CALCULATED THERMODYNAMIC PROPERTIES OF REAL HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500*K

1 DECEMBER 1965

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

Distribution of this document is unlimited.
ABSTRACT: Isentropic data for real hydrogen are calculated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. The effects of ionization, excitation, and dissociation are considered negligible because of the relatively low temperatures and high densities involved. The effects of the intermolecular force are accounted for by fitting a virial coefficient equation to low temperature high density experimental data. These calculated data in turn are fitted to an empirical entropic equation of state. This particular equation of state is convenient for describing many thermodynamic processes.
CALCULATED THERMODYNAMIC PROPERTIES OF REAL HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K

Modern two-stage gun launchers use hydrogen as the propellant gas. The prediction of the performance of such launchers requires knowledge of the hydrogen gas thermodynamic data. This paper presents calculated thermodynamic data for hydrogen.

The authors acknowledge with gratitude the cooperation of Dr. Harold Woolley of the National Bureau of Standards. Dr. Woolley supplied the computer program with which the properties of hydrogen were calculated. The authors also thank Mrs. Louise Brown, who performed a great deal of the calculations for this report.

J. A. DARE
Captain, USN
Commander

R. KENNETH LOBB
By direction
CONTENTS

Page

Introduction... 1
A Brief Description of Reference 1........................... 2
Extending the Calculation of Reference 1....................... 3

ILLUSTRATIONS

Figure Title

1 Empirical Constant B vs. T (Reference 1)
2 Empirical Constant C vs. T (Reference 1)
3 P-V Diagram for Real Hydrogen
4 Empirical Constant β vs. Entropy
5 Empirical Constant f_v vs. Entropy
6 Empirical Constant $\frac{K}{p_0^{(8-2)/8}}$ vs. Entropy

TABLES

Table Title

1 Properties of Hydrogen from Extended Calculation of Woolley, Scott, and Brickwedde of NBS (Reference 1)
2 Empirical Constants of Equation (1) vs. Entropy S as Obtained from Three-Point Fits to Curves of Figure 3

REFERENCES

List of Symbols

p pressure, in units of atmospheres

\(\rho \) density, in units of amagat
(at 1 amagat, \(\rho = 5.60648 \times 10^{-3} \text{ lbs/ft}^3 \))

\(v \) specific volume, in units of \(\text{ft}^3/\text{lb} \)

T absolute temperature, in units of degrees Kelvin (°K)

R universal gas constant per pound of hydrogen
(R=1381.35 \(\text{ft}^0/\text{°K} \))

\(C_v \) specific heat at constant volume

b molecular volume, in units of \(\text{ft}^3/\text{lb} \)

\(\beta \) empirical constants for a given entropy

\(K \) empirical constants for a given temperature

\(S \) entropy, in units of \(\text{cal/mole/°K} \)

U internal energy

H enthalpy

a sound speed

\(B \) empirical constants for a given temperature

\(C \) empirical constants for a given temperature
INTRODUCTION

Hydrogen gas is often used as the propellant in light gas guns. In the so-called "two stage guns" the hydrogen propellant may be compressed to densities as high as 2,000 amagats*. The temperature is increased relatively little, going from room temperature to as high as 3500°K. Under these conditions of high density, large intermolecular repulsive forces exist. The hydrogen gas no longer can be described by the ideal gas equation.

Unfortunately, there exists no reliable experimental data on the state properties of hydrogen at high pressures and temperatures. To approximate the behavior of the hydrogen gas at the high densities, the Abel-Noble or covolume equation of state is sometimes used. This equation is

\[p(v-b) = RT \]

With \(C_v \) taken to be a constant, the isentrope becomes

\[p(v-b)\frac{f}{K} = K \]

However, the Abel-Noble equation becomes a poor approximation at the high densities.

