USAARU REPORT NO. 66-7

EXPECTED INJURY RATES FOR EXPERIMENTAL AIRBORNE OPERATIONS

By

R. A. Avner, 1st Lt., MSC

JUNE 1966

U. S. ARMY AEROMEDICAL RESEARCH UNIT
Fort Rucker, Alabama

U. S. Army Medical Research and Development Command

Distribution Statement. Distribution of this document is unlimited. Citation of names of commercial equipment or materials does not constitute an official endorsement or approval of the use of such items.
USAARU REPORT NO. 66-7

EXPECTED INJURY RATES FOR EXPERIMENTAL AIRBORNE OPERATIONS

By

R. A. Avner, 1st Lt., MSC

JUNE 1966

U. S. ARMY AEROMEDICAL RESEARCH UNIT
Fort Rucker, Alabama

U. S. Army Medical Research and Development Command

Distribution Statement. Distribution of this document is unlimited. Citation of names of commercial equipment or materials does not constitute an official endorsement or approval of the use of such items.
ABSTRACT

Probability of injury for Army paratroopers under conditions of full combat load and unprepared drop zone was estimated to be .006 (standard error = .002, N = 5,253). Tables were computed to allow tests of departure from this rate under experimental conditions involving up to 50 jumpers.

APPROVED:

WILLIAM P. SCHANE
Lt Colonel, MC
Acting Commander
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Testing departures from standard injury rates</td>
<td>2</td>
</tr>
<tr>
<td>Use of table</td>
<td>2</td>
</tr>
<tr>
<td>Production of table</td>
<td>3</td>
</tr>
<tr>
<td>Table "Probability of "n" injuries among "N" jumpers (P = .006)"</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Distribution List</td>
<td></td>
</tr>
<tr>
<td>DD Form 1473</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION AND PURPOSE

Superior equipment and training have led to an extremely low injury rate for U. S. Army parachutists. Under general unit training conditions about 1.7 injuries would be expected for every 1,000 jumps (P=.0017, standard error = .0002, N = 137,966). Under conditions of full combat load and unprepared drop zone this rate increases to about 6 injuries per 1,000 jumps (P = .006, standard error = .002, N = 5,253)*. The latter rate is probably typical of what can be expected under these more severe conditions. Both British Army parachutists (Whittingham) and U. S. Forest Service "smokejumpers" (King) are also reported to have an injury rate of about .005 under similar severe conditions.

Base injury experience has several uses in development of new airborne equipment or techniques. In the case of innovations intended to increase safety, it serves as a basis for measurement of improvement. In the case of innovations intended to meet situations which are more hazardous than usual, it can serve as a basis for measure of the "loss" or "payment" exacted (i.e., increased injury rate) for the "gain" attained (the ability to meet the new situation).

In either case, it is usually not economically feasible to evaluate new developments by use of samples of the size upon which the base rate has been determined. Use of smaller samples (e.g., 50 or fewer jumps) leads however to a less precise estimate of the injury rate. With small samples the injury or non-injury of a single man can make relatively enormous changes in the observed injury rate. If one out of a group of ten men is injured the observed injury rate for this group is 10% (or 100 per 1,000). Yet, if this is the only injury in ten groups of ten men each the observed rate is only 1% for this larger group of 100 men. Thus, there is a possibility that even for low general injury rates some small samples will occasionally show much higher observed rates. It is the purpose of this report to show with exactly what probability relatively large observed rates of injuries might occur in small samples from a population in which the true injury rate is relatively small. The major use of such information is in evaluation of ongoing programs. It is undesirable to terminate an experiment because of an "excessive" injury rate when in fact the

* Almost exactly half of these injuries were severe enough to require evacuation to permanent medical facilities and subsequent hospitalization. There were no fatalities.
Injury rate is not significantly different from that expected by chance variation in the base rate. It is even more undesirable not to terminate an experiment simply because the actual number of injuries is small when this number indicates an injury rate significantly in excess of the acceptable rate.

TESTING DEPARTURES FROM STANDARD INJURY RATES

If production of injuries is assumed to occur at random with a fixed probability in a given sample group, the number of injured in this sample group will follow the binomial distribution. Normal approximations to the binomial unfortunately have relatively large errors when P approaches zero or unity even for reasonably "large" samples of $N = 100$. It is therefore necessary to perform any tests by use of the appropriate exact binomial distribution.

