A BIBLIOGRAPHY
ON MICROWAVE (ROTATIONAL) SPECTROSCOPY

by
James E. Wollrab

August 1965
A BIBLIOGRAPHY
ON MICROWAVE (ROTATIONAL) SPECTROSCOPY

by

James E. Wollrab

Aerodynamics Branch
Advanced Systems Laboratory
Directorate of Research and Development
U. S. Army Missile Command
Redstone Arsenal, Alabama
ABSTRACT

The references listed in this bibliography include a majority of the important papers and books that are related to the development of microwave spectroscopy. General references relating to the basic concepts of rotational and, in a limited way, vibrational spectroscopy are also included. Titles of dissertations, reports which have not been published in the open literature, and abstracts of papers presented at spectroscopy symposia generally are not given. Rather than a pure chronological listing, the references have been placed under specific topic headings whenever possible. A chronological order under these headings is maintained. Since a unique classification of each article is impossible, references which do not fall directly under one of the specific topics are listed in Section XII.

Several other bibliographies are available. Townes and Schawlow compiled a complete listing up through 1954. In addition, Favero has compiled a bibliography covering 1954 through 1962, and Starck has completed one for 1945 through 1962. However, the latter two are not as generally available as might be desired. (See Section I.)

This bibliography includes a majority of the references concerning microwave spectroscopy through 1964, and a number of references from early 1965. Titles are listed to enable a better preliminary assessment of the articles. The listing is a print from IBM cards and a special notation is required in some instances. Atomic weights are given in parentheses following the atomic symbol, e.g., N(14) for N. All letters are in the upper case, e.g., L-TYPE DOUBLING is written for l-type doubling. Numerical subscripts are written on the same level as the atomic symbol, e.g., H2S is written for H2S.

Preceding some of the reference lists are very brief resumes. These are not intended to serve as reviews of each area but merely to point out some of the more important or recent progress in each area.
CONTENTS

<table>
<thead>
<tr>
<th>Section I. GENERAL AND REVIEW ARTICLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Section II. INSTRUMENTATION</td>
<td>5</td>
</tr>
<tr>
<td>Section III. LINE SHAPE AND LINE BROADENING</td>
<td>15</td>
</tr>
<tr>
<td>Section IV. THE RIGID ROTOR</td>
<td>19</td>
</tr>
<tr>
<td>Section V(a). GENERAL VIBRATION-ROTATION INTERACTION</td>
<td>25</td>
</tr>
<tr>
<td>Section V(b). CENTRIFUGAL DISTORTION</td>
<td>27</td>
</tr>
<tr>
<td>Section V(c). CORIOLIS COUPLING</td>
<td>29</td>
</tr>
<tr>
<td>Section V(d). L-TYPE DOUBLING</td>
<td>30</td>
</tr>
<tr>
<td>Section VI. MOLECULAR STRUCTURE</td>
<td>33</td>
</tr>
<tr>
<td>Section VII. QUADRUPOLE COUPLING</td>
<td>37</td>
</tr>
<tr>
<td>Section VIII. HINDERED INTERNAL ROTATION</td>
<td>45</td>
</tr>
<tr>
<td>Section IX. INVERSION</td>
<td>55</td>
</tr>
<tr>
<td>Section X. STARK EFFECT</td>
<td>61</td>
</tr>
<tr>
<td>Section XI. ELECTRONIC AND MAGNETIC EFFECTS (ZEEMAN EFFECT)</td>
<td>65</td>
</tr>
<tr>
<td>Section XII. GENERAL MICROWAVE PAPERS AND RELATED TOPICS</td>
<td>71</td>
</tr>
</tbody>
</table>
Section I. GENERAL AND REVIEW ARTICLES

3. W. GORDY. REV. MOD. PHYS. 20, 668-717 (1948) MICROWAVE SPECTROSCOPY

4. B.P. DAILEY. ANAL. CHEM. 21, 540-544 (1949) MICROWAVE SPECTRA AND CHEMICAL ANALYSIS

6. B.L. CRAWFORD, JR. AND D.E. MANN. REV. PHYS. CHEM. 1, 151-169 (1950) SPECTROSCOPY

10. E.B. WILSON, JR. ANN. REV. PHYS. CHEM. 2, 151-176 (1951) MICROWAVE SPECTROSCOPY OF GASES

11. B.BAK. TRANS. INSTRUM. MEAS. CONF. 1952, 8-14 (1952) A MICROWAVE SPECTROSCOPE AND A REVIEW OF MICROWAVE SPECTROSCOPY

12. P. KISLIUK AND C.H. TOWNES. CIRC. NAT. BUR. STAND., NO. 518 (1952) MOLECULAR MICROWAVE SPECTRA TABLES

15. E.B. WILSON, JR. ANN. N. Y. ACAD. SCI. 55, 943-954 (1952) THE SIGNIFICANCE OF THE RESULTS OF MICROWAVE SPECTROSCOPY TO CHEMICAL VALENCE THEORY

16. B.P. DAILEY. ANN. REV. PHYS. CHEM. 4, 425-444 (1953) MICROWAVES AND NUCLEAR RESONANCE

17. W. GORDY, W.V. SMITH, AND R.F. TRAMBARULO. MICROWAVE SPECTROSCOPY. JOHN WILEY AND SONS INC., NEW YORK (1953)

36. L. Kellner. Scientia (Milan) 98, 51-56 (1963) Microwave Spectroscopy

39. B. Starck. Bibliography of Research in the Microwave Spectra of Molecules During the Years (1945-1962), (1963)

Section II. INSTRUMENTATION

A majority of microwave studies have been carried out using the conventional square-wave Stark-modulated microwave spectrometer\(^5,11,21,24,112\) employing phase-sensitive detection and a reflex klystron source. Measurements have been extended from X-band up into the millimeter wave region through the use of harmonic generators and the development of high frequency tubes.\(^45,46,62,65,89,93,128\) Sensitivity and resolution have been improved by frequency stabilization\(^1,6-8\) and to a greater degree by phase stabilization of the source.

The demonstration of maser principles led to their use in the study of rotational spectra. Very narrow line widths have been achieved with beam-maser spectrometers\(^100,113\) allowing the observation of hyperfine splittings which are too small to be resolved on a conventional spectrometer. Maser action has also been used to identify weak transitions when they have levels in common with stronger lines whose quantum numbers are known.\(^94,106\)

Although Stark effect spectrometers predominate, Zeeman effect studies\(^32,33,107\) have been accomplished using a variety of cell designs. Other specialized microwave spectrometers include cells with "flow-through" systems for the study of short-lived free radicals, parallel plate absorption cells for precision dipole moment measurements,\(^72\) radio frequency and microwave molecular beam devices,\(^75,116,119\) and high-temperature cells.\(^31,48,51\) Relative and absolute absorption intensities, as well as line width measurements, also require specialized system design.\(^85,102,111,141\) Millimeter wave transitions are being investigated as a possible source for a millimeter frequency standard.\(^122-126,132-135\)
1. R.V. POUND, REV. SCI. INSTR. 17, 490-505 (1946) ELECTRONIC FREQUENCY STABILIZATION OF MICROWAVE OSCILLATORS

2. A. ROBERTS, Y. BEERS, AND A. G. HILL, PHYS. REV. 70, 112 (1946) THE MEASUREMENT OF NUCLEAR SPIN, MAGNETIC MOMENT, AND HYPERFINE STRUCTURE SEPARATION BY A MICROWAVE FREQUENCY MODULATION METHOD

3. R. L. CARTER AND W. V. SMITH, PHYS. REV. 72, 1265-1266 (1947) MICROWAVE SPECTRUM FREQUENCY MARKERS

4. W. GORDY AND M. KESSLER, PHYS. REV. 72, 644 (1947) A NEW ELECTRONIC SYSTEM FOR DETECTING MICROWAVE SPECTRA

6. R. V. POUND, PROC. INST. RADIO ENGRS. 35, 1405-1415 (1947) FREQUENCY STABILIZATION OF MICROWAVE OSCILLATORS

7. R. V. POUND, IN C. G. MONTGOMERY, TECHNIQUES OF MICROWAVE MEASUREMENTS, MCGRAW-HILL BOOK COMPANY, INC., PP. 58-78, NEW YORK (1947)