Therefore, a calculation of hydrogen gas data has here been made which attempts to better account for the intermolecular forces due to high density. The method involves first extending the calculation of Woolley, Scott, and Brickwedde, reference 1, for the thermal properties of real hydrogen, beyond the realm of experimental data as reported in reference 1. Secondly, the resulting theoretical data are fitted to the semi-empirical entropic equation of Seigel, reference 2:

\[p(\beta-2)/\beta(v-f) = K \]

where \(\beta, f, \) and \(K \) are constants for any given entropy.**

*One amagat unit is the value of density at 1 atmosphere and 0°C.
**This equation has been fitted successfully to argon, nitrogen, and hydrogen data at temperatures below 4300°K and pressures up to 4,000 atm.
It is seen that this equation is equivalent to the Abel-Noble equation for a given entropy if $B/(B-2)$ is replaced by δ, and if f is replaced by b; these constants, however, will change for each different entropy. The semi-empirical equation may be fitted to real gas data with much greater accuracy than the Abel-Noble equation because of the fact that the parameters B, f, and K may vary with entropy. In addition, the equation is convenient to use to describe gas dynamic processes such as occur in the two-stage gun.

A BRIEF DESCRIPTION OF REFERENCE 1

In reference 1 the thermal properties of hydrogen are found for temperatures up to $5000^\circ K$, but at low densities where molecular interaction is negligible. These properties are then extended to somewhat higher densities by combining the low-density data with empirical real-gas data at intermediate densities. This is done by means of standard thermodynamic integrals taken along isotherms.

The empirical real-gas data of reference 1 were obtained in the following manner. The empirical equation

$$\frac{pV}{RT} = e^{(B \rho + C \rho^2)}$$

was used to account for the intermolecular forces. The coefficients B and C were assumed to be functions of the temperature only. (When the above exponential is expanded, B is found to be the second virial coefficient.) The effects of excitation, ionization, and dissociation are assumed negligible because of the relatively high density and low temperature.* The constants B and C were fitted to experimental hydrogen data in the realm of temperatures from $273^\circ K$ to $672^\circ K$ and densities up to 500 amagat. The best overall fit by a weighted method of least squares was found to be in reference 1:

$$B = 0.0055478T^{-1/4} - 0.036877T^{-3/4} - 0.022004T^{-5/4}$$

$$C = 0.004788T^{-3/2} - 0.04053T^{-2}$$

*The ionization and excitation energies are very high (15.4 e.v. and 13.5 e.v., respectively) and, hence, the effects are negligible; the dissociation energy (4.5 e.v.) is negligible because of the high densities which exist.
EXTENDING THE CALCULATION OF REFERENCE 1

In figures 1 and 2 the coefficients B and C are plotted over a temperature range of 273°K to 3500°K. Reference 1 carried the calculation only to 600°K, for this is the extent of the realm of reliable experimental data. Here we have extended the curves for these coefficients to 3500°K. Values of p, v, and T obtained by using these curves with equation (1) are listed in Table 1. Values of S calculated by the method of reference 1 are listed also.

As indicated above, the effects of dissociation, ionization, and excitation of the hydrogen are assumed negligible in the calculation. This is probably a good assumption, because of the relatively low temperatures and high densities considered. The Seigel semi-empirical equation

\[p^{(B-2)/B} (v-f) = K \]

was here fitted to the new high-pressure data which were calculated above. The fitting was done as outlined in reference 2 by making a three-point fit of equation (2) to the data along a given isentrope, thus obtaining the empirical constants, B, f, and K. Once this procedure was repeated for a number of isentropes, the constants B, f, and K were obtained as functions of entropy S. Thus, equation (2) was fitted to the data of Table 1 at temperatures from 273°K to as high as 3500°K and entropies of 20, 22, 24, 26, 28, 30, 32, 34, 36, and 38 cal/mole°K. Figure 3 is a plot of the P-V data of Table 1. In nearly all regions of this plot, agreement between the data and the semi-empirical fit is so close that a comparison cannot be shown in this figure. The constants B, f, and K as obtained from this particular three-point fit are listed in Table 2. These same constants are plotted against entropy in figures 4 through 6. Other thermodynamic variables, such as internal energy U, enthalpy H, or sound speed a can be derived from equation (2). The following expressions (see reference 2 or 3) result:

\[U = \frac{B-2}{2} Kp^{2/B} + g \]

\[H = \frac{B}{2} Kp^{2/B} + fp + g \]

\[a = \frac{B}{B-2} p \frac{v^2}{v-f} \]
where \(g \) is a function of \(S \) only. The quantity \(g \) can be obtained in a manner similar to that of obtaining \(B, f, \) and \(K \). Equation (2) is now an entropic or caloric equation of state from which all other thermodynamic variables can be derived in standard fashion. This procedure constitutes a rigorous method for describing the thermodynamics of a particular type of fluid.

