REPORT R-1813

AN INTERIOR BALLISTIC ANALYSIS
OF A
HIGH-LOW PRESSURE GUN
USING NOZZLE-START, SHOT-START
AND
SECONDARY IGNITER MATERIAL

by

SIDNEY GOLDSTEIN
and
A. LEIBOWITZ

MAY 1966

UNITED STATES ARMY
FRANKFORD ARSENAL
PHILADELPHIA, PA.
DISPOSITION INSTRUCTIONS

Destroy this document when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
REPORT R-1813

AN INTERIOR BALLISTIC ANALYSIS
OF A
HIGH-LOW PRESSURE GUN
USING NOZZLE-START, SHOT-START
AND
SECONDARY IGNITER MATERIAL

by
SIDNEY GOLDSTEIN
&
A. LEIBOWITZ

AMCMS Code 5544.12.54662
DA Project No. 1X542709D36962

Distribution of this document is unlimited.
Release to the CFSTI is authorized.

Small Caliber Engineering Directorate
FRANKFORD ARSENAL
Philadelphia, Pa. 19137

MAY 1966
ABSTRACT

Interior ballistic equations suitable for computer analysis are developed to predict the performance of the 40mm grenade launcher M79 firing the multiple projectile cartridge XM576. These equations take into account the effects of the nozzle-start and shot-start pressures which are characteristic of this system. Also considered is the effect of secondary igniter material upon the ballistic performance. An isothermal model is used for the period during which the propellant is burning. Only propellant of constant burning surface area is considered in this study.
GLOSSARY OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bore Area</td>
<td>in.²</td>
</tr>
<tr>
<td>B</td>
<td>Exponential Burning Rate Coefficient</td>
<td>in./sec-(Psi)ⁿ</td>
</tr>
<tr>
<td>B'</td>
<td>Linear Burning Rate Coefficient</td>
<td>in./sec-Psi</td>
</tr>
<tr>
<td>C</td>
<td>Propellant Weight</td>
<td>lbs</td>
</tr>
<tr>
<td>D</td>
<td>Propellant Web</td>
<td>in.</td>
</tr>
<tr>
<td>g</td>
<td>acceleration Due to Gravity</td>
<td>ft/sec²</td>
</tr>
<tr>
<td>n</td>
<td>Burning Rate Exponent</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>N₁</td>
<td>Fraction of Charge Burnt Which Remains in High Pressure Chamber</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>N₂</td>
<td>Fraction of Charge Burnt Which is Discharged Into Low Pressure Chamber</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>P₁</td>
<td>Pressure in High Pressure Chamber</td>
<td>psi</td>
</tr>
<tr>
<td>P₂</td>
<td>Pressure in Low Pressure Chamber</td>
<td>psi</td>
</tr>
<tr>
<td>Pₙₛ</td>
<td>Nozzle-Start Pressure</td>
<td>psi</td>
</tr>
<tr>
<td>Pₛₛ</td>
<td>Shot-Start Pressure</td>
<td>psi</td>
</tr>
<tr>
<td>S</td>
<td>Total Throat Area of The Nozzles</td>
<td>in.²</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>seconds</td>
</tr>
<tr>
<td>tᵇ</td>
<td>Time at Which Charge is Burnt</td>
<td>seconds</td>
</tr>
<tr>
<td>tₒ</td>
<td>Time at Which Nozzles First Start to Discharge</td>
<td>seconds</td>
</tr>
<tr>
<td>U₁</td>
<td>High Pressure Chamber Volume</td>
<td>in.³</td>
</tr>
<tr>
<td>U₂</td>
<td>Low Pressure Chamber Volume</td>
<td>in.³</td>
</tr>
</tbody>
</table>
GLOSSARY OF SYMBOLS (Cont'd)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Velocity of Projectile</td>
<td>in. /sec</td>
</tr>
<tr>
<td>V_B</td>
<td>Velocity at All-Burnt</td>
<td>in. /sec</td>
</tr>
<tr>
<td>W</td>
<td>Projectile Weight</td>
<td>lbs</td>
</tr>
<tr>
<td>x</td>
<td>Travel</td>
<td>in.</td>
</tr>
<tr>
<td>x_B</td>
<td>Travel at All-Burnt</td>
<td>in.</td>
</tr>
<tr>
<td>\gamma</td>
<td>Ratio of Specific Heats</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\zeta</td>
<td>Heat Loss Coefficient</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\delta</td>
<td>Propellant Density</td>
<td>lbs/in. (^3)</td>
</tr>
<tr>
<td>\eta</td>
<td>Co-Volume of Propellant</td>
<td>in. (^3)/lb</td>
</tr>
<tr>
<td>\lambda</td>
<td>Effective Mean Impetus</td>
<td>ft-lbs/lb</td>
</tr>
<tr>
<td>\Delta_0</td>
<td>Loading Density</td>
<td>gms/cm(^3)</td>
</tr>
<tr>
<td>\phi</td>
<td>(\gamma^{1/2} \left[2/(\gamma + 1) \right]^{(\gamma + 1)/(2(\gamma - 1))})</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\psi</td>
<td>((\psi/\sqrt{\lambda/g}) (SD/2 B'C))</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\xi</td>
<td>Fraction of the Charge Burnt</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\zeta_0</td>
<td>Fraction of the Charge Which is burnt at the time the Nozzles First Start to Discharge</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\zeta_8</td>
<td>Fraction of the Charge Which is burnt at the time the Projectile First Starts to Move</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>\Phi_i</td>
<td>Effective Fractional Charge Increase from Burning Igniter Material</td>
<td>Dimensionless</td>
</tr>
</tbody>
</table>
GLOSSARY OF SYMBOLS (Cont'd)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Equation</th>
<th>Units/Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta')</td>
<td>(\frac{U_1}{6(y - 1)} S \sqrt{\frac{\lambda}{g}})</td>
<td>seconds</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Nondimensional Time Factor Used to Describe the Period After All-Burnt</td>
<td>Dimensionless</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>GLOSSARY OF SYMBOLS</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>ASSUMPTIONS</td>
<td>2</td>
</tr>
<tr>
<td>THEORY</td>
<td>3</td>
</tr>
<tr>
<td>Derivation of Equations</td>
<td>3</td>
</tr>
<tr>
<td>Internal Ballistics of Gun Before All-Burnt</td>
<td>3</td>
</tr>
<tr>
<td>Internal Ballistics of Gun After All-Burnt</td>
<td>11</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>15</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>17</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>19</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>20</td>
</tr>
</tbody>
</table>
INTRODUCTION