8. V. C. RIDEOUT, PROC. INST. RADIO ENGRS. 35, 767-771 (1947) AUTOMATIC FREQUENCY CONTROL OF MICROWAVE OSCILLATORS

10. R. J. WATTS AND D. WILLIAMS, PHYS. REV. 72, 1122-1123 (1947) A DOUBLE MODULATION DETECTION METHOD FOR MICROWAVE SPECTRA

11. R. J. WATTS AND D. WILLIAMS, PHYS. REV. 72, 980-981 (1947) A MODIFIED STARK-EFFECT MODULATION SPECTROGRAPH FOR MICROWAVES

12. W. D. HERSCHBERGER, J. APPL. PHYS. 19, 411-419 (1948) MINIMUM DETECTABLE ABSORPTION IN MICROWAVE SPECTROSCOPY AND AN ANALYSIS OF THE STARK MODULATION METHOD

14. R. KARPLUS, PHYS. REV. 73, 1027-1034 (1948) FREQUENCY MODULATION IN MICROWAVE SPECTROSCOPY

15. R. KARPLUS AND J. SCHWINER, PHYS. REV. 73, 1020-1026 (1948) A NOTE ON SATURATION IN MICROWAVE SPECTROSCOPY

16. J. L. G. DE QUEVEDO AND W. V. SMITH, J. APPL. PHYS. 19, 831-836 (1948) FREQUENCY STABILIZATION OF MICROWAVE OSCILLATORS BY SPECTRUM LINES II

17. C. H. TOWNES AND S. GESCHWIND, J. APPL. PHYS. 19, 795-796 (1948) LIMITING SENSITIVITY OF A MICROWAVE SPECTROMETER

18. W. G. TULLER, W. C. GALLOWAY, AND F. P. ZAFFARANO, PROC. INST. RADIO ENGRS. 36, 794-800 (1948) RECENT DEVELOPMENTS IN FREQUENCY STABILIZATION
OF MICROWAVE OSCILLATORS

27. R. Freymann, Physica 17, 328-332 (1951) REMARK ON THE ROTATIONAL METHOD AND THE METHOD OF PERTURBATIONS IN THE ULTRA-HERTZIAN REGION.

34. S. Geschwind, Ann. N. Y. Acad. Sci. 55, 751-773 (1952) HIGH-RESOLUTION MICROWAVE SPECTROSCOPY

35. W. Gordy, Ann. N. Y. Acad. Sci. 55, 774-788 (1952) MICROWAVE SPECTROSCOPY ABOVF 60 KMC

37. H. R. Johnson, Phys. Rev. 85, 764 (1952) Resolution and Sensitivity of Microwave Spectrographs

INVERSION SPECTRUM OF N(14)H3 BY A NEW HIGH-RESOLUTION MICROWAVE SPECTROMETER

60. M. W. P. Strandberg and M. Peter, Phys. Rev. 133, 963 (1955) PRECISION OF MICROWAVE SPECTROGRAPHS

64. G. Erlandsson and H. Seelen, Arkiv Fysik 11, 391-393 (1956) FREQUENCY MEASUREMENTS IN MICROWAVE SPECTROSCOPY

70. E. F. Davis, EXTERNAL PUBLICATION NO. 380, UNIV. CALIFORNIA JET PROPULSION LAB., JUNE, 1957

73. M. PETER AND M. W. P. STRANDBERG, MIT RESEARCH LAB. ELECTRONICS TECHNICAL REPORT 336 (1957) THEORETICAL AND EXPERIMENTAL STUDY OF MOLECULAR-BEAM MICROWAVE SPECTROSCOPY

74. M. C. THOMPSON AND J. V. CATETERA, REV. SCI. INSTR. 28, 656 (1957) HIGH-ORDER HARMONICS FOR X-BAND OSCILLATOR STABILIZATION

78. M. C. THOMPSON, M. J. VETTER, AND D. M. WATERS, ELECTRONICS 31, 100-101 (1958) SHF FREQUENCY STANDARD USES DOUBLE CONVERSION

79. P. H. VERDIER, REV. SCI. INSTR. 29, 646-647 (1958) STARK EFFECT RESONANT CAVITY MICROWAVE SPECTROGRAPH

81. Y. BEERS, REV. SCI. INSTR. 30, 9-16 (1959) THEORY OF THE CAVITY MICROWAVE SPECTROMETER AND MOLECULAR FREQUENCY STANDARD

82. F. BRUIN AND D. VAN LADESTEYN, PHYSICA 25, 1-8 (1959) FREQUENCY STABILIZATION OF A REFLEX KLYSTRON OSCILLATOR

83. H. E. BUSSY AND G. BIRNBAUM, REV. SCI. INSTR. 30, 800-804 (1959) CAVITY RESONATORS FOR SPECTROCOPY OF COMPRESSED GASES

84. J. H. CORN, ELECTRONICS 32, 74 (1959) MICROWAVE MEASUREMENT

85. A. DYMANUS, PHYSICA 25, 859-888 (1959) INTENSITY MEASUREMENTS IN MICROWAVE SPECTROSCOPY: THE ANTIMODULATION METHOD

86. A. DYMANUS, REV. SCI. INSTR. 30, 191-195 (1959) HIGH-Q STARK CAVITY ABSORPTION CELL FOR MICROWAVE SPECTROMETERS

87. J. J. GALLAGHER AND J. B. NEWMAN, SPECTROCHIM. ACTA 15, 769 (1959) A GAS MASER AT MILLIMETER WAVELENGTHS

89. W. GORDY, PROC. SYM. MILLIMETER WAVES, 1-23, INTERSCIENCE, NEW YORK (1959) MILLIMETER AND SUBMILLIMETER WAVES IN PHYSICS

90. J. HERVE, J. PESCIA, AND M. SAUZADE, COMPT. REND. 249, 1486-1488 (1959) FREQUENCY STABILIZATION OF A CARCINOTRON OF GREAT POWER

91. D. ILIAS, J. PHYS. RADIIUM 20, 653-655 (1959) A RECORDING MICROWAVE SPECTROMETER FOR GAS STUDY

94. K. SHIMODA, J. PHYS. SOC. JAPAN 14, 954-959 (1959) RADIOFREQUENCY SPECTROSCOPY USING THREE-LEVEL MASER ACTION

96. A. DYMANUS AND A. BOUWKNEGT, PHYSICA 26, 115-126 (1960) MEASUREMENTS ON POWER-CONVERSION GAIN AND NOISE RATIO OF THE IN26 CRYSTAL RECTIFIERS

98. G. ERLANDSSON AND A. RACHMAN, CIENCIA E INVEST. 16, 166-176 (1960) MICROWAVE SPECTROPHOTOMETER WITH STARK MODULATION

100. J.P. GORDON, QUANTUM ELECTRONICS, COLUMBIA UNIVERSITY PRESS, PP. 3-16 NEW YORK (1960) MOLECULAR BEAM MASERS

116. A. J. HEBERT, UCRL-10482 (1962) a molecular-beam electric-resonance spectrometer and the radio-frequency spectra of lithium fluoride

117. A. NARATH AND W. D. GWINN, REV. SCI. INSTR. 33, 79-82 (1962) Phase-stabilized klystron system and its application to microwave spectroscopy and microwave frequency standards

118. T. NISHIKAwa, KAGAKU NO RYOIKI 16, 657-664 (1962) DEVELOPMENTS IN THE MILLIMETER AND SUBMILLIMETER WAVE TECHNIQUE AND ITS APPLICATION IN CHEMISTRY

119. J. R. RUSK AND W. GORDY, PHYS. REV. 127, 817-830 (1962) MILLIMETER WAVE MOLECULAR BEAM SPECTROSCOPY-ALKALI BROMIDES AND IODIDES

121. A. S. ESBITT AND E. B. WILSON, JR., REV. SCI. INSTR. 34, 901-907 (1963) RELATIVE INTENSITY MEASUREMENTS IN MICROWAVE SPECTROSCOPY

122. J. J. GALLAGHER AND R. G. STRAUCH, SECOND QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1963) excitation and detection techniques for millimeter wave transitions

123. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP, THIRD QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1963) excitation and detection techniques for millimeter wave transitions

124. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP, FOURTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1963) excitation and detection techniques for millimeter wave transitions

125. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP, FIFTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1963) excitation and detection techniques for millimeter wave transitions