In the case reported here, the empirical constants of equation (2) have been fitted to data in a region lacking experimental verification. Though this means of obtaining real hydrogen data does not have the desired experimental foundation, its virtue is in the fact that it continues the trend of the most accurately known hydrogen properties. In all likelihood its use yields a better approximation than previous techniques used to predict the behavior of this gas.
\(\frac{p_v}{RT} = e^{(B \rho + C \rho^2)} \)

FIG. 1 EMPIRICAL CONSTANT B VS T (REFERENCE 1)
\(\frac{PV}{RT} = e^{(B\rho + C\rho^2)} \)

FIG. 2 EMPIRICAL CONSTANT C VS T (REFERENCE 1)
FIG. 3. V / V DIAGRAM FOR REAL HYDROGEN

TEMPERATURE = 3500 K

TEMPERATURE = 300 K

ENTROPY S = 20 cal./mol. K

Pressure / p₀

Specific Volume V/V₀
\[
\beta - 2
\]
\[
\rho^\beta (\nu-f) = K
\]

FIG 4 FIG. 4 EMPIRICAL CONSTANT β VS ENTROPY
Fig. 5 Empirical constant $\frac{f}{V_o}$ vs entropy

$\frac{\beta - 2}{p^\beta} (n-f) = K$
FIG. 6 EMPIRICAL CONSTANT $\frac{\frac{K}{P_0 \beta}}{(\beta-2)/\beta}$ VS ENTROPY
TABLE I

Properties of Hydrogen from Extended Calculation of Woolley, Scott, and Brickwedde of NBS (ref. 1)

\[P_0 = 14.7 \text{psi}, \]
\[v_0 = 178.365 \text{ft}^3/\text{lb}. \]