The most efficient manner in which such tests could be run is probably some form of sequential analysis (Wald) in which small samples are observed in sequence until the hypothesis of "no departure from standard rates" is either accepted or rejected. Unfortunately one of the conditions of military parachuting is usually that jumping is performed in moderately sized groups (20 to 50 men). Jumps made by smaller groups could probably not be used for a valid estimate of the results of jumps made under more typical conditions. Thus decisions must usually be based on one or two independent jumps by groups totalling less than fifty men.

The inclosed binomial table gives the expected probability of varying numbers of injuries for groups of up to 50 jumpers when the true injury rate is 6 per 1,000.

USE OF TABLE

The major use of the table is in determining if an observed injury rate is significantly higher than the expected combat-load injury rate. If it has been decided that the presence of a significantly higher rate is unacceptable, such a finding would support the termination of the test.

The procedure to be used consists of two steps. First a probability value is chosen which corresponds to how frequently the experimenter is willing to mistakenly halt the experiment when the injury rate is actually no more than normal. This is called the "alpha level" in statistical terminology. An alpha level of .01 would indicate that the experimenter is willing to have this error happen once in every 100 tests, a level of .001 indicates once in every 1000 tests, and so forth. Second, following a jump, the number of injuries is counted and the tabled probability for
his many or more injuries in a group of the size used is determined. If this probability
is less than the alpha level the experiment is halted, if it is more, there is no signifi-
cant difference (at the level tabled) between the observed and "standard" injury rate.

If more than one group jumps (up to 50 total) the total injuries and size of the
groups may be combined for a more reliable test. This combination is valid only if
each of the men jump only once (the same man must not be a member of more than one
of the groups).

Choice of alpha level will depend on the objective of the tests. If safety is
of first importance the alpha level will be high (e.g., .15 or even .20). If safety
is of importance secondary to another objective, the alpha level will be low (e.g.,
.01, .001, or even .0001).

Examples: 1. (a) alpha level chosen to be .01

(b) Observation: 26 men jump, 2 are injured (probability
of 2 or more injuries when the true injury rate is .006 is .010633, as given by the
table).

(c) Conclusion: do not halt experiment - .010633 is greater
than .01

2. (a) alpha level chosen to be .001

(b) Observation: 12 men jump, 3 are injured (this many or
more injuries would occur only 46 times in a million when the true injury rate is
.006).

(c) Conclusion: halt experiment - .000046 is less than .001.