The interior ballistic system for the 40mm grenade launcher firing a multishot antipersonnel round is unique. It differs from that used in conventional small arms in that it is a high-low ballistic system operating with shot-start and nozzle-start mechanisms. "Nozzle-start" means that the gas does not discharge from the high pressure chamber of the system until a blow-out disc which seals the nozzles ruptures. This does not occur until a certain pressure (nozzle-start pressure, P_{ns}) is reached and a certain fraction (α_0) of the charge is burnt. Also, the "shot-start" condition is not reached until a certain pressure ("shot-start" pressure P_{ss}) is obtained in a low pressure chamber. Likewise, this does not occur until a certain fraction (α_s) of the charge is burnt. A shot-start pressure is obtained by simply crimping the projectile in the cartridge case.

A computer study has been conducted to determine how changes in nozzle-start pressure and shot-start pressure together with changes in nozzle throat area and charge weight affect the performance of the system. This study will appear in a separate Frankford Arsenal report. 1*

The interior ballistics for a high-low gun have already been investigated by Corner 2 and Kapur 3. However, these analyses are not adequate for the system described in this report since they do not take into account the nozzle-start and shot-start pressures and also the igniter material. Since it was felt that these factors would significantly affect peak pressures and velocity they were, therefore, taken into account in this study. Also, references 2 and 3 both use a term which represents the linear burning rate constant for web regression.** This quantity is most difficult to obtain without testing the system experimentally and measuring the maximum pressure. In this report an iterative method is presented for determining β or B' from a knowledge of the gun and propellant parameters.

*See references.