127. R. L. POYNTER AND G. R. STEFFENSEN. REV. SCI. INSTR. 34, 77-82 (1963) TUNABLE HIGH STABILITY MICROWAVE OSCILLATOR

128. THE MICROWAVE ENGINEERS HANDBOOK AND BUYERS GUIDE-1964, HORIZON HOUSE, MICROWAVE INC., DEDHAM, MASS., DECEMBER (1963)

129. R. W. ZIMMERER, M. V. ANDERSON, G. L. STRINE, AND Y. BEERS. IEEE TRANS. MICROWAVE THEORY AND TECHNIQUES 11, 142-149 (1963) MILLIMETER WAVELENGTH RESONANT STRUCTURES

130. A. BENJAMINSON. MICROWAVE JOURNAL 7, NO. 12, 65-69 (1964) PHASE-LOCKED MICROWAVE OSCILLATOR SYSTEMS WITH 0.1 CPS STABILITY

131. P. L. CLOUSER AND W. GORDY. PHYS. REV. 134, 863-870 (1964) MILLIMETER-WAVE MOLECULAR BEAM SPECTROSCOPY - ALKALI CHLORIDES

132. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. SIXTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

133. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. SEVENTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

134. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. EIGHTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

135. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. NINTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

136. Y. HANYU. NIPPON KAGAKU ZASSHI 85, 5-8 (1964) CONSTRUCTION OF A STARK-MODULATED MICROWAVE SPECTROMETER AND THE SPECTRUM OF A HYDROGEN-BONDED SYSTEM OF ACETIC ACID AND TRIFLUOROACETIC ACID

137. H. W. HARRINGTON AND R. H. BAUHAUS. MOLECULAR SPECTROSCOPY SYMPOSIUM, OHIO STATE UNIV. (1964) ABSOLUTE INTENSITY COEFFICIENT MEASUREMENTS IN MICROWAVE SPECTROSCOPY

138. D. R. LIDE, JR. REV. SCI. INSTR. 35, 1226 (1964) VERSATILE STARK WAVEGUIDE FOR MICROWAVE SPECTROSCOPY

139. R. G. STRAUCH, R. E. CUPP, M. LICHTENSTEIN, AND J. J. GALLAGHER. SYMPOSIUM ON QUASI-OPTICS, POLYTECHNIC INST. OF BROOKLYN (1964) QUASI-OPTICAL TECHNIQUES IN MILLIMETER SPECTROSCOPY

140. F. L. WENTWORTH, J. W. DOZIER, AND J. D. RODGERS. MICROWAVE JOURNAL 7, 69-75 (1964) MILLIMETER WAVE HARMONIC GENERATORS, MIXERS AND DETECTORS

141. E. A. RINEHART, R. L. LEGAN, AND C. C. LIN. REV. SCI. INSTR. 36, 511-517 (1965) MICROWAVE SPECTROGRAPH FOR LINEWIDTH MEASUREMENTS
Section III. LINE SHAPE AND LINE BROADENING

3. H. Kuhn. Phil. Mag. 18, 987-1003 (1934) Pressure Shift and Broadening of Spectral Lines

32. B. V. Gokhale and M. W. P. Strandberg, Phys. Rev. 84, 844 (1951) Line Breadths in the 5-MM Microwave Absorption of Oxygen
33. R. M. Hill and W. V. Smith, Phys. Rev. 82, 451 (1951) Microwave Collision Diameters and Associated Quadrupole Moments
34. D. C. M. Leslie, Phil. Mag. 42, 37-55 (1951) Collision Broadening of Microwave Frequencies
35. H. Margenau, Phys. Rev. 82, 156-158 (1951) Statistical Theory of Pressure Broadening
 Line-Breadths of the Microwave Spectrum of Oxygen

 Pressure Broadening

40. R.S. Anderson, Phys. Rev. 97, 1654-1660 (1955)
 Variation of Line Width with Rotational State and Temperature in the Microwave Spectrum of OCS

41. E.P. Gross, Phys. Rev. 97, 395-403 (1955)
 Shape of Collision-Broadened Spectral Lines

 Line Broadening and Dielectric Relaxation in Compressed Gases

 Pressure Broadening (of Microwave Lines) of Linear Molecules. II. Theory

 Line Breadths in the Microwave Magnetic Resonance Spectrum of Oxygen

45. A.A. Kolosov and L.L. Myasnikov, Optika i Spektroskopiya 1, 374-377 (1956)
 The Half-Widths of the Absorption Microwave Lines of Ammonia

 Evaluation of Molecular Quadrupole Moments from Microwave Spectral Line Widths. I. Theoretical

47. V.M. Fain, Soviet Phys. JETP 5, 501-503 (1957)
 Natural Line Widths of Microwaves

 Evaluation of Molecular Quadrupole Moments from Microwave Line Breadths. II. Experimental

 Temperature Variation of Microwave Absorption Coefficient in Ethyl Chloride

 Frequency Shift in Ammonia Absorption Due to Self-Broadening

 Frequency Shift in the Absorption Line of Ammonia in the Microwave Region

 Shift of Center Frequency of an Ammonia Inversion Spectrum

 Pressure Shift of the Inversion Frequency of Ammonia

 Critical Analysis and Applications of a Quasi-Resonant Theory of Pressure Broadening of Linear Molecules

SOME PHENOMENA RELATED TO THE SATURATION OF ROTATIONAL RESONANCES IN THE MICROWAVE SPECTRUM OF COS

CALCULATION OF LINE WIDTHS IN H2O-N2 COLLISIONS

57. A. DYMANUS, PHYS. REV. 116, 351-355 (1959)
POWER SATURATION OF THE J=1-2 ROTATIONAL TRANSITION OF OCS

TEMPERATURE VARIATION OF THE LINewidth IN NONRESONANT MICROWAVE ABSORPTION

59. J. A. FULFORD, NATURE 188, 1097-1098 (1960)
LINE BREATHS IN THE AMMONIA SPECTRUM

60. R. G. BREENE, JR., THE SHIFT AND SHAPE OF SPECTRAL LINES, PEGAMON PRESS
NEW YORK (1961)

COLLISION-INDUCED MICROWAVE ABSORPTION IN COMPRESSED GASES II. MOLECULAR ELECTRIC QUADRUPOLE MOMENTS

62. A. A. MARYOTT AND G. BIRNBAUM, J. CHEM. PHYS. 36, 2026-2032 (1962)
COLLISION-INDUCED MICROWAVE ABSORPTION IN COMPRESSED GASES. I. DEPENDENCE ON DENSITY, TEMPERATURE, AND FREQUENCY IN CO2

PRESSURE BROADENING AND THE ELECTRIC QUADRUPOLE MOMENT OF OCS

64. L. GALATRY, J. PHYS. RADIUM 24, 265-272 (1963)
THEORY OF SPECTRAL LINE SHAPE IN THE MICROWAVE REGION

65. KRISHNAJI AND S. CHANDRA, J. CHEM. PHYS. 38, 232-236 (1963)
MOLECULAR INTERACTION AND LINEWIDTH OF ASYMMETRIC MOLECULE SO2. I. SO2-N2 COLLISIONS

66. KRISHNAJI AND S. CHANDRA, J. CHEM. PHYS. 38, 2690-2692 (1963)
MOLECULAR INTERACTION AND LINE WIDTH OF ASYMMETRIC MOLECULE SO2. III. SO2-CH3BR AND SO2-SO2 COLLISIONS

67. G. BIRNBAUM, OPTICAL MASERS, ACADEMIC PRESS INC., NEW YORK (1964)

68. G. BIRNBAUM AND A. A. MARYOTT, J. CHEM. PHYS. 41, 154-157 (1964)
NON-RESONANT ABSORPTION AND COLLISION DIAMETERS IN THE FOREIGN-GAS BROADENING OF SYMMETRIC TOP MOLECULES

69. KRISHNAJI AND S. L. SRIVASTAVA, J. CHEM. PHYS. 41, 2201 (1964)
QUADRUPOLE MOMENT OF OCS

70. KRISHNAJI AND S. L. SRIVASTAVA, J. CHEM. PHYS. 41, 2266-2270 (1964)
FIRST-ORDER LONDON DISPERSION FORCES AND MICROWAVE SPECTRAL LINEWIDTH
Section IV. THE RIGID ROTOR