<table>
<thead>
<tr>
<th>(S_{\text{cal/mole}})</th>
<th>(P/P_0)</th>
<th>(V/V_0)</th>
<th>(T) ((^0\text{K}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1066.42</td>
<td>1.741 x 10^{-3}</td>
<td>300</td>
</tr>
<tr>
<td>3000</td>
<td>1.154 x 10^{-3}</td>
<td>395.570</td>
<td></td>
</tr>
<tr>
<td>3130.29</td>
<td>1.136 x 10^{-3}</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>9.074 x 10^{-4}</td>
<td>473.285</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>5.617 x 10^{-4}</td>
<td>694.486</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>397.050</td>
<td>3.464 x 10^{-3}</td>
<td>300</td>
</tr>
<tr>
<td>1000</td>
<td>2.135 x 10^{-3}</td>
<td>388.616</td>
<td></td>
</tr>
<tr>
<td>1110.28</td>
<td>2.029 x 10^{-3}</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>1.304 x 10^{-3}</td>
<td>524.577</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>9.958 x 10^{-4}</td>
<td>632.060</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>5.856 x 10^{-4}</td>
<td>963.957</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>149.060</td>
<td>8.037 x 10^{-3}</td>
<td>300</td>
</tr>
<tr>
<td>408.842</td>
<td>4.297 x 10^{-3}</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>2.593 x 10^{-3}</td>
<td>514.004</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>1.506 x 10^{-3}</td>
<td>696.100</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>1.117 x 10^{-3}</td>
<td>840.715</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>6.212 x 10^{-4}</td>
<td>1289.86</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>55.4093</td>
<td>2.047 x 10^{-2}</td>
<td>300</td>
</tr>
<tr>
<td>1000</td>
<td>1.370 x 10^{-2}</td>
<td>355.417</td>
<td></td>
</tr>
<tr>
<td>151.355</td>
<td>1.038 x 10^{-2}</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>3.202 x 10^{-3}</td>
<td>681.047</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>1.776 x 10^{-3}</td>
<td>921.428</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>1.277 x 10^{-3}</td>
<td>1109.88</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>6.677 x 10^{-4}</td>
<td>1682.07</td>
<td></td>
</tr>
<tr>
<td>S (cal/mole·K)</td>
<td>P/P_o</td>
<td>v/v_o</td>
<td>T (°K)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>28</td>
<td>20.4089</td>
<td>5.443 x 10^{-2}</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>55.7425</td>
<td>2.696 x 10^{-2}</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>1.801 x 10^{-2}</td>
<td>472.335</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>4.004 x 10^{-3}</td>
<td>901.583</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>2.124 x 10^{-3}</td>
<td>1211.63</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>1.480 x 10^{-3}</td>
<td>1449.26</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>7.253 x 10^{-4}</td>
<td>2153.86</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>7.48250</td>
<td>1.473 x 10^{-1}</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>1.200 x 10^{-1}</td>
<td>326.090</td>
<td></td>
</tr>
<tr>
<td>20.4426</td>
<td>7.230 x 10^{-2}</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.371 x 10^{-2}</td>
<td>627.815</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>5.038 x 10^{-3}</td>
<td>1186.74</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>2.560 x 10^{-3}</td>
<td>1575.86</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>1.731 x 10^{-3}</td>
<td>1868.39</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>7.951 x 10^{-4}</td>
<td>2722.17</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.73810</td>
<td>4.015 x 10^{-1}</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>7.48178</td>
<td>1.963 x 10^{-1}</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>1.597 x 10^{-1}</td>
<td>434.442</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3.123 x 10^{-2}</td>
<td>833.362</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>6.336 x 10^{-3}</td>
<td>1545.34</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>3.097 x 10^{-3}</td>
<td>2023.77</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>2.036 x 10^{-3}</td>
<td>2379.57</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>8.788 x 10^{-4}</td>
<td>3406.82</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.00124</td>
<td>1.097</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>2.73602</td>
<td>5.356 x 10^{-1}</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>2.123 x 10^{-1}</td>
<td>578.167</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4.099 x 10^{-2}</td>
<td>1100.39</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>7.934 x 10^{-3}</td>
<td>1986.51</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>3.748 x 10^{-3}</td>
<td>2568.45</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>2.405 x 10^{-3}</td>
<td>2998.87</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>9.785 x 10^{-4}</td>
<td>4229.22</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>P/P₀</td>
<td>v/v₀</td>
<td>T (ºK)</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>36</td>
<td>0.36602</td>
<td>2.999</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>1.464</td>
<td>399.974</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.819 x 10⁻¹</td>
<td>768.423</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.333 x 10⁻²</td>
<td>1438.10</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>9.878 x 10⁻³</td>
<td>2522.81</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>4.537 x 10⁻³</td>
<td>3226.76</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>2.850 x 10⁻³</td>
<td>3745.12</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.13379</td>
<td>8.204</td>
<td>300</td>
</tr>
<tr>
<td>0.36562</td>
<td>4.003</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.949</td>
<td>532.505</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.728 x 10⁻¹</td>
<td>1016.94</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6.857 x 10⁻²</td>
<td>1855.11</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1.223 x 10⁻²</td>
<td>3170.76</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>5.486 x 10⁻³</td>
<td>4017.95</td>
<td></td>
</tr>
</tbody>
</table>
TABLE II
Empirical Constants of Equation (2) vs. Entropy S as Obtained from Three-Point Fits to Curves of Figure 3