**In general there are two burning rate constants used in ballistics. β is used to determine the rate at which the web burning from both sides is diminished, and B' as used in this report to show the rate at which the web burning from one side is diminished (i.e. $B' = \beta/2$).
Numerical integration of the nonlinear differential equations involved in the interior ballistics of this system was performed on a digital computer using a Runge-Kutta method.¹

ASSUMPTIONS

1. The temperature of the gases during the burning period was assumed constant. This is equivalent to saying that the impetus (λ) is constant during the entire burning period. This applies to the gas in both the high and low chambers and in the bore of the gun. For numerical analysis¹ a value of λ equal to 0.90 of the true propellant impetus was used. This assumption was necessary to minimize the difficulties encountered in obtaining a solution.

2. The surface area of the propellant is assumed to remain constant during the burning period. This is equivalent to assuming the propellant form factor² ³ is zero and that no unburnt propellant is ejected to the low pressure chamber.

3. The ratio of the pressure in the low pressure chamber (P₂) to that in the high pressure chamber P₁ is assumed to be always less than [2/(γ + 1)]γ/γ - 1 (i.e. P₂/P₁ < [2/(γ + 1)]γ/γ - 1). Thus the flow from the high pressure chamber is assumed to be sonic.

4. Covolume effects on the flow between the high and low pressure chambers are neglected.

5. The total heat loss up to any time t after shot-start is proportional to the kinetic energy of the projectile at that time. ζ is used to denote the constant of proportionality.

6. There exists a uniform gas temperature and pressure throughout the volume behind the projectile.

7. Flow in the high pressure chamber is assumed to be quasi-steady so that no pressure waves or gradients are introduced into the system.

8. Propellant ignition is assumed isochoric.
THEORY

Derivation of Equations

Internal Ballistics of Gun Before All-Burnt

1. Equation of State For High Pressure Chamber

\[P_1 = \frac{12 \, \lambda N_1}{V_1 - C(1 - \xi)/6 - CN_1 \eta} \]

2. Equation of State For Low Pressure Chamber

\[P_2 = \frac{12 \, \lambda N_2}{V_2 + Ax - CN_2 \eta} \]

3. Equation of Web Regression

\[D \frac{dw}{dt} = 2 B' P_1 \]

4. Equation of Continuity For High Pressure Chamber

\[\frac{dN_1}{dt} = \frac{d\xi}{dt} - \frac{\psi SP_1}{C \sqrt{\lambda/g}} \]

From the equation of web regression (eq 3) substitute for \(P_1 \) in the above equation (4a)

\[\frac{dN_1}{dt} = \frac{d\xi}{dt} - \frac{\psi SD}{2B' \sqrt{\lambda/g} C} \frac{d\xi}{dt} \]
the flow factor \(\psi \) is defined as

\[
\psi = \frac{SD}{2B' \sqrt{\lambda/g \ C}} \quad (4c)
\]

Substituting for \(\psi \) in (4b):

\[
\frac{dN_1}{dt} = \frac{d\Phi}{dt} (1 - \psi) \quad (4d)
\]

Integrating using the boundary \(\Phi = \Phi_0 \) when \(N_1 = N_0 = \Phi_0 \)

\[
N_1 = \Phi \left[1 - \psi \left(\Phi - \Phi_0 \right) / \Phi \right] \quad (4e)
\]

It should be noted at this point that \(\Phi_0 \) represents the fraction of the charge which is burnt at the time when the nozzle first starts to discharge. In "Appendix A" it is shown that it is possible to take into account the effect of the igniter material (igniter weight \(C_i \), impetus \(\lambda_i \)) upon the performance of the gun. To do this it is necessary that the propellant weight \(C_p \) be suitably adjusted and a \(\Phi_1 \) determined based upon the assumption that the total igniter charge is burnt before any of the propellant starts burning.

5. Equation of Continuity For Low Pressure Chamber

\[
N_2 = \Phi - N_1 = \psi (\Phi - \Phi_0) \quad (5)
\]

6. Pressure-Time Curve in High Pressure Chamber Before All-Burnt

a. Derivation of Pressure-Time Equation for High Pressure Chamber From Ignition to Nozzle-Start, \((\Phi = \Phi_0) \)