Calculation and characterization of the energy levels and wave functions of the rigid rotor immediately followed the introduction of the new quantum theory. Application of group theory to the problem considerably simplifies the computational difficulties presented by the asymmetric rotor whose energy levels cannot be expressed in a closed form except for low J values. Since the formulation of the reduced energy $E(\kappa)$, the original tabulations of this parameter have been extended to high J values for smaller intervals of κ through the use of high-speed digital computers. Approximate methods were also developed, particularly for near symmetric top molecules. Considerable attention has also been given to the calculation of theoretical line intensities.
1. F. REICHE AND H. RADEMACHER, Z. PHYSIK 39, 444-464 (1926) QUANTIZATION OF A SYMMETRICAL TOP ACCORDING TO SCHROEDINGER'S UNDULATION MECHANICS

6. S. C. WANG, PHYS. REV. 34, 243-252 (1929) ON THE ASYMMETRICAL TOP IN QUANTUM MECHANICS

7. H. B. G. CASIMIR, ROTATION OF A RIGID BODY IN QUANTUM MECHANICS, J. B. WOLTERS, THE HAGUE (1931)

8. B. S. RAY, Z. PHYSIK 78, 74-91 (1932) EIGENVALUES OF AN ASYMMETRICAL ROTATOR

12. S. GOLDEN, J. CHEM. PHYS. 16, 78-86 (1948) AN ASYMPTOTIC EXPRESSION FOR THE ENERGY LEVELS OF THE RIGID ASYMMETRIC ROTOR

13. R. KARPLUS, J. CHEM. PHYS. 16, 1170-1171 (1948) NOTE ON THE ENERGY OF A ROTATING MOLECULE

14. E. E. WITMER, PHYS. REV. 74, 1247 (1948) AN EXPLICIT SOLUTION OF THE PROBLEM OF THE ASYMMETRIC ROTATOR ACCORDING TO QUANTUM MECHANICS

15. E. E. WITMER, PHYS. REV. 74, 1250 (1948) AN EXPLICIT FORMULA FOR THE ENERGY LEVELS OF THE ASYMMETRIC ROTATOR ACCORDING TO QUANTUM MECHANICS

20
18. D.R. LIDE, J. CHEM. PHYS. 20, 1761-1763 (1952) A NOTE ON ROTATIONAL LINE STRENGTHS IN SLIGHTLY ASYMMETRIC ROTORS

19. B.L. HICK, E. TURNER, AND W.W. WIDULE, J. CHEM. PHYS. 21, 564 (1953) APPLICATIONS OF LARGE DIGITAL COMPUTERS TO CALCULATIONS OF MICROWAVE SPECTROSCOPY

20. D. KIVELSON, J. CHEM. PHYS. 21, 536-538 (1953) A (K+2)ND ORDER FORMULA FOR ASYMMETRY DOUBLETS IN ROTATIONAL SPECTRA

22. G. ERLANDSSON, ARKIV FYSIK 10, 65-88 (1956) EXTENDED ENERGY LEVEL TABLES FOR THE RIGID ASYMMETRIC ROTOR

26. R.H. SCHWENDEMAN, J. CHEM. PHYS. 27, 986 (1957) TABLE OF COEFFICIENTS FOR THE ENERGY LEVELS OF A NEAR SYMMETRIC TOP

27. R.H. SCHWENDEMAN, A TABLE OF COEFFICIENTS FOR THE ENERGY LEVELS OF A NEAR SYMMETRIC TOP, DEPARTMENT OF CHEMISTRY, HARVARD UNIVERSITY (1957)

28. W.H. HAFFER, J. MOL. SPECTRY 1, 69-80 (1957) OPERATIONAL DERIVATION OF WAVE FUNCTIONS FOR A SYMMETRICAL RIGID ROTATOR

33. L.C. PROW AND P.M. PARKER, TABLES OF ASYMMETRY PARAMETER FUNCTION, DEPARTMENTAL PUBLICATION, OHIO STATE UNIVERSITY (1959)

34. C.T. FIKE, J. CHEM. PHYS. 31, 568-569 (1959) ENERGY LEVELS OF AN ASYMMETRIC ROTOR

52. M. SIDRAN, F. NOLAN, AND J. W. BLAKER, GRUMMAN RESEARCH DEPT. REPORT RE-189, OCTOBER (1964) ROTATIONAL ENERGY LEVELS OF ASYMMETRIC TOP MOLECULES, TABLE OF REDUCED ENERGIES (PART VI - FOR J = 17 TO 18)

53. M. SIDRAN, F. NOLAN, AND J. W. BLAKER, GRUMMAN RESEARCH DEPT. REPORT RE-196, DECEMBER (1964) ROTATIONAL ENERGY LEVELS OF ASYMMETRIC TOP MOLECULES, TABLE OF REDUCED ENERGIES (PART VII - FOR J = 19 TO 20)

54. J. D. LOUCK, J. MOL. SPECTRY 15, 83-99 (1965) EIGENVECTORS OF A SLIGHTLY ASYMMETRIC ROTATOR
Section V(a). GENERAL VIBRATION-ROTATION INTERACTION

1. J.L. DUNHAM, PHYS. REV. 41, 721-731 (1932) THE ENERGY LEVELS OF A ROTATING VIBRATOR

4. E.B. WILSON, JR., J. CHEM. PHYS. 4, 313-316 (1936) THE VIBRATION-ROTATION ENERGY LEVELS OF POLYATOMIC MOLECULES. II. PERTURBATIONS DUE TO NEARBY VIBRATIONAL STATES

6. H.H. NIELSEN, PHYS. REV. 60, 794-810 (1941) THE VIBRATION-ROTATION ENERGIES OF POLYATOMIC MOLECULES

9. S. SILVER AND E.S. EBERS, J. CHEM. PHYS. 10, 559-564 (1942) VIBRATION-ROTATION ENERGIES OF PLANAR ZXY MOLECULES. PART I. THE VIBRATIONAL MODES AND FREQUENCIES

12. H.H. NIELSEN, J. OPT. SOC. AMER. 34, 521-528 (1944) THE ENERGIES OF POLYATOMIC MOLECULES

17. H.H. NIELSEN, PHYS. REV. 75, 1961 (1949) ANOMALIES IN THE MICROWAVE
SPECTRUM OF METHYL CYANIDE AND METHYL ISOCYANIDE

20. H.H. NIELSEN, PHYSICA 17, 432-439 (1951) ANOMALIES IN THE MICROWAVE SPECTRA OF SYMMETRIC MOLECULES

22. S.M. FERIGLE AND A. WEBER, AM. J. PHYS. 21, 102-107 (1953) THE ECKART CONDITIONS FOR A POLYATOMIC MOLECULE

23. W. LOW, PHYS. REV. 97, 1664-1667 (1955) FERMI RESONANCE IN THE MICROWAVE SPECTRUM OF LINEAR XY7 MOLECULES

25. G. AMAT AND H.H. NIELSEN, COMPT. REND. 244, 2302-2304 (1957) INFLUENCE OF ROTATIONAL DISTORTIONS ON THE VIBRATION-ROTATION SPECTRUM OF LINEAR MOLECULES

27. P.R. SWAN JR. AND M.W.P. STRANDBERG, J. MOL. SPECTRY 1, 333-378 (1957) VIBRATION-INTERNAL ROTATION INTERACTIONS IN MOLECULES CONTAINING A SYMMETRIC TOP GROUP

32. D.R. HERSCHBACH AND V.W. LAURIE, J. CHEM. PHYS. 37, 1668-1686 (1962) INFLUENCE OF VIBRATIONS ON MOLECULAR STRUCTURE DETERMINATIONS. I. GENERAL FORMULATION OF VIBRATION-ROTATION INTERACTIONS.

