu$.
distribution with the $\mu_M = 500 \mu$, $\sigma_M = 30 \mu$ lognormal distribution. The agreement is such that if one curve is correct, the other will never be proved wrong. Presumably, equal similarity could be achieved with curves for other values for q. Presumably also, the agreement in Fig. 3 could be made still closer by either (a) a different choice of σ and μ_M or (b) an equally reasonable method of cutting off the log-normal distribution at 1000 μ, or (c) cutting off the lognormal distribution at some equally defensible value like 950 μ.

Thus it appears that the differences between the two approaches are trivial. The lognormal distribution has the esthetic advantage of an observationally confirmed theoretical basis in the case of airburst debris. If truncation is required, the power-law distribution has the practical advantage of simplifying further calculations of particle surface distribution. Planned sensitivity analyses need not incorporate power-law distributions explicitly, but may include them as a matter of convenience.
REFERENCES

Consider first the region of sizes less than x and assume that the effect of x_{max} is negligible in this region. The truncated curve can be calculated from the extended curve by simply replotoing percentages. Thus, for a cutoff of 1 μ, the value of the extended curve for 1 μ is replotted at 2 μ, the value for the extended curve at 2 μ is replotted at 3 μ, etc.

In the size region above x, assuming the effect of x_{min} can be neglected, the procedure is similar. Thus, for a value of 1000 μ for x_{max}, if one wishes to plot a value for 900 μ, one simply plots the value corresponding to 900/(1 - 900/1000) or 9000 μ on the extended curve.
A COMPARISON OF THE FALLOUT MASS-SIZE DISTRIBUTIONS CALCULATED BY LOGNORMAL AND POWER-LAW MODELS

Freiling, Edward C.

Fallout mass-size distributions presently used at USNRDL are compared with new distributions suggested by recent investigations. Available data is unable to define the distribution parameters well enough to distinguish between log normal and power-law distribution models.
INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** Enter the total page count. The total page count should follow normal pagination procedures, i.e., entering the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **RC & 8d. PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraphs, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 250 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.