Assuming that \(\psi = 0 \) for the period of ignition to nozzle start the pressure in the high pressure chamber is given by
\[P_1 = \frac{12 C \lambda \Phi}{V_1 - C(1 - \psi)/\delta - C \eta \Phi} = \frac{D}{2B'} \frac{d\Phi}{dt} \quad (6a) \]

or

\[\frac{d\Phi}{dt} = \frac{24 B' C \lambda \Phi}{D \left[(V_1 - C/\delta + \psi(C/\delta - C \eta) \right]} \quad (6b) \]

or

\[\frac{d\Phi}{dt} = \frac{\epsilon \Phi}{\lambda + \Gamma \Phi} \quad (6c) \]

where

\[\epsilon = 24 B' C \lambda / D \]
\[\Gamma = C/\delta - C \eta \quad (6d) \]
\[\lambda = V_1 - C/\delta \]

Integrating (6c) with the initial condition \(\Phi = \Phi_1 \) when \(t = 0 \) the following is obtained

\[\frac{\Gamma}{\epsilon} (\Phi - \Phi_1) + \lambda / \epsilon \ln \left(\frac{\Phi}{\Phi_1} \right) = t \]

\[0 \leq t \leq t_0 \quad (6e) \]

where \(\Phi_1 \) is determined by the amount of igniter material burned initially (see Appendix A). Having thus determined \(\Phi \) as a function of time it is then possible using (6a) to determine \(P_1 \) as a function of time for this period.

b. Derivation of Pressure-Time Equation for High Pressure Chamber From Nozzle-Start Until All-Burnt

Substituting equation (4e) for \(N_1 \) in equation (1) the following equation is obtained:
\[P_1 = \frac{12 C \lambda \Psi \left[1 - \Psi (\Phi - \Phi_0) / \Phi \right]}{U_1 - C(1 - \Psi) / \delta - C \eta \Phi \left[1 - \Psi (\Phi - \Phi_0) / \Phi \right]} \] \quad (6f)

substituting for \(P_1 \) in equation (3)

\[P_1 = \frac{D}{2B'} \frac{d \Phi}{dt} = \frac{12 C \lambda \Psi \left[1 - \Psi (\Phi - \Phi_0) / \Phi \right]}{U_1 - C(1 - \Psi) / \delta - C \eta \Phi \left[1 - \Psi (\Phi - \Phi_0) / \Phi \right]} \] \quad (6g)

Or

\[\frac{d \Phi}{dt} = \frac{\xi' + \epsilon' \Psi}{\Lambda' + \Gamma' \Psi} \] \quad (6h)

where

\[\xi' = 24 B' C \lambda \phi \Psi / D \]
\[\epsilon' = 24 B' C \lambda (1 - \Psi) / D \]
\[\Lambda' = U_1 - C / \delta - C \eta \Phi \Phi_0 \]
\[\Gamma' = C / \delta - C \eta + C \eta \Psi \]

Integrating (6h) using the initial conditions \(\Phi = \Phi_0 \) at \(t = t_0 \) the following is obtained:

\[\Gamma' / \epsilon' (\Psi - \Phi_0) + K / \epsilon' \ln(\xi' + \epsilon' \Phi / \xi' + \epsilon' \phi_0) = t - t_0 \] \quad (6i)

where

\[t_0 \leq t \leq t_b \]

where

\[K = (\epsilon' \Lambda' - \xi' \Gamma') / \epsilon' \]
and \(t_b \) is the time to all-burnt (\(\xi = 1 \)). Having thus determined \(\xi \) as a function of time it is then possible using (6f) to determine \(P_1 \) as a function of time for this period of time.

7. Equation of Motion

\[
\frac{W}{12g} V \frac{dV}{dx} = A P_2 \tag{7a}
\]

now

\[
D \frac{d\xi}{dt} = D \left(\frac{dx}{dt} \right) \left(\frac{d\xi}{dx} \right) = DV \frac{d\xi}{dx} = 2 B' P_1
\]

or

\[
V = \frac{2 B' P_1}{D} \left(\frac{dx}{d\xi} \right) \tag{7b}
\]

\[
\frac{dV}{d\xi} = \frac{2 B'}{D} \frac{d}{d\xi} \left[P_1 \left(\frac{dx}{d\xi} \right) \right] \tag{7c}
\]

\[
\frac{dV}{dx} = \frac{dV}{d\xi} \frac{d\xi}{dx} = \frac{dV}{d\xi} \left(\frac{2 B' P_1}{DV} \right) \tag{7d}
\]

substituting (7c) into (7d)

\[
\frac{dV}{dx} = \frac{2 B' P_1}{DV} \left[\frac{2 B'}{D} \frac{d}{d\xi} \left(P_1 \frac{dx}{d\xi} \right) \right]
\]

\[
= \frac{4 B^2 P_1}{D^2 V} \frac{d}{d\xi} \left[P_1 \frac{dx}{d\xi} \right] \tag{7e}
\]

substituting (7e) into (7a)

\[
\frac{d}{d\xi} \left[P_1 \frac{dx}{d\xi} \right] = \frac{3 AD^2 g}{B^12 W} \left(\frac{P_2}{P_1} \right)
\]