33. S. MAES, J. MOL. SPECTRY 9, 204-215 (1962) SOME THIRD ORDER CORRECTIONS TO THE ROTATION-VIBRATION ENERGIES OF POLYATOMIC MOLECULES

34. K.T. CHUNG AND P.M. PARKER, J. CHEM. PHYS. 38, 8-17 (1963) ASYMMETRIC-TOPO VIBRATION-ROTATION HAMILTONIANS ERRATA-J. CHEM. PHYS. 39, 240 (1963)

37. J. W. C. JOHN, J. MOL. SPECTRY. 15, 473-482 (1965) K-TYPE DOUBLING OF LINEAR MOLECULES IN $^1\Pi$ ELECTRONIC STATES

Section V(b). CENTRIFUGAL DISTORTION

40. E. B. WILSON, JR., J. CHEM. PHYS. 5, 617-620 (1937) THE VIBRATION-ROTATION ENERGY LEVELS OF POLYATOMIC MOLECULES. III. EFFECT OF CENTRIFUGAL DISTORTION

41. Z. I. SLAWSKY AND D. M. DENNISON, J. CHEM. PHYS. 7, 509-521 (1939) THE CENTRIFUGAL DISTORTION OF AXIAL MOLECULES

42. S. GOLDEN, J. CHEM. PHYS. 16, 250-253 (1948) AN ASYMPTOTIC EXPRESSION FOR THE ENERGY LEVELS OF THE ASYMMETRIC ROTOR. II. CENTRIFUGAL DISTORTION CORRECTION ERRATA-J. CHEM. PHYS. 17, 586 (1948)

43. W. S. BENEDICT, PHYS. REV. 75, 1317 (1949) CENTRIFUGAL STRETCHING IN H2O AND D2O

44. H. H. NIELSEN, PHYS. REV. 78, 415-416 (1950) A NOTE ON THE CENTRIFUGAL STRETCHING IN AXIALLY SYMMETRIC MOLECULES

46. R. E. HILLGER AND M. W. P. STRANDBERG, PHYS. REV. 83, 575-581 (1951) CENTRIFUGAL DISTORTION IN ASYMMETRIC MOLECULES. II. HDS

47. R. B. LAWRENCE AND M. W. P. STRANDBERG, PHYS. REV. 83, 363-369 (1951) CENTRIFUGAL DISTORTION IN ASYMMETRIC TOP MOLECULES. I. ORDINARY FORMALDEHYDE H2C(12)O

49. M. W. P. STRANDBERG, ANN. N. Y. ACAD. SCI. 55, 808-813 (1952) CENTRIFUGAL DISTORTION
 Microwave measurement of CO for CO

 Centrifugal distortion effects in methyl chloride

52. D. Kivelson and F. D. Wilson, Jr., J. Chem. Phys. 21, 1229-1236 (1953)
 Theory of centrifugal distortion constants of polyatomic rotor molecules

 Centrifugal distortion in the methyl halides

 The determination of the potential constants of SO2 from centrifugal distortion effects

 Centrifugal distortion in asymmetric top molecules. III. H20, D20, and HD20

 Millimeter wave spectra and centrifugal stretching constants of the methylhalides

 Influence of Fermi resonance on the centrifugal stretching constant of a linear molecule

58. L. Pierce, J. Chem. Phys. 24, 139-142 (1956)
 Determination of the potential constants of Ozone from centrifugal distortion effects

 Calculation of rotational distortion constants for some axially symmetric XY3 molecules

 Anomalous centrifugal distortion coefficients in linear polyatomic molecules

 Centrifugal distortion in symmetric rotor molecules

 A note on the calculation of rotational distortion constants for axially symmetric Z3X molecules

 Computer program for centrifugal distortion in asymmetric top rotational spectra

 Computation of asymmetric rotor constants from energy moments. III. First-order centrifugal stretching effects

 Centrifugal effects in millimeter wave spectra-formyl fluoride

 Centrifugal distortion in symmetric top molecules

Section V(c). CORIOLIS COUPLING

80. H. A. Jahn, Phys. Rev. 56, 680-683 (1939) NOTE ON CORIOLIS COUPLING TERMS IN POLYATOMIC MOLECULES
Section V(d). L-TYPE DOUBLING

87. G.HERZBERG,REVS.MOD.PHYS.14,219-223(1942) L-TYPE DOUBLING IN LINEAR POLYATOMIC MOLECULES

89. H.H.NIELSEN,PHYS.REV.77,130-135(1950) L-TYPE DOUBLING IN POLYATOMIC MOLECULES AND ITS APPLICATION TO THE MICROWAVE SPECTRUM OF METHYL CYANIDE AND METHYL ISOCYANIDE

90. H.H.NIELSEN,PHYS.REV.78,296(1950) L-TYPE DOUBLING IN OCS AND HCN

92. J.DE HEER,PHYS.REV.83,741-745(1951) A NOTE CONCERNING L-TYPE DOUBLING IN AXIALLY SYMMETRIC MOLECULES, IN PARTICULAR WITH REFERENCE TO MOLECULES BELONGING TO THE SYMMETRY GROUPS C4V AND VD

93. J.DE HEER AND H.H.NIELSEN,J.CHEM.PHYS.20,101-104(1952) L-TYPE DOUBLING IN ENERGY LEVELS OF CARION DIOXIDE COUPLED BY FERMI RESONANCE

94. T.L.WEATHERLY AND D.WILLIAMS,PHYS.REV.87,517-518(1952) L-TYPE DOUBLING TRANSITIONS IN HCN AND DCN

95. R.J.COLLIER,PHYS.REV.95,1200-1202(1954) DIRECT L-DOUBLET TRANSITION OF HCN IN THE 10-CENTIMETER WAVELENGTH REGION

96. J.F.WESTERKAMP,PHYS.REV.93,716(1954) VARIATION OF THE L-TYPE DOUBLING CONSTANT IN HCN

97. A.MIYAHARA,H.HIRAKAWA,A.K.SHIKODA,J.PHYS.SOC.JAPAN 11,335(1956)
L-TYPE DOUBLING SPECTRA OF HCN AND DCN IN THE SUPERHIGH FREQUENCY REGION

99. L. YARMUS, PHYS. REV. 105, 928-929 (1957) DIRECT L-TYPE DOUBLING TRANSITIONS IN CLO

100. G. AMAT AND H. H. NIELSEN, J. MOL. SPECTRY 2, 152-162 (1958) VIBRATIONAL L-TYPE DOUBLING AND L-TYPE RESONANCE IN LINEAR POLYATOMIC MOLECULES

101. G. AMAT AND H. H. NIELSEN, J. MOL. SPECTRY 2, 163-172 (1958) ROTATIONAL DISTORTION IN LINEAR MOLECULES ARISING FROM L-TYPE RESONANCE

102. T. S. JASEJA, PROC. INDIAN ACAD. SCI. 504, 108-128 (1959) THE MICROWAVE SPECTRUM OF METHYL CYANIDE AND L-TYPE DOUBLING IN CH3CN, CH3NC, CH3CCH, AND CF3CCH

Section VI. MOLECULAR STRUCTURE

Most microwave structure determinations have been carried out using the general isotopic substitution formulas in terms of the equilibrium moments of inertia developed by Kraitchman. The r_s and r_0 structures have been compared and discussed regarding the equilibrium structure, and a double substitution technique has been devised to treat small coordinates. The effects of molecular vibrations on the molecular structure and, in particular, on the inertia defect determined from microwave data have received considerable attention.
1. W. GORDY, J. CHEM. PHYS. 15, 305-310 (1947) DEPENDENCE OF BOND ORDER AND OF BOND ENERGY UPON BOND LENGTH
3. R. FREYMAN, ONDE ELECT. 30, 416-424 (1950) CENTIMETER WAVES AND MOLECULAR STRUCTURE
4. E. B. WILSON, JR., DIS. FARADAY SOC. 9, 108-114 (1950) DETERMINATION OF MOLECULAR STRUCTURE WITH MICROWAVE SPECTROSCOPY
7. J. KRAITCHMAN, AM. J. PHYS. 21, 17-24 (1953) DETERMINATION OF MOLECULAR STRUCTURE FROM MICROWAVE SPECTROSCOPIC DATA
8. L. M. SVERDLOV, DOKLADY AKAD. NAUK SSSR, 88, 249-252 (1953) RELATIONS BETWEEN MOMENTS OF INERTIA AND ROTATION FREQUENCIES OF ISOTOPIC MOLECULES
12. L. F. THOMAS, J. S. HEEKS, AND J. SHERIDAN, ARCH. ACI (GENEVA) 10, 180-183 (1957) STUDIES OF CONJUGATION AND HYPERCONJUGATION IN SEVERAL MOLECULES BY MICROWAVE SPECTROSCOPY
14. C. C. COSTAIN, J. CHEM. PHYS. 29, 864-874 (1958) DETERMINATION OF MOLECULAR STRUCTURES FROM GROUND STATE ROTATIONAL CONSTANTS
15. V. W. LAURIE, J. CHEM. PHYS. 28, 704-706 (1958) NOTE ON THE DETERMINATION OF MOLECULAR STRUCTURE FROM SPECTROSCOPIC DATA
MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF VINYL CYANIDE AND A
SUMMARY OF CARBON-CARBON, CARBON-HYDROGEN BOND LENGTHS IN SIMPLE
MOLECULES

