THE WIND REGIME IN THE FIRST 62 METERS OF THE ATMOSPHERE

By
FRANK V. HANSEN
and
VIRGIL D. LANG

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

Best Available Copy

Distribution of this report is unlimited.
DDC AVAILABILITY NOTICE

Distribution of this report is unlimited.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
THE WIND REGIME IN THE FIRST 62 METERS OF THE ATMOSPHERE

By

Frank V. Hansen

and

Virgil D. Lang

DA TASK IV014501B 53A-10

ECON - 5058

June 1966

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this report is unlimited.
The authors wish to acknowledge the indispensable assistance of Miss Van Dyke Neill whose programming skill made this work possible.
ABSTRACT

Wind regime data in the form of wind roses and frequency of occurrence for nine tower levels by the month and diurnal classification are presented. Results indicate that terrain features in the vicinity of the White Sands Meteorological Research Tower exhibit a modifying effect on the diurnal and seasonal wind regime. It was also found that seasonal variations were in the form of a three season regime system rather than the expected four.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DATA ANALYSIS</td>
<td>1</td>
</tr>
<tr>
<td>WIND REGIMES AT WHITE SANDS MISSILE RANGE</td>
<td>2</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>67</td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>6</td>
</tr>
<tr>
<td>13-24</td>
<td>30</td>
</tr>
<tr>
<td>25-36</td>
<td>42</td>
</tr>
<tr>
<td>37-48</td>
<td>54</td>
</tr>
<tr>
<td>24-HOUR WIND ROSES BY MONTH</td>
<td></td>
</tr>
<tr>
<td>DAYTIME WIND ROSES BY MONTH</td>
<td></td>
</tr>
<tr>
<td>NIGHTTIME WIND ROSES BY MONTH</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY OF OCCURRENCE OF WIND DIRECTION BY MONTH</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

In 1958 a program was initiated to obtain wind and temperature data for climatological purposes as well as to determine the turbulent characteristics of the lower atmosphere in the vicinity of the Atmospheric Sciences Laboratory's Meteorological Research Tower (Rachele and McClardie, 1957). The data collection program lasted twenty-five months, terminating in April 1960. The climatological aspects of these data were partially analyzed by Carnes (1961) and by Hansen and Neill (1964). The turbulent characteristics of the locale were reviewed by Tourin and Hoidale (1962), Hansen (1963), and Swanson and Cramer (1965). Wind profile prediction techniques were tentatively established using these data by Helvey, Traylor and McClardie (1959), Helvey (1960a, 1960b) and Swanson and Hoidale (1962).

The purpose of this report is to present additional climatological statistics based upon the 25-month data sample. The current presentation is in the form of wind roses for all nine tower levels and percent frequency of occurrence of prevailing wind from the four cardinal and twelve ordinal points of the compass.

DATA ANALYSIS

The 25-month data sample was analyzed utilizing high speed computer techniques with respect to occurrence of prevailing wind direction in five class intervals of wind speed.
The analysis provided monthly summaries of the data for 16 points of the compass for three diurnal classifications (1) daily summary; (2) daylight hours summary; and, (3) nocturnal hours summary. In addition, the percent frequency of occurrence for daylight and nocturnal hours was extracted from the primary computations for each of the sixteen wind directions by month. Wind roses for each tower level by the month and diurnal classification are presented in Figures 1 through 36. Frequency of occurrence for prevailing wind directions is given in Figures 37 to 48.

WIND REGIMES AT WHITE SANDS MISSILE RANGE

A perusal of Figures 1-48 reveals that many wind regimes exist in the first 62 meters of the atmosphere at White Sands Missile Range (WSMR). At first glance the flow characteristics appear to be chaotic and extremely complicated. However, order can be made of chaos, if the terrain features of WSMR are considered. The Missile Range is located in part in the Tularosa Basin of south-central New Mexico. The basin is oriented north-south between the Sacramento and San Andres Ranges of the southern Rockies, is approximately 64 km wide, and slopes gently in a northern direction from 1130m MSL at El Paso, Texas, to 1580m MSL at Carrizo, New Mexico, at its northern extremity.

The research tower is located about 14 km east of the base of the Organ Mountains of the San Andres Range, the western
boundary of WSMR. The terrain surrounding the tower consists of bare sand, patchy vegetation and brush-covered hillocks one to three meters high. During the data collection period under discussion, the tower was instrumented at nine levels from 4.6 to 52 meters above the surface.

The characteristics of the wind profiles derived from tower data can be considered to be a function of the prevailing synoptic situation, the diurnal temperature regime, and the terrain features of the basin. The orientation and slope of the Tularosa Basin, the proximity of a mountain range upstream along the prevailing wind direction, and an extremely rough surface combine to provide many interrelated wind regimes.