<table>
<thead>
<tr>
<th>S (cal/moleoK)</th>
<th>β</th>
<th>$\frac{f}{v_0}$</th>
<th>$\frac{K}{p_0^{(\beta-2)/\beta v_0}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.990</td>
<td>2.81×10^{-4}</td>
<td>0.04735</td>
</tr>
<tr>
<td>22</td>
<td>4.519</td>
<td>3.15×10^{-4}</td>
<td>0.08691</td>
</tr>
<tr>
<td>24</td>
<td>5.286</td>
<td>3.44×10^{-4}</td>
<td>0.1677</td>
</tr>
<tr>
<td>26</td>
<td>5.900</td>
<td>3.65×10^{-4}</td>
<td>0.2798</td>
</tr>
<tr>
<td>28</td>
<td>6.338</td>
<td>3.71×10^{-4}</td>
<td>0.4211</td>
</tr>
<tr>
<td>30</td>
<td>6.646</td>
<td>3.65×10^{-4}</td>
<td>0.5950</td>
</tr>
<tr>
<td>32</td>
<td>6.866</td>
<td>3.41×10^{-4}</td>
<td>0.8166</td>
</tr>
<tr>
<td>34</td>
<td>7.025</td>
<td>2.60×10^{-4}</td>
<td>1.100</td>
</tr>
<tr>
<td>36</td>
<td>7.168</td>
<td>4.00×10^{-5}</td>
<td>1.464</td>
</tr>
<tr>
<td>38</td>
<td>7.293</td>
<td>-3.53×10^{-4}</td>
<td>1.949</td>
</tr>
</tbody>
</table>
DISTRIBUTION

Copies

<table>
<thead>
<tr>
<th>Organization</th>
<th>Location</th>
<th>Office Address</th>
<th>Addressee</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief, Bureau of Naval Weapons</td>
<td>Washington, D.C.</td>
<td>Office of Naval Research</td>
<td>Fluid Dynamics Branch, 4214 Main Navy</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td></td>
<td>Structural Mechanics Branch, 4214 Main Navy</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Library, DLI-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRRE-4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RAAD-3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RAAD-2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RR-25</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RMMO</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RRMA</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RMMGA-811</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td>Alexandria, Virginia</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Washington, D.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Fluid Dynamics Branch, 4214 Main Navy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Mechanics Branch, 4214 Main Navy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Washington, D.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Fluid Dynamics Branch, 4214 Main Navy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Mechanics Branch, 4214 Main Navy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Structural Mechanics Branch, 4214 Main Navy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Washington, D.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Structural Mechanics Branch, 4214 Main Navy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Washington, D.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Army Ballistics Research Laboratories</td>
<td>Aberdeen Proving Ground, Maryland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Technical Library, Bldg 313</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E. D. Boyer, Chief, Transonic Range Facility</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P. G. Baer</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Advanced Research Projects Agency</td>
<td>Washington, D.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. Clifford E. McLain, Missile Phenomenology Branch</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Arnold Engineering Development Center (ARO, Inc.)</td>
<td>Arnold Air Force Station, Tennessee 37389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Library/Documents</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mr. J. Lukasiewicz, Chief, VKF</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mr. A. J. Cable</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>U.S. Army Engineer Research and Development Laboratories</td>
<td>Fort Belvoir, Virginia 22060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Scientific and Technical Information Branch</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

1
NOLTR 65-209

Commanding Officer and Director
David Taylor Model Basin
Washington, D. C. 20390
Attn: Library, Aerodynamics Laboratory

Director Defense Research and Engineering
The Pentagon
Washington, D. C.
Attn: Library (Technical) 3C-128

Director
U. S. Naval Research Laboratory
Washington, D. C.
Attn: Mr. Edward Chapin, Code 6303

Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, New Mexico
Attn: Report Library

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio
Attn: Mr. George Mandel, Chief, Library

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland
Attn: Library
Mr. E. F. Sargent, Code 671.2

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama
Attn: R-P&VE-PT, Mr. H. A. Connell
Dr. W. R. Lucas, R-P&VE-M
Aero-Astrodynamics Laboratory,
Dr. Ernst Geissler

National Aeronautics and Space Administration
Langley Research Center
Langley Station
Hampton, Virginia 23365
Attn: Librarian, MS 185
Mr. Mitchel H. Bertram, MS 243
Mr. Russell Hopko, PARD, MS 213

Copies
NOLTR 65-209

Copies

U. S. Navy Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut
Attn: Library

U. S. Naval Weapons Laboratory
Dahlgren, Virginia
Attn: Library
Code KE
Code TX

Scientific and Technical Information Facility
P. O. Box 5700
Bethesda, Maryland 20014
Attn: NASA Representative (SAK/DL)