7
or

$$\frac{dP_1}{d\Phi} \frac{d\xi}{d\Phi} + P_1 \frac{d^2x}{d\Phi^2} = \frac{3AD^2g}{B^{12}w} \left(\frac{P_2}{P_1} \right)$$

(7f)

since

$$P_1 = P_1 (N_1, \phi) \text{ and } N_1 = N_1 (\phi)$$

now

$$\frac{dP_1}{d\Phi} = \left(\frac{\delta P_1}{\delta N_1} \right)_{\Phi} \frac{dN_1}{d\Phi} + \left(\frac{\delta P_1}{\delta \phi} \right)_{N_1}$$

from (4e)

$$N_1 = \Phi \left[1 - \psi (\psi - \phi_o) / \Phi \right]$$

$$\frac{dN_1}{d\Phi} = 1 - \psi$$

(7g)

using (1)

$$\left(\frac{\delta P_1}{\delta N_1} \right)_{\Phi} = \frac{12 C\lambda [U_1 - C/\delta (1 - \Phi)]}{[U_1 - C/\delta (1 - \phi) - CN_1 \eta]^2}$$

(7h)

likewise

$$\left(\frac{\delta P_1}{\delta \phi} \right)_{N_1} = - \frac{12 C\lambda C/\delta \{ \Phi [1 - \psi (\phi - \phi_o) / \Phi] \}}{[U_1 - C/\delta (1 - \phi) - CN_1 \eta]^2}$$

(7i)

$$\frac{dP_1}{d\Phi} = \frac{12 C\lambda \{ [U_1 - C/\delta (1 - \psi)] [1 - \psi] - C\psi/\delta [1 - \psi (\phi - \phi_o) / \Phi] \}}{[U_1 - C/\delta (1 - \phi) - CN_1 \eta [1 - \psi (\phi - \phi_o) / \Phi)]^2}$$

(7j)
thus (7f) reduces to

\[
\frac{dx}{d\Phi} = \frac{12C\lambda \left\{ \left[U_1 - C/I \right(1 - \psi) - C\psi/\delta \left[1 - \psi (\psi - \psi_0)/\psi \right] \right\}}{(U_1 - C/\delta (1 - \psi) - C\eta \psi \left[1 - \psi (\psi - \psi_0)/\psi \right])^2} \\
+ P_1 \left(\frac{d^2 x}{d\Phi^2} \right) = \frac{3AD^2g}{B^{1/2}w_2} \left(\frac{P_2}{P_1} \right)
\]

(7k)

where equations (1) and (2) are now substituted for P_1 and P_2.

This yields a nonlinear differential equation which is integrated numerically using the method of Runge-Kutta. The boundary conditions are $dx/d\Phi = 0, x = 0$ when $\Phi = \psi_s$. From this equation it is then possible to determine the travel and velocity as functions of ψ and hence using equation (6i) as functions of time.

8. Equation for Maximum Pressure in High Pressure Chamber

The primary difficulty in determining peak pressure from equation (7j) is that ψ is a function of B' which is in itself a function of peak pressure.

\[
\psi = \frac{SD}{\sqrt{\lambda/g} \ 2B'C}
\]

(8a)

ψ_s is the fraction of the charge which is burnt at the time the projectile first starts to move. At this time the pressure is equal to the shot-start pressure (P_{ss}). ψ_s may be calculated from equation (2) by substituting $P_{ss} = P_2$ and $\psi_s = \psi$ and letting $x = 0$. Thus ψ_s is given by

\[
\psi_s = \psi_0 + \frac{P_{ss}U_2}{12C\lambda \psi + P_{ss}C\eta \psi}
\]
B' is usually determined by using the value of peak pressure obtained from experimental data, or the peak pressure is estimated and then B' is obtained.