From Figures 1 to 48 it can be noted that there are definite diurnal and seasonal trends in the mean flow in the vicinity of the tower. The months of December and January are dominated by downslope flow along the major axis of the basin. February is a transition month for the daylight hours, but exhibits an abrupt onset of nocturnal drainage winds from the Organ mountains as indicated by the large percentage of westerly winds at night. March and April statistics show the predominant strong westerly flow both day and night. May and June are transition months with the mean flow approaching the prevailing summertime southeasterlies. Drainage from the mountains at night is still significant, especially in June.

July and August are dominated by the southeasterlies, while September is a transition month with some northerly flow.
during the day and mountain-valley winds appearing again during the nocturnal hours. October is characterized by light southerly winds, while November is a transition period from the summer-fall seasons to the first phase of the winter season.

A seasonal breakdown of the data reveals that winter has two distinct regimes, that of December-January and February. Spring also has two phases, the extremely windy period of March-April and the transition period May-June. Summer and fall can be combined into the same regime as southeasterly flow generally prevails from mid-June through November.

The extremely high percentage of drainage winds during the nocturnal hours is a function of the mountainous terrain immediately to the west of the tower location. The Organ Mountains rise abruptly from the basin floor to a height of 2600 m MSL in a horizontal distance of slightly more than 6.5 km. The differential in the rate of cooling of the mountain slopes and the basin floor results in large density differences which in turn lead to the sometimes intense gravity or mountain-valley winds (Berger, 1870).

The gentle slope of the basin proper provides the same mechanism on a smaller scale during the early winter season.

SUMMARY

Wind rose and frequency of occurrence data for a 25-month period have been presented for the first 62 meters of the atmosphere at White Sands Missile Range, New Mexico. The ter-
rain features of the Missile Range are shown to have a significant effect upon the mean flow characteristics such that downslope flow is a predominant characteristic of the nocturnal hours. Seasonal regimes dominate the daytime flow with essentially a three-season year: winter, spring, and a combined summer-fall situation.
FIGURE 1: WIND ROSES (24 HOUR) FOR JANUARY
FIGURE 1 (CONT.): WIND ROSES (24 HOUR) FOR JANUARY
FIGURE 2: WIND ROSES (24 HOUR) FOR FEBRUARY
FIGURE 2 (CONT.): WIND ROSES (24 HOUR) FOR FEBRUARY
FIGURE 3: WIND ROSES (24 HOUR) FOR MARCH
FIGURE 3 (CONT.): WIND ROSES (24 HOUR) FOR MARCH

<table>
<thead>
<tr>
<th>LEVEL NO</th>
<th>HEIGHT (m)</th>
<th>SPEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.6</td>
<td>0-3</td>
</tr>
<tr>
<td>2</td>
<td>11.9</td>
<td>4-7</td>
</tr>
<tr>
<td>3</td>
<td>19.3</td>
<td>8-11</td>
</tr>
<tr>
<td>4</td>
<td>26.6</td>
<td>12-15</td>
</tr>
<tr>
<td>5</td>
<td>33.9</td>
<td>16-19</td>
</tr>
<tr>
<td>6</td>
<td>41.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>55.8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>62.0</td>
<td>20-23</td>
</tr>
</tbody>
</table>
FIGURE 4: WIND ROSES (24 HOUR) FOR APRIL
Figure 4 (Cont.): Wind Roses (24 Hour) for April
FIGURE 5: WIND ROSES (24 HOUR) FOR MAY
FIGURE 5 (CONT.): WIND ROSES (24 HOUR) FOR MAY
FIGURE 6: WIND ROSES (24 HOUR) FOR JUNE
FIGURE 6 (CONT.): WIND ROSES (24 HOUR) FOR JUNE
FIGURE 7: WIND ROSES (24 HOUR) FOR JULY
FIGURE 7 (CONT.): WIND ROSES (24 HOUR) FOR JULY
FIGURE 8: WIND ROSES (24 HOUR) FOR AUGUST
FIGURE 8 (CONT.): WIND ROSES (24 HOUR) FOR AUGUST
FIGURE 9: WIND ROSES (24 HOUR) FOR SEPTEMBER
FIGURE 9 (CONT.): WIND ROSES (24 HOUR) FOR SEPTEMBER
FIGURE 10: WIND ROSES (24 HOUR) FOR OCTOBER
FIGURE 10 (CONT.): WIND ROSES (24 HOUR) FOR OCTOBER
FIGURE 11: WIND ROSES (24 HOUR) FOR NOVEMBER
FIGURE II (CONT.): WIND ROSES (24 HOUR) FOR NOVEMBER
FIGURE 12: WIND ROSES (24 HOUR) FOR DECEMBER
FIGURE 12 (CONT.): WIND ROSES (24 HOUR) FOR DECEMBER
FIGURE 13: DAYTIME WIND ROSES FOR JANUARY
FIGURE 14: DAYTIME WIND ROSES FOR FEBRUARY
FIGURE 15: DAYTIME WIND ROSES FOR MARCH
FIGURE 16: DAYTIME WIND ROSES FOR APRIL
FIGURE 17: DAYTIME WIND ROSES FOR MAY
FIGURE 18: DAYTIME WIND ROSES FOR JUNE
FIGURE 19: DAYTIME WIND ROSES FOR JULY
FIGURE 20: DAYTIME WIND ROSES FOR AUGUST
<table>
<thead>
<tr>
<th># LEVEL NO</th>
<th>HEIGHT (m)</th>
<th>SPEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.6</td>
<td>2-3 m/s</td>
</tr>
<tr>
<td>2</td>
<td>14.6</td>
<td>3-7 m/s</td>
</tr>
<tr>
<td>3</td>
<td>19.5</td>
<td>6-8 m/s</td>
</tr>
<tr>
<td>4</td>
<td>26.6</td>
<td>6-8 m/s</td>
</tr>
<tr>
<td>5</td>
<td>33.0</td>
<td>2-6 m/s</td>
</tr>
<tr>
<td>6</td>
<td>41.2</td>
<td>2-6 m/s</td>
</tr>
<tr>
<td>7</td>
<td>48.5</td>
<td>2-6 m/s</td>
</tr>
<tr>
<td>8</td>
<td>56.8</td>
<td>2-6 m/s</td>
</tr>
<tr>
<td>9</td>
<td>62.0</td>
<td>2-6 m/s</td>
</tr>
</tbody>
</table>