Aerospace Corporation
P. O. Box 95085
Los Angeles, California 90045
Attn: Dr. J. S. Whittier
Mr. J. P. Mullen

Director
Alden Hydraulic Laboratory
Worcester Polytechnic Institute
Worcester 9, Massachusetts
Attn: Professor L. J. Hooper

Allegheny Ballistics Laboratory
Hercules Powder Company
Cumberland, Maryland
Attn: Captain N. J. Kleiss

Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
Attn: Dr. Freeman Hill
Dr. L. L. Cronvich
Document Librarian
Mr. L. B. Weckesser

Avco-Everett Research Laboratory
2385 Revere Beach Parkway
Everett, Massachusetts 02149
Attn: Dr. Kantrowitz
NOLTR 65-209

Commanding Officer
U. S. Naval Underwater Ordnance Station
Newport, Rhode Island 02844
Attn: Mr. R. J. Grady

Mr. M. T. McGowan

AVCO/RAD Corporation
201 Lowell Street
Wilmington, Massachusetts 01887
Attn: Dr. J. Eckerman

University of Denver
Denver Research Institute
Mechanics Division
Denver, Colorado 90210
Attn: Mr. W. G. Howell

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201
Attn: Remote Area Conflict Information Center

Mr. Daniel E. Stohecker

The Boeing Company
Aero-Space Division
P. O. Box 3707
Seattle, Washington 98124
Attn: Ruth E. Peerenboom

Library Process Supervisor

California Institute of Technology
Pasadena, California
Attn: Professor T. Y. Wu

Professor M. S. Plesset, Div. of Engineering

The Catholic University of America
Washington, D. C. 20017
Attn: Dr. C. C. Chang

Dept. of Space Science and Applied Physics

Ohio State University
Department of Aero and Astronautical Engineering
2036 Neil Avenue
Columbus, Ohio 43210
Attn: Professor Ting Yi Li
NOLTR 65-209

Copies

Cornell Aeronautical Laboratory
4455 Genesee Street
Buffalo, New York
Attn: Dr. Gordon Hall 1
Mr. A. Hertzberg 1

Department of Mechanical Engineering
University of Delaware
Newark, Delaware
Attn: Dr. James P. Hartnett 1

General Applied Sciences Laboratories, Inc
Merrick and Stewart Avenues
Westbury, New York
Attn: Mr. Robert Byrne 1

General Electric Company
Missile and Space Division
P. O. Box 8555
Philadelphia, Pennsylvania 19101
Attn: Mr. Lawrence I. Chasen 1
Manager/MSD Libraries

General Dynamics/Convair
P. O. Box 1950
San Diego, California 92112
Attn: Mr. R. H. Oversmith, Chief 1
ASW/Marine Sciences 6-107
Dr. Blaine R. Parkin, Mail Zone 6-114

General Electric Company
Re-entry Systems Department
P. O. Box 8555
Philadelphia, Pennsylvania 19101
Attn: Mr. Jerome Persh (Rm. U-7039, VFSTC) 1

GM Defense Research Laboratories
General Motors Corporation
Box T
Santa Barbara, California 93102
Attn: Dr. A. C. Charters - No. 27 1
Mr. J. S. Curtis 1
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California
Attn: Library, TDS - N. E. Devereux
Dr. L. Jaffee

Kaman Aircraft Corporation
Nuclear Division
Colorado Springs, Colorado
Attn: Dr. A. P. Bridges

Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, California 94304
Attn: Mr. Paul E. Sandorff, 52-20/201/2

Lockheed Missiles and Space Company
Missile Systems Division
P. O. Box 504
Sunnyvale, California
Attn: R. A. Fuhrman, Dept. 81-01, Bldg 181
R. W. Kermee, Dept 51-35, Bldg 153 F/1

National Engineering Science Company
711 South Fair Oaks Avenue
Pasadena, California
Attn: Dr. Gunner Bergman

North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California 90241
Attn: Technical Information Center, D/096-722 (AJ01)

Sandia Corporation
Albuquerque, New Mexico
Attn: Mr. R. C. Maydew, Aero-Thermodynamics Dept.
Mr. W. V. Hereford, Div 7215