One way of determining B' from the peak pressure data obtained experimentally is to select that value of B' such that the area under the assumed linear burning rate ($r' = B'P$) curve equals that under the exponential burning rate ($r = BP^n$) curve. The limits are taken from $P = 0$ to $P = P_{\text{max}}$.

Thus,

$$\int_0^{P_{\text{max}}} B'P\,dP = \int_0^{P_{\text{max}}} BP^n\,dP$$

This gives

$$B' = \frac{2B}{(n + 1) P_{\text{max}}^{1-n}}$$

(8b)

Values of B and n can usually be found in literature or obtained from burning rate studies for different propellants.

From equation (7j) it may be seen that P_1 increases monotonically with Φ (i.e., $dP_1/d\Phi > 0$), provided that the following condition is met:

$$U_1 (1 - \Psi) - \frac{C}{\delta} \left[1 - \psi (1 - \eta) \right] \geq 0$$

With this condition P_1 will be maximum when Φ is maximum. This will occur at all-burnt ($\xi = 1$). Since loading density in gm/cm3 is:

$$\Delta_0 = 27.7 \frac{C}{U_1}$$

the condition for maximum pressure to occur at all-burnt is thus

$$\frac{C}{U} \leq \frac{\delta (1 - \Psi)}{1 - \psi (1 - \eta)}$$
\[\angle_0 = 27.7 \frac{C}{U} \leq 27.7 \frac{c(1 - \Psi)}{1 - \Psi(1 - \varphi_0)} \]

Some values of \(\Psi \) and \(\varphi_0 \) which appear feasible are:

0.40 < \(\Psi \) < 0.85

0.02 < \(\varphi_0 \) < 0.20

Taking the case \(\Psi = 0.40 \) and \(\varphi_0 = 0.20 \) the loading density \(\Delta_0 \) would then have to be less than about 0.97 gms/cm\(^3\) for peak pressure to occur at all-burnt. Thus our original assumption that peak pressure occurs at all-burnt appears to be a reasonable one for most practical high-low guns using propellant with a constant burning surface.

The equation for the peak pressure is then given by (1) with \(\Psi = 1 \).

\[P_{1m} = \frac{12 C_1 \lambda [1 - \Psi(1 - \varphi_0)]}{U_1 - C_1 \eta [1 - \Psi(1 - \varphi_0)]} \quad (8c) \]

As mentioned previously \(\Psi \) which is dependent upon \(B' \) is also a function of \(P_{1m} \). Thus an iterative technique was used to determine \(P_{1m} \). First a value of \(\Psi \) is assumed. This value is then used in equation (8c) to determine \(P_{1m} \). The value of \(B' \) is then determined from equation (8b) and thence using this value of \(B' \), a new value of \(\Psi \) calculated from equation (8a). This is compared with our original estimate of \(\Psi \) and the procedure continued until both agree. The peak pressure is then also established from equation (8c).

Internal Ballistics of Gun After All-Burnt

For the period after all-burnt the isothermal model will be neglected and the gases in the high pressure chamber assumed to undergo an adiabatic expansion. The flow of the gas likewise will be assumed to be sonic during this period.
9. Pressure in the High Pressure Chamber After All-Burnt

Following Corner's approach it may be shown\(^1,2\) that after all-burnt the equation for the pressure in the high pressure chamber as a function of time is given by:

\[
P_1 = \frac{12 C\lambda \left[1 - \Psi(1 - \Phi_o) \right]}{U_1 - \eta C \left[1 - \Psi(1 - \Phi_o) \right]} \left(1 + \frac{(t - t_b)/\theta}{\theta} \right)^{-2\gamma/\gamma-1} \tag{9a}
\]

\(N_1 = N_1^i\) after all-burnt and is given by

\[
N_1^i = \left[1 - \Psi(1 - \Phi_o) \right] \left(1 + \frac{(t - t_b)/\theta}{\theta} \right)^{-2/\gamma-1} \tag{9b}
\]

and

\[
\theta_1 = \frac{2 U_1}{12 (\gamma - 1) \Psi S(x, g)^{1/2}} \tag{9c}
\]

10. To Determine the Muzzle Velocity After All-Burnt

The pressure in the low pressure chamber after all-burnt is given by:

\[
P_2 = \frac{12 C\lambda N_2^i \tau_2}{U_2 + Ax - C\eta N_2^i} \tag{10a}
\]