Figure 22: Daytime Wind Roses for October

39
FIGURE 23: DAYTIME WIND ROSES FOR NOVEMBER
FIGURE 24: DAYTIME WIND ROSES FOR DECEMBER
FIGURE 25: NIGHTTIME WIND ROSES FOR JANUARY
FIGURE 26: NIGHTTIME WIND ROSES FOR FEBRUARY
FIGURE 27: NIGHTTIME WIND ROSES FOR MARCH
FIGURE 28: NIGHTTIME WIND ROSES FOR APRIL
FIGURE 29: NIGHTTIME WIND ROSES FOR MAY
FIGURE 30: NIGHTTIME WIND ROSES FOR JUNE
FIGURE 31: NIGHTTIME WIND ROSES FOR JULY
<table>
<thead>
<tr>
<th>LEVEL NO</th>
<th>HEIGHT m</th>
<th>SPEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 6</td>
<td>4 - 7</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>7 - 8</td>
</tr>
<tr>
<td>3</td>
<td>16 3</td>
<td>8 - 9</td>
</tr>
<tr>
<td>4</td>
<td>26 6</td>
<td>8 - 9</td>
</tr>
<tr>
<td>5</td>
<td>33 5</td>
<td>8 - 9</td>
</tr>
<tr>
<td>6</td>
<td>42 2</td>
<td>8 - 9</td>
</tr>
<tr>
<td>7</td>
<td>49 5</td>
<td>8 - 9</td>
</tr>
<tr>
<td>8</td>
<td>56 6</td>
<td>8 - 9</td>
</tr>
<tr>
<td>9</td>
<td>62 7</td>
<td>8 - 9</td>
</tr>
</tbody>
</table>

FIGURE 32: NIGHTTIME WIND ROSES FOR AUGUST
FIGURE 33: NIGHTTIME WIND ROSES FOR SEPTEMBER
FIGURE 34: NIGHTTIME WIND ROSES FOR OCTOBER
FIGURE 35: NIGHTTIME WIND ROSES FOR NOVEMBER
FIGURE 36: NIGHTTIME WIND ROSES FOR DECEMBER
Figure 41: Percent frequency of occurrence of wind direction, May.
FIGURE 42: PERCENT FREQUENCY OF OCCURRENCE OF WIND DIRECTION, JUNE
Figure 47: Percent frequency of occurrence of wind direction, November
REFERENCES

67
ATMOSPHERIC SCIENCES RESEARCH PAPERS

The Wind Regime in the First 62 Meters of the Atmosphere.

Wind regime data in the form of wind roses and frequency of occurrence for nine tower levels by the month and diurnal classification are presented. Results indicate that terrain features in the vicinity of the White Sands Meteorological Research Tower exhibit a modifying effect on the diurnal and seasonal wind regime. It was also found that seasonal variations were in the form of a three season regime system rather than the expected four.
Key Words

1. Micrometeorology
2. Wind Regime
3. Statistical Analysis
4. Wind Roses

Instructions

1. **Originating Activity:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **Report Security Classification:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **Group:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **Report Title:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **Descriptive Notes:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **Author(s):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **Report Date:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **Total Number of Pages:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **Number of References:** Enter the total number of references cited in the report.

8a. **Contract or Grant Number:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b & 8c. **Project Number:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **Originator's Report Number(s):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **Other Report Number(s):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **Availability/Limitation Notices:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through..."

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through..."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through..."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **Supplementary Notes:** Use for additional explanatory notes.

12. **Sponsoring Military Activity:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **Abstract:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **Key Words:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.