18. V.W.LAURIE, J. CHEM. PHYS. 30, 1101-1102 (1959) COMMENTS ON THE STRUCTURE
OF 1,1,1-TRIFLUORO-2-BUTYNE

MOLECULAR STRUCTURE BY MICROWAVE METHOD

20. L.PIERCE, J. MOL. SPECTR. 3, 575-580 (1959) NOTE ON THE USE OF
GROUND-STATE ROTATIONAL CONSTANTS IN THE DETERMINATION OF
MOLECULAR STRUCTURE

FORCE CONSTANT CALCULATIONS IN LINEAR TRIATOMIC MOLECULES FROM
INFRARED AND MICROWAVE DATA

DIFFERENCES OF MOMENTS OF INERTIA IN STRUCTURAL CALCULATIONS—
APPLICATION TO METHYL—FLUOROSILANE MOLECULES

23. J.K.BROWN AND A.P.COX, SPECTROCHIM. ACTA 17, 1230-1239 (1961) NEAR-
eQUILIBRIUM BOND DISTANCES IN SIMPLE MOLECULES

ANHARMONIC POTENTIAL CONSTANTS AND THEIR DEPENDENCE UPON BOND LENGTH

MOLECULAR STRUCTURE OF PROPYLENE

AN IMPROVED STRUCTURE DETERMINATION FOR VINYL FLUORIDE

27. T.OKA AND Y.MORINO, J. MOL. SPECTR. 6, 472-482 (1961) CALCULATION OF
INERTIA DEFECT PART I. GENERAL FORMULATION

28. B.BAK, D.CHRISTENSEN, W.B.DIXON, L.HANSEN-NYGAARD, AND J.RASTRUP-
ANDERSEN, J. CHEM. PHYS. 37, 2027-2031 (1962) BENZENE RING DISTORTION
BY ONE SUBSTITUENT. MICROWAVE DETERMINATION OF THE COMPLETE
STRUCTURE OF BENZONITRILE

29. B.BAK, D.CHRISTENSEN, W.B.DIXON, L.HANSEN-NYGAARD, J.RASTRUP-ANDERSEN
AND M.SCHOTTLANDER, J. MOL. SPECTR. 9, 124-129 (1962) THE COMPLETE
STRUCTURE OF FURAN

30. B.BAK, D.CHRISTENSEN, L.HANSEN-NYGAARD, AND J.RASTRUP-ANDERSEN,
SPECTROCHIM. ACTA 18, 229-233 (1962) ANALYSIS OF THE MICROWAVE
SPECTRUM OF 2-FLUORO-NAPHTHALENE WITH A DISCUSSION OF STRUCTURE
DETERMINATION POSSIBILITIES

STRUCTURE OF CHLOROFORM

32. V.W.LAURIE AND D.R.HERSCHBACH, J. CHEM. PHYS. 37, 1687-1692 (1962)
INFLUENCE OF VIBRATIONS ON MOLECULAR STRUCTURE DETERMINATIONS. II.
AVERAGE STRUCTURES DERIVED FROM SPECTROSCOPIC DATA
33. Y. MORINO, K. KUCHITSU, AND T. OKA, J. CHEM. PHYS. 36, 1108-1109 (1962)
INTERNUCLEAR DISTANCE PARAMETERS

34. T. OKA AND Y. MORINO, J. MOL. SPECTRY. 8, 9-21 (1962)
CALCULATION OF INERTIA DEFECT PART II. NONLINEAR SYMMETRIC XY2 MOLECULES

35. L. S. BARTELL, J. CHEM. PHYS. 38, 1827-1833 (1963)
CALCULATION OF MEAN ATOMIC POSITIONS IN VIBRATING POLYATOMIC MOLECULES

MICROWAVE SPECTRA AND STRUCTURE OF DIMETHYL ETHER

37. D. R. HERSCHBACH AND V. W. LAURIE, UCRL-11208 (1963)
INFLUENCE OF VIBRATIONS ON MOLECULAR STRUCTURE DETERMINATIONS III. INERTIAL DEFECTS

38. D. R. LIDE, JR. AND M. JEN, J. CHEM. PHYS. 38, 1504-1507 (1963)
MICROWAVE SPECTRUM OF TERTIARY BUTYL CHLORIDE. A COMPARISON OF TERTIARY BUTYL STRUCTURES

INERTIA DEFECT PART III. INERTIA DEFECT AND PLANARITY OF FOUR-ATOMIC MOLECULES

40. A. CHUTJIAN, J. MOL. SPECTRY 14, 361-370 (1964)
DETERMINATION OF STRUCTURE BY ISOTOPIC SUBSTITUTION IN MOLECULES WITH SYMMETRICALLY EQUIVALENT ATOMS

41. M. TOYAMA, T. OKA, AND Y. MORINO, J. MOL. SPECTRY 13, 193-213 (1964)
EFFECT OF VIBRATION AND ROTATION ON THE INTERNUCLEAR DISTANCE

42. K. KUCHITSU, T. OKA, AND Y. MORINO, J. MOL. SPECTRY 15, 51-67 (1965)
CALCULATION OF INERTIA DEFECT. PART IV. ETHYLENE-TYPE MOLECULES
Section VII. QUADRUPOLE COUPLING

Nuclear quadrupole interactions can perturb the rotational spectrum of a molecule which contains one or more nuclei with nonspherical nuclear charge distributions. These effects have been studied in linear, symmetric, and asymmetric top molecules19, 21 to provide information concerning the electric field gradient at the quadrupole nucleus. Second-order effects can become prominent when the quadrupole interaction is sizable or when an appropriate near degeneracy is present.100, 102, 103 In the case of an asymmetric rotor, the second-order interaction may lead to an evaluation of an off-diagonal coupling constant X_{ij}. Intensities of the hyperfine components have been adopted directly from atomic spectra.21, 3 Bersohn37 and Misushima and Ito48 have treated the case of three quadrupole nuclei in a symmetric rotor. Work has also been done on asymmetric rotors with two quadrupole nuclei.104–106, 109, 112 As experimental sensitivity is improved, coupling in excited vibrational states may be studied.86, 88 Interactions with an external electric field are referenced in Section X.

Excellent reviews on the subject have been written by Das and Hahn97 and O'Konski.107
6. A.Nordsieck,Phys.Rev.58,310-315(1940) On the value of the electric quadrupole moment of the deutron
17. R.J.Watts and D.Williams,Phys.Rev.72,263-265(1947) Nuclear quadrupole moment effects in the inversion spectrum of ammonia
19. J.BARDEEN AND C.H.TOWNES, PHYS.REV.73, 97-105 (1948) CALCULATION OF NUCLEAR QUADRUPOLE EFFECTS IN MOLECULES

20. J.BARDEEN AND C.H.TOWNES, PHYS.REV.73, 627-629 (1948) SECOND-ORDER CORRECTIONS TO QUADRUPOLE EFFECTS IN MOLECULES ERRATA-PHYS.REV. 73, 1204 (1948)

21. J.K.BRAGG, PHYS.REV. 74, 533-538 (1948) THE INTERACTION OF NUCLEAR ELECTRIC QUADRUPOLE MOMENTS WITH MOLECULAR ROTATION IN ASYMMETRIC-TOP MOLECULES. I.

