Technical Report 57

to the

Office of Naval Research

ARPA Order No. 26-60, Task 2, Item 3

Contract No., Nonr 477(16)

"Preparation of Bis(fluorooxy)difluoromethane"

by Ronald L. Cauble and George F. Cady

University of Washington

October 14, 1966

Reproduction in whole or in part is permitted for any purpose
of the United States Government.
BEST
AVAILABLE COPY
Contribution from the Department of Chemistry
University of Washington, Seattle, Washington

Preparation of Bis(fluoroxy)difluoromethane
by Ronald L. Cauble & George H. Cady

The known existence of CF₂(OF)₂ as established by
Thompson & Prager¹ of the 3M Company together with a knowl-
edge of the usefulness of cesium fluoride as an aid to the formation
of hypofluorites, as established by Ruff & Lustig,² suggested the
possibility of preparing CF₂(OF)₂ by the fluorination of carbon
dioxide. The procedure was tried and found to be very effective.

In a typical run, 0.298 g. (6.78 millimoles) of carbon
dioxide and 1.03 g. (27.1 millimoles) of fluorine were condensed
together from a 2310 ml. glass vacuum line into a heavy walled,
9 ml. Monel metal bomb which contained 7.80 g. of dry cesium flu-
oride at about -195°. The bomb was then closed and placed in a
safety shield consisting of a piece of heavy walled pipe. It
warmed slowly and remained at room temperature for three days.
The gases were then transferred to the vacuum line and found to
have a volume corresponding to 20.1 millimoles (theory, 20.3).
When the gas was pumped slowly through a U trap cooled by liquid

¹. Private communication.
nitrogen (-196°), fluorine was removed and the material condensed in the trap, upon evaporation, had the volume of 6.72 millimoles (theory, 6.78) of gas. Fractional codistillation gave one peak, indicating that the compound was pure. Successive fractions taken by evaporation had vapor densities expressed as molecular weights of 120.0, 119.2 and 120.8 (theory for CF₂OF₂, 120.0)

The reaction described above showed each molecule of product to contain (like CO₂) one atom of carbon. When a similar run was made using an excess of carbon dioxide, the fluorine was completely consumed and substantially no material volatile at -196° remained in the bomb. This meant that oxygen was not produced and that a molecule of product (on the average) contained two atoms of oxygen. The product had the same volume as the carbon dioxide used in the process. Fractional codistillation separated the product into two fractions. Infrared spectra showed one to be carbon dioxide, and the other to be the same new compound that was produced by the reaction involving an excess of fluorine. Two moles of fluorine were consumed for every mole of product formed in the first reaction. This evidence clearly established the reaction to be:

\[\text{CO}_2 + 2 \text{F}_2 \xrightarrow{\text{CF}_2} \text{CO}_2\text{F}_4 \]

The compound was not observed to freeze when chilled. It was a liquid at -183° and a glassy material, or very viscous liquid, at -196°. It reacted vigorously with an aqueous solution of potassium iodide liberating iodine. The infrared spectrum of the gas as observed through silver chloride windows is
Beckman, IR 10 spectrometer had absorption bands in microns at 7.84 (vs), 3.01 (vs), 8.22 (vs), 8.30 (vs), 8.43 (vs), 10.6 (m), 10.7 (m), 10.8 (m), 10.9 (m), 11.0 (m), 14.5 (m), and 15.2 (m). Several weaker bands were also present.

The fluorine 19 nmr spectrum was obtained with a Varian Associates high resolution, 40 Mc, nuclear magnetic resonance spectrometer with a Model No. V-4311 fixed frequency radio frequency transmitter using CFCl₃ as an external standard. Two triplets of equal area were observed, centering at chemical shifts (from CFCl₃) of -155 p.p.m. and 88.5 p.p.m. The coupling constant, J, had a value of 39 c.p.s. This spectrum is consistent with the structure, CF₂(OF)₂.
Preparation of Bis(fluoroxy)difluoromethane

Technical Report

Authors: Ronald L. Cauble and George H. Cady

Report Date: October 14, 1966

Distribution of this document is unlimited.

Office of Naval Research

Bis(fluoroxy)difluoromethane, CF$_2$(GF)$_2$, is produced by the reaction of fluorine with carbon dioxide in the presence of cesium fluoride at room temperature.
<table>
<thead>
<tr>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis(fluorexy)disfluoromethane</td>
</tr>
<tr>
<td>CF$_2$(OF)$_2$</td>
</tr>
<tr>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Cesium fluoride catalyst</td>
</tr>
<tr>
<td>Hypofluorite of carbon</td>
</tr>
<tr>
<td>Fluoroxy compound</td>
</tr>
</tbody>
</table>