PRODUCTION OF TABLE

Individual binomial probabilities for \(P = .006; r = 0,1,7; n = 1,1,50 \)
were computed on a Monroe Epic 2000 electronic calculator. An iterative procedure
was used which, coupled with a biased roundoff in this machine, produced a maximum
error of about \(.5 \times 10^{-12} \) for \(r = 0 \). The error for all other values of \(r \) was less than
this amount. Individual probabilities to 8 significant digits were then summed for
each \(n \) to verify that this summation was equal to unity. The printed terms of the
summation were then used to produce the inclosed 6 place table of cumulated binomial
probabilities for \(P = .006; r = 0,1,6; n = 1,1,50 \). The table was subsequently proof-
read twice (independently) against the original printouts of the summations.
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>.855157</td>
<td>.144843</td>
<td>.010633</td>
<td>.000506</td>
<td>.000017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>.850026</td>
<td>.149974</td>
<td>.011438</td>
<td>.000567</td>
<td>.000020</td>
<td>.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>.844926</td>
<td>.155074</td>
<td>.012269</td>
<td>.000632</td>
<td>.000024</td>
<td>.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>.839856</td>
<td>.160143</td>
<td>.013126</td>
<td>.000702</td>
<td>.000027</td>
<td>.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>.834817</td>
<td>.165183</td>
<td>.014008</td>
<td>.000777</td>
<td>.000031</td>
<td>.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>.829809</td>
<td>.170191</td>
<td>.014915</td>
<td>.000856</td>
<td>.000036</td>
<td>.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>.824830</td>
<td>.175170</td>
<td>.015847</td>
<td>.000941</td>
<td>.000041</td>
<td>.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>.819881</td>
<td>.180119</td>
<td>.016803</td>
<td>.001030</td>
<td>.000046</td>
<td>.000002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>.814961</td>
<td>.185039</td>
<td>.017783</td>
<td>.001125</td>
<td>.000052</td>
<td>.000002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>.810072</td>
<td>.189928</td>
<td>.018786</td>
<td>.001225</td>
<td>.000058</td>
<td>.000002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>.805211</td>
<td>.194789</td>
<td>.019813</td>
<td>.001330</td>
<td>.000065</td>
<td>.000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>.800380</td>
<td>.199620</td>
<td>.020863</td>
<td>.001441</td>
<td>.000073</td>
<td>.000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>.795578</td>
<td>.204422</td>
<td>.021936</td>
<td>.001557</td>
<td>.000081</td>
<td>.000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>.790804</td>
<td>.209196</td>
<td>.023031</td>
<td>.001680</td>
<td>.000090</td>
<td>.000004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>.786059</td>
<td>.213941</td>
<td>.024148</td>
<td>.001808</td>
<td>.000100</td>
<td>.000004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>.781343</td>
<td>.218657</td>
<td>.025286</td>
<td>.001942</td>
<td>.000110</td>
<td>.000005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>.776655</td>
<td>.223345</td>
<td>.026447</td>
<td>.002082</td>
<td>.000121</td>
<td>.000005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>.771995</td>
<td>.228005</td>
<td>.027628</td>
<td>.002228</td>
<td>.000133</td>
<td>.000006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>.767363</td>
<td>.232637</td>
<td>.028830</td>
<td>.002380</td>
<td>.000145</td>
<td>.000007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>.762759</td>
<td>.237241</td>
<td>.030053</td>
<td>.002539</td>
<td>.000159</td>
<td>.000008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>.758182</td>
<td>.241818</td>
<td>.031296</td>
<td>.002704</td>
<td>.000173</td>
<td>.000009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>.753633</td>
<td>.246367</td>
<td>.032559</td>
<td>.002876</td>
<td>.000188</td>
<td>.000010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>.749111</td>
<td>.250888</td>
<td>.033842</td>
<td>.003054</td>
<td>.000204</td>
<td>.000011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>.744617</td>
<td>.255383</td>
<td>.035144</td>
<td>.003239</td>
<td>.000221</td>
<td>.000012</td>
<td>.000001</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>.740149</td>
<td>.259851</td>
<td>.036466</td>
<td>.003430</td>
<td>.000239</td>
<td>.000013</td>
<td>.000001</td>
<td></td>
</tr>
</tbody>
</table>

Probability of n Injuries Among N Jumpers (P = .006)
References

1. Data for injury rates were provided by:
 b. Commanding General, 82nd Airborne Division, Ft Bragg, N. C.
 c. Commanding Officer, 428th Medical Bn., Fort Benning, Georgia.

3. Wald, A. Sequential Analysis, 1947, Wiley, N. Y.

4. Whittingham; cited in Bergin, K. G., Aviation Medicine, 1949, John Wright and Sons, Ltd, Bristol.
EXPECT INJURY RATES FOR EXPERIMENTAL AIRBORNE OPERATIONS

PROBABILITY OF INJURY FOR ARMY PARATROOPERS UNDER CONDITIONS OF FULL COMBAT LOAD AND UNPREPARED DROP ZONE WAS ESTIMATED TO BE .006 (STANDARD ERROR = .002, N = 5,253). TABLES WERE COMPUTED TO ALLOW TESTS OF DEPARTURE FROM THIS RATE UNDER EXPERIMENTAL CONDITIONS INVOLVING UP TO 50 JUMPERS.
Aviation Medicine
Parachuting
Casualty Rate
Experimental Design
Applied Statistics

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, sub-contractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. GROUP: Automatic downgrading is specified in DoDI Directive 200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

9a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

9b. & 9c. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task numbers, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter these numbers.

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. "Qualified requesters may obtain copies of this report from DDC."

2. "Restricted Data not authorized."

3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."

4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."

5. "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project officer or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicating the extent of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be declassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of links, rules, and weights is optional.