23. G.KNIGHT AND B.T.FELD, PHYS.REV. 74, 354 (1948) INTERACTION OF NUCLEAR QUADRUPOLE MOMENTS WITH MOLECULAR ROTATION IN SLIGHTLY ASYMMETRIC ROTOR MOLECULES

24. A.G.SMITH, H.RING, W.V.SMITH, AND W.GORDY, PHYS.REV. 73, 633 (1948) NUCLEAR QUADRUPOLE COUPLING OF NITROGEN IN ICN AND N2O

25. C.H.TOWNES AND S.GESCHWIND, PHYS.REV. 74, 626-627 (1948) SPIN AND QUADRUPOLE MOMENT OF S(33)

26. J.W.TRISCHKA, PHYS.REV. 74, 718-727 (1948) NUCLEAR QUADRUPOLE INTERACTION IN CSF

27. R.T.WEIDNER, PHYS.REV. 73, 254 (1948) NUCLEAR QUADRUPOLE INTERACTION IN THE ICL SPECTRUM

28. J.K.BRAGG AND S.GOLDEN, PHYS.REV. 75, 735-738 (1949) THE INTERACTION OF NUCLEAR ELECTRIC QUADRUPOLE MOMENTS WITH MOLECULAR ROTATION IN ASYMMETRIC TOP MOLECULES. II. APPROXIMATE METHODS FOR FIRST-ORDER COUPLING

31. P.KUSCH, PHYS.REV. 75, 887-888 (1949) ON THE NUCLEAR QUADRUPOLE MOMENT OF LI(6)

32. R.LIVINGSTON, O.R.GILLIAM, AND W.GORDY, PHYS.REV. 76, 149-150 (1949) THE NUCLEAR SPIN AND QUADRUPOLE MOMENT OF I(129)

33. C.H.TOWNES AND L.C.AAMODT, PHYS.REV. 76, 691-692 (1949) NUCLEAR SPIN AND QUADRUPOLE MOMENT OF CI(36)

34. C.H.TOWNES AND B.P.DAILEY, J.CHEM. PHYS. 17, 782-796 (1949) DETERMINATION OF ELECTRONIC STRUCTURE OF MOLECULES FROM NUCLEAR QUADRUPOLE EFFECTS

35. C.H.TOWNES, H.M.FOLEY, AND W.LOW, PHYS.REV. 76, 1415-1416 (1949) NUCLEAR QUADRUPOLE MOMENTS AND NUCLEAR SHELL STRUCTURE

39
37. R. Bersohn, J. Chem. Phys. 18, 1124-1125 (1950) QUADRUPOLE COUPLING OF THREE NUCLEI IN A ROTATING MOLECULE
38. J.H. Goldstein and J.K. Bragg, Phys. Rev. 73, 347 (1950) DETERMINATION OF DOUBLE BOND CHARACTER FROM THE MICROWAVE SPECTRUM OF PLANAR ASYMMETRIC TOP MOLECULES WITH A QUADRUPOLE NUCLEUS
40. N.F. Ramsey, Phys. Rev. 78, 221-222 (1950) QUADRUPOLE MOMENT OF THE ELECTRON DISTRIBUTION IN HYDROGEN MOLECULES
41. R. Sternheimer, Phys. Rev. 80, 102-103 (1950) ON NUCLEAR QUADRUPOLE MOMENTS
44. S. Geschwind, R. Gunther-Mohr, and C.H. Townes, Phys. Rev. 81, 288-289 (1951) RATIO OF QUADRUPOLE MOMENTS OF Cl(35) AND Cl(37)
45. W. Gordy, J. Chem. Phys. 19, 792-793 (1951) INTERPRETATION OF NUCLEAR QUADRUPOLE COUPLINGS IN MOLECULES
46. C.M. Johnson, W. Gordy, and R. Livingston, Phys. Rev. 83, 1249 (1951) ON THE SPIN AND QUADRUPOLE MOMENT OF Cl(36)
49. C.H. Townes, Physica 17, 354-377 (1951) DETERMINATION OF NUCLEAR PROPERTIES BY MICROWAVE SPECTROSCOPY
51. J.Duchesne, J. Chem. Phys. 20, 1804-1805 (1952) NUCLEAR QUADRUPOLE COUPLING CONSTANTS AND MOLECULAR VIBRATIONS

58. J. D. Rogers and D. Williams, Phys. Rev. 86, 654 (1952) Nuclear Quadrupole Interactions in the Microwave Spectrum of Hydrogen A71D.

61. H. G. Dehmelt, Phys. Rev. 91, 313-314 (1953) Nuclear Quadrupole Resonance in Rhombic Sulfur and the Quadrupole Moments of S(33) and S(35).

64. A. Javan, G. Silvey, C. H. Townes, and A. V. Grosse, Phys. Rev. 91, 222-223 (1953) On the Quadrupole Moments of Mn(35), Re(185), and Re(187).

65. P. Kuscher, Phys. Rev. 92, 268-270 (1953) Sign of the Quadrupole Interaction of Li(6) in LiCl.

70. R. L. White, Phys. Rev. 91, 1014 (1953) Quadrupole Coupling of the Deuteron in DCCl and DCN.

75. W. Good, J. Chem. Phys. 22, 1470-1471 (1954) Relation of Nuclear Quadrupole Couplings to the Chemical Bond

80. R.M. Sternheimer, Phys. Rev. 95, 736-750 (1954) Effect of the Atomic Core on the Nuclear Quadrupole Coupling

82. L.C. Aamodt and P.C. Fletcher, Phys. Rev. 98, 1224-1229 (1955) Spin, Quadrupole Moment, and Mass of Selenium-75

85. W. Gordy, DIS. Faraday Soc. 19, 14-29 (1955) Quadrupole Couplings, Dipole Moments, and the Chemical Bond

INTERACTIONS IN THE MICROWAVE SPECTRA OF INTERNALLY ROTATING MOLECULES

92. T. OKA AND H. HIRAKAWA, J. PHYS. SOC. JAPAN 12, 820-823 (1957)
MICROWAVE SPECTRUM OF HCN AND DEPENDENCE OF QUADRUPOLE COUPLING CONSTANT ON THE VIBRATIONAL STATE

HYPERFINE STRUCTURE IN THE MICROWAVE SPECTRUM OF WATER I. QUADRUPOLE COUPLING IN DEUTERATED WATER

94. M. E. ROSE, ELEMENTARY THEORY OF ANGULAR MOMENTUM, JOHN WILEY & INC., NEW YORK (1957)

QUADRUPOLE COUPLING CONSTANT AND MOLECULAR STRUCTURE OF CARBON MONOXIDE-0 (17)

QUADRUPOLE MOMENT OF OXYGEN-17

97. T. P. DAS AND E. L. HAHN, NUCLEAR QUADRUPOLE RESONANCE SPECTROSCOPY, ACADEMIC PRESS INC., NEW YORK (1958)

SPIN AND QUADRUPOLE MOMENT OF IODINE-125 AND MAGNETIC MOMENT OF IODINE-131

MICROWAVE SPECTRUM AND NUCLEAR QUADRUPOLE COUPLING COEFFICIENTS FOR CHLORINE MONOXIDE

SECOND ORDER QUADRUPOLE EFFECT IN THE MICROWAVE SPECTRUM OF PROPARGYL BROMIDE

EMPIRICAL EXPRESSION FOR IONIC CHARACTER AND THE DETERMINATION OF S HYBRIDIZATION FROM NUCLEAR QUADRUPOLE COUPLING CONSTANTS

MICROWAVE SPECTRUM OF CIS-1-CHLORO-2 FLUOROETHYLENE

MICROWAVE SPECTRA OF PROPARGYL HALIDES II. MOLECULAR STRUCTURE AND SECOND ORDER QUADRUPOLE EFFECT OF PROPARGYL BROMIDE

ELECTRON DISTRIBUTION IN THE C-CL BONDS OF CH2CL2 AND DERIVATION OF MATRIX ELEMENTS OFF-DIAGONAL IN J FOR TWO QUADRUPOULAR NUCLEI IN AN ASYMMETRIC ROTOR

MICROWAVE SPECTRUM AND QUADRUPOLE INTERACTION IN CIS-1,2-DICHLOOROETHYLENE

MICROWAVE SPECTRUM, STRUCTURE, QUADRUPOLE INTERACTION, DIPOLE MOMENT, AND RENT C-CL BONDS IN 1,1-DICHLOOROCYCLOPROPANE

Section VIII. HINDERED INTERNAL ROTATION

Studies of internal rotation by microwave spectroscopy have been favored by the relative barrier heights hindering internal rotation in methyl groups and the relatively low vibrational frequencies associated with these torsional motions. Most of the barriers for CH₃-X type molecules, where X represents the frame of the molecule, fall in the region from 1-4 kilocalories which allows splitting of rotational transitions by rotation-internal rotation interactions to be observed either in the ground vibrational state or in excited torsional states. The latter is usually the vibrational modes of lowest frequency and is relatively well populated.

The theoretical methods to be applied to single top molecules have been reviewed by Lin and Swalen. In most cases the problem consists of a symmetric top attached to an asymmetric frame. Extensions have been made to treat two-top molecules, asymmetric top and frame, asymmetric cis-gauche-trans configurations of C-C bonds, and symmetric top molecules through excited states and Coriolis effects.

Herschbach has listed the barrier values determined through 1962 in a complete review of experimental results.