Sandia Corporation
Livermore Laboratory
P. O. Box 969
Livermore, California 94551
Attn: Technical Library Reference

Therm Advanced Research, Inc.
100 Hudson Circle
Ithaca, New York 14851
Copies

Director
Southwest Research Institute
Department of Mechanical Sciences
San Antonio 6, Texas
Attn: Library

Director
St. Anthony Falls Hydraulic Laboratory
University of Minnesota
Minneapolis, Minnesota
Attn: Professor E. Silberman

Stanford University
Department of Aeronautics and Astronautics
Stanford, California
Attn: Dr. Daniel Bershader

United Aircraft Corporation
Research Laboratories
East Hartford, Connecticut
Attn: Mr. H. J. Charette
Mr. F. S. Owen

Space Systems Division
Los Angeles Air Force Station
Los Angeles, California 90045

University of California
Lawrence Radiation Laboratory
P. O. Box 908
Livermore, California
Attn: Mr. Carl Cline
Mr. W. W. Wells, Propulsion Div., L-301

Colorado State University
Fort Collins, Colorado
Attn: Civil Engineering Hydraulics Laboratory

Hydronautics, Inc.
Pindell School Road
Howard County
Laurel, Maryland
Attn: Dr. P. Eisenberg
Dr. W. P. Tulin

Technical Research Group, Inc.
Route 110
Melville, New York
Attn: W. Graham
The Johns Hopkins University
Baltimore, Maryland
Attn: Professor F. H. Clauser 1

Union Carbide Corporation
Stellite Division
1020 Park Avenue
Kokomo, Indiana 46901
Attn: Mr. W. D. Manly 1

Shock Hydrodynamics, Inc.
Sherman Oaks, California
Attn: Dr. R. L. Bjork 1

University of Nebraska
Lincoln, Nebraska 68508
Attn: Dr. R. C. Nelson 1

Physics International Company
2700 Merced Street
St. San Leandro, California
Attn: Dr. Charles Godfrey 1
Isentropic data for real hydrogen are calculated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. The effects of ionization, excitation, and dissociation are considered negligible because of the relatively low temperatures and high densities involved. The effects of the intermolecular forces are accounted for by fitting a virial coefficient equation to low temperature high density experimental data. These calculated data in turn are fitted to an empirical entropic equation of state. This particular equation of state is convenient for describing many thermodynamic processes.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (other than the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report directly from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ____________ ."

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ____________ ."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through ____________ ."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS) (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

UNCLASSIFIED

Security Classification

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>State properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Security Classification
Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 65--209)
CALCULATED THERMODYNAMIC PROPERTIES OF REAL
HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K,
by D. N. Bixler and others. 1 Dec. 1965. 4p.
charts, tables. (Ballistics research report
153) NOL task 364.
UNCLASSIFIED
Isentropic data for real hydrogen are calculated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. Effects of ionization, excitation, and dissociation are negligible because of relatively low temperatures and high densities involved. Effects of the intermolecular forces are accounted for by fitting a virial coefficient equation data. The calculated data are fitted to an empirical entropic equation of state, which describes many thermodynamic processes.

1. Hydrogen --
Thermodynamics

2. Gun
launchers

1. Hydrogen --
Thermodynamics

2. Gun
launchers

Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 65--209)
CALCULATED THERMODYNAMIC PROPERTIES OF REAL
HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K,
by D. N. Bixler and others. 1 Dec. 1965. 4p.
charts, tables. (Ballistics research report
153) NOL task 364.
UNCLASSIFIED
Isentropic data for real hydrogen are calculated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. Effects of ionization, excitation, and dissociation are negligible because of relatively low temperatures and high densities involved. Effects of the intermolecular forces are accounted for by fitting a virial coefficient equation data. The calculated data are fitted to an empirical entropic equation of state, which describes many thermodynamic processes.

1. Hydrogen --
Thermodynamics

2. Gun
launchers

1. Hydrogen --
Thermodynamics

2. Gun
launchers

Abstract card is unclassified.

Abstract card is unclassified.

Abstract card is unclassified.