Since

\[
N_2^i = (1 - N_1^i)
\]

we have

\[
P_2 = \frac{12 C\lambda (1 - N_1^i) \tau_2}{U_2 + Ax - C\eta (1 - N_1^i)} \tag{10a}
\]
The equation of motion has already been given as:

\[\frac{W_2}{12g} \frac{dV}{dx} = \frac{W_2}{12g} \frac{d^2x}{dt^2} = A \rho_2 \quad (7a) \]

The rate of change in internal energy of the gases in both chambers is given by:

\[\dot{E}_1 = \frac{12C\lambda}{\gamma - 1} \frac{d}{dt} \left[N_1' \tau_1 + (1 - N_1') \tau_2 \right] \quad (10b) \]

where \(\tau_1 \) is the ratio of the gas temperature in the high pressure chamber after all-burnt to the temperature which it had during burning, and likewise \(\tau_2 \) is the ratio of the gas temperature in the low pressure chamber after all-burnt to the temperature which it had during burning.

The rate at which work is done on the projectile is equal to the rate of change of kinetic energy:

\[\dot{E}_2 = \frac{1}{24} \frac{W}{g} \frac{d}{dt} \left[(dx/dt)^2 \right] \quad (10c) \]

If it is assumed that heat loss for any period of time after shot-start is proportional to kinetic energy of the projectile at that instant then the rate of loss of energy by heat transfer can be written as:

\[\dot{E}_3 = \frac{\zeta W}{24g} \frac{d}{dt} \left[(dx/dt)^2 \right] \quad (10d) \]

where \(\zeta \) is the proportionality constant.

The sum of (10b), (10c) and (10d) must equal zero since the total energy of the system is constant.
Let \((\gamma - 1) = (\gamma - 1)(1 + \zeta)\) in the above sum. Integrating this sum and making use of the following initial conditions \(N_1' = N_{1b}\), \(\tau_1 = \tau_{1b} = 1\), \(\tau_2 = \tau_{2b} = 1\) (the subscript \(b\) indicates the condition at all-burnt) when \((dx/dt) = (dx/dt)_b\) we obtain:

\[
\frac{12 C \lambda}{\gamma - 1} \left[N_1' \tau_1 - N_{1b} + (1 - N_1') \tau_2 - (1 - N_{1b}) \right] = - \frac{1}{24} \frac{W}{g} \left[(dx/dt)^2 - (dx/dt)_b^2\right]
\] (10e)

Using equation (7a), the equation of state for the low pressure chamber after all-burnt (equation (2)) may be rewritten as:

\[
12 C \lambda (1 - N_1') \tau_2 = P_2 \left[U_2 + Ax - C(1 - N_1') \eta\right] = \frac{W}{12 gA} \frac{d^2x}{dt^2} \left[U_2 + Ax - C(1 - N_1') \eta\right]
\] (10f)

Using equation (9b), the equation of state for the high pressure chamber after all-burnt (equation (1)) may be rewritten as:

\[
12 C \lambda N_1' \tau_1 = P_1 \left[U_1 - CN_1' \eta\right] = \frac{P_{1b}}{12 gA} \left[U_1 - CN_1' \eta\right] \left[1 + (t - t_b)/\theta\right]^{-2\gamma/\gamma - 1}
\] (10g)

substituting 10f and 10g into 10e

\[
P_{1b}\left[U_1 - CN_1' \eta\right] \left[1 + (t - t_b)/\theta\right]^{-2\gamma/\gamma - 1} + \frac{W}{12 gA} \frac{d^2x}{dt^2} \left[U_2 + Ax - C(1 - N_1') \eta\right] - 12 C \lambda \left((\gamma - 1) \frac{W}{24 g} \left[(dx/dt)^2 - (dx/dt)_b^2\right]
ight)
\]
or multiplying through by A and rearranging terms:

$$
\frac{W}{12g} \left(\frac{d^2x}{dt^2} \right) \left[U_2 + Ax - C \eta (1 - N'_1) \right] + (\gamma - 1)AW/24g \left(\frac{dx}{dt} \right)^2
= (\gamma - 1)WA/24g \left(\frac{dx}{dt} \right)_b^2 + 12AC\lambda - P_{1b} \left[U_1 \right.
- CN'_1 \eta \left[1 + (t - t_b)/\theta \right]^{-2/\gamma - 1}

(10h)

where

$$
N'_1 = N_{1b} \left[1 + (t - t_B)/\theta \right]^{-2/\gamma - 1} = \left[1 - \Psi (1 - \theta_o) \right] \left[1 + (t - t_b)/\theta \right]^{-2/\gamma - 1}
$$

and where

$$
\theta = \frac{2U_1}{12 (\gamma - 1) \psi S \sqrt{\lambda g}}
$$

Equation (10h) is a nonlinear differential equation which is integrated numerically using the method of Runge-Kutta. The boundary conditions are $x = x_B$ and $dx/dt = (dx/dt)_b$ when $t = t_b$.

CONCLUSIONS AND RECOMMENDATIONS

1. The assumptions made and the equations developed in this report appear reasonable for predicting the performance of a high-low pressure gun using nozzle-start, shot-start and secondary igniter material.
2. Future studies should be conducted to determine how the equations developed in this report could be modified to further describe high-low pressure guns where factors such as propellant loss between the chambers, progressiveness and degressiveness of the propellant and changes of gas temperature during burning are important.
APPENDIX A

To determine the effect of igniter material on the Interior Ballistic Performance.

\[C_P = \text{Wt. of propellant (lbs)} \]
\[C_i = \text{Wt. of igniter (lbs)} \]
\[C_2 = \text{Effective charge wt of igniter (lbs)} \]
\[\lambda = \text{Impetus of propellant (ft-lbs/lb)} \]
\[\lambda_i = \text{Impetus of igniter (ft-lbs/lb)} \]
\[C = \text{Total effective charge wt. (lbs)} \]
\[\eta_i = \text{Covolume of igniter material (in.}^3/\text{lb)} \]

Assume that the total igniter charge is burnt at the time the propellant first starts to burn. Let \(\Phi_i \) be the fraction of the total effective charge (C) burnt at this time.

\[\Phi_i = C_2/(C_P + C_2) \] \hspace{1cm} (A-1)

Let \(P_i \) be the pressure generated by the igniter.

\[P_i = 12 C_i \lambda_i / U_1 - C_P / \delta - \eta_i C_i \] \hspace{1cm} (A-2)

Assume this igniter pressure to be generated by an initial charge burnt with an impetus (\(\lambda \)) equal to that of the propellant alone:

\[P_i = \frac{12 (C_P + C_2) \Phi_i \lambda}{U_1 - \frac{(C_P + C_2)(1 - \Phi_i)}{\delta} - (C_P + C_2) \eta \Phi_i} \] \hspace{1cm} (A-3)
Substituting for Φ_1 from equation (A-1)

\[P_1 = \frac{12 C_2 \lambda}{U_1 - C_P/\delta - C_2 \eta} \] \hspace{1cm} (A-4)

Solving for C_2

\[C_2 = \frac{U_1 - C_P/\delta}{12\lambda/P_1 + \eta} \] \hspace{1cm} (A-5)

Thus using (A-2) and (A-5) we can then determine

\[\Phi_1 = \frac{C_2}{C_2 + C_P} \]

and the total effective charge

\[C = C_2 + C_P \]

Likewise, the total effective web is

\[D = \frac{D_2}{1 - \Phi_1} \]
REFERENCES

ABSTRACT

Interior ballistic equations suitable for computer analysis are developed to predict the performance of the 40mm grenade launcher M79 firing the multiple projectile cartridge XM576. These equations take into account the effects of the nozzle-start and shot-start pressures which are characteristics of this system. Also, considered is the effect of secondary igniter material upon the ballistic performance. An isothermal model is used for the period during which the propellant is burning. Only propellant of constant burning surface area is considered in this study.
KEY WORDS

<table>
<thead>
<tr>
<th>ROLE</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK A</td>
<td>LINK B</td>
</tr>
</tbody>
</table>

| Grenade Launcher, 40mm | Cartridge, Multiple Projectile | Nozzle-Start Pressures | Shot-Start Pressures | Ballistics, Interior |

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c & 8d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1) "Qualified requesters may obtain copies of this report from DDC."

 2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."

 4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."

 5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.