3. E. Gorin, J. Walter, and H. Eyring, J. Am. Chem. Soc. 61, 1877-1886 (1939) - Internal Rotation and Resonance in Hydrocarbons

5. J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006-1021 (1940) - Hindered Rotation in Methyl Alcohol

16. D. R. Lide, Jr. and D. K. Coles, Phys. Rev. 80, 911 (1950) - Microwave Spectroscopic Evidence for Internal Rotation in Methyl Silane

OF MOLECULES WITH INTERNAL ROTATION

18. T. MINDEN AND R.P. DAILEY, PHYS. REV. 82, 338 (1951) HINDERED ROTATION IN CH₃CF₃ AND CH₃SIF₃

19. L.J. OOSTERHOF, DIS. FARADAY SOC. 10, 79-87 (1951) RESTRICTED ROTATION IN CH₃AIF₃

20. K.S. Pitzer, DIS. FARADAY SOC. 10, 66-73 (1951) POTENTIAL ENERGIES FOR ROTATION ABOUT SINGLE BONDS

21. TABLES RELATING TO MATHIEU FUNCTIONS, COLUMBIA UNIVERSITY PRESS, NEW YORK (1951)

22. R.P. DAILEY, ANN. N.Y. ACAD. SCI. 55, 915-927 (1952) HINDERED ROTATION AND MICROWAVE SPECTROSCOPY

24. S. MIZUSHIMA, Y. MORINO, AND T. SHIMANOUCHI, PHYS. CHEM. 56, 724-326 (1952) SOME PROBLEMS OF INTERNAL ROTATION

27. D. G. BURKHARD, J. CHEM. PHYS. 21, 1541-1549 (1953) HINDERED ROTATION INVOLVING TWO ASYMMETRIC GROUPS

28. N. W. LUFT, J. CHEM. PHYS. 21, 179 (1953) ASYMMETRIC INTERNAL ROTATIONAL BARRIERS ABOUT SINGLE BONDS

29. N. W. LUFT, TRANS. FARADAY SOC. 49, 118-121 (1953) INTERNAL POTENTIAL BARRIERS IN SATURATED HYDROCARBONS

30. A.-C. TANG, SCI. SINICA 3, 279-299 (1954) THE PROBLEM OF INTERNAL ROTATIONS OF MOLECULES

33. N. W. LUFT, J. CHEM. PHYS. 22, 155-156 (1954) ASSIGNMENT OF TORSIONAL FREQUENCIES IN SOME HALOGENATED ETHANES

34. N. W. LUFT, J. CHEM. PHYS. 22, 1814-1820 (1954) MAGNITUDES OF BARRIERS IN INTRAMOLECULAR ROTATION

35. M. MIZUSHIMA, STRUCTURE OF MOLECULES AND INTERNAL ROTATION, ACADEMIC PRESS, NEW YORK (1954)

36. A.-C. TANG, SCI. SINICA (PEKING) 3, 279-299 (1954) INTERNAL ROTATION

38. G. BLANCH AND I. RHODES, WASH. ACAD. SCI. 45, 166-196 (1955) TABLE OF CHARACTERISTIC VALUES OF MATHEMUS EQUATION FOR LARGE VALUES OF THE PARAMETER

40. E. V. IVASH, J. CHEM. PHYS. 23, 1814-1818 (1955) THERMODYNAMIC PROPERTIES OF IDEAL GASEOUS METHANOL

41. R. W. KI'B, J. CHEM. PHYS. 23, 1736-1737 (1955) INTERNAL BARRIER HEIGHT OF METHYL MERCAPTAN

42. D. KIVELSON, J. CHEM. PHYS. 23, 2230-2235 (1955) THEORY OF INTERNAL OVER-ALL ROTATIONAL INTERACTIONS. II. HAMILTONIAN FOR THE NON-RIGID INTERNAL ROTOR

43. D. KIVELSON, J. CHEM. PHYS. 23, 2236-2243 (1955) THEORY OF INTERNAL OVERALL ROTATIONAL INTERACTIONS. III. NON-RIGID ASYMMETRIC ROTORS

45. N. W. LUFT, Z. ELEKTROCHEM. 59, 46-55 (1955) INTRA-MOLECULAR TORSIONAL VIBRATIONS

46. E. A. MASON AND M. M. KREEVOY, J. AM. CHEM. SOC. 77, 5808-5814 (1955) A SIMPLE MODEL FOR BARRIERS TO INTERNAL ROTATION

48. H. T. MINDEN, PHYS. REV. 98, 1160 (1955) MOLECULAR DISTORTION CAUSED BY HINDERED ROTATION

49. J. D. SWALEN, J. CHEM. PHYS. 23, 1739-1740 (1955) STRUCTURE AND POTENTIAL BARRIER TO HINDERED ROTATION IN METHYL ALCOHOL

50. P. R. SWAN AND M. W. P. STRANDBERG, PHYS. REV. 99, 667 (1955) EXCITED TORSIONAL STATES IN ASYMMETRIC HINDERED ROTORS

53. B. BAK, J. CHEM. PHYS. 24, 918-919 (1956) CALCULATION OF POTENTIAL BARRIERS FOR ETHANE-LIKE SYMMETRIC TOPS
54. D.G. BURKHARD, TRANS. FARADAY SOC. 52(1-6) (1956) HINDERED ROTATION IN SYMMETRIC-ASYMMETRIC MOLECULES
55. T.P. DAS, J. CHEM. PHYS. 25, 896-903 (1956) TUNNELING THROUGH HIGH PERIODIC BARRIERS I
56. D.R. HERSHEYBACH, J. CHEM. PHYS. 25, 358-359 (1956) INTERNAL BARRIER IN CH₃CH₂F AND CH₃CHF₂ FROM TORSIONAL SATELLITES
57. R.W. KILB, TABLES OF MATHIEU EIGENVALUES AND MATHIEU EIGENFUNCTIONS FOR SPECIAL BOUNDARY CONDITIONS, DEPARTMENT OF CHEMISTRY, HARVARD UNIVERSITY (1956)
58. J.C. M. LI AND K.S. PITCHER, J. PHYS. CHEM. 60, 466-474 (1956) ENERGY LEVELS AND THERMODYNAMIC FUNCTIONS FOR MOLECULES WITH INTERNAL ROTATION. IV. EXTENDED TABLES FOR MOLECULES WITH SMALL MOMENTS OF INERTIA
59. C.C. LIN AND R.W. KILB, J. CHEM. PHYS. 24, 631 (1956) MICROWAVE SPECTRUM AND INTERNAL BARRIER OF ACETALDEHYDE
60. T. NISHIKAWA, J. PHYS. SOC. JAPAN 11, 781-786 (1956) FINE STRUCTURE OF J=1-0 TRANSITION DUE TO INTERNAL ROTATION IN METHYL ALCOHOL
61. J.D. SWALEN, J. CHEM. PHYS. 24, 1072-1074 (1956) CALCULATION OF ENERGY LEVELS IN MOLECULES WITH INTERNAL TORSION
62. E. TANNENBAUM, R.J. MYERS, AND W.D. GWINN, J. CHEM. PHYS. 25, 42-47 (1956) MICROWAVE SPECTRA, DIPOLE MOMENT, AND BARRIER TO INTERNAL ROTATION OF CH₃NO₂ AND CD₃NO₂
63. T. DAS, J. CHEM. PHYS. 27, 763-781 (1957) TUNNELING THROUGH HIGH PERIODIC BARRIERS. II. APPLICATION TO NUCLEAR MAGNETIC RESONANCE IN SOLIDS
64. J.O. HALFORD, J. CHEM. PHYS. 26, 851-855 (1957) PARTITION FUNCTION FOR INTERNAL ROTATION IN METHANOL AND SIMILAR MOLECULAR MODELS
68. D.R. HERSHEYBACH, J. CHEM. PHYS. 27, 975 (1957) TABLES OF MATHIEU INTEGRALS FOR THE INTERNAL ROTATION PROBLEM
69. D.R. HERSHEYBACH, J. CHEM. PHYS. 27, 1420-1421 (1957) COMMENTS ON THE INTERNAL ROTATION PROBLEM
 A SIMPLE MODEL FOR BARRIERS TO INTERNAL ROTATION. II. ROTATIONAL
 ISOMERS

 MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION I. PROPYLENE

 MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION II. METHYLALLEN

75. Y. MASHIKO, NIPPON KAGAKU ZASSHI 78, 1131-1139 (1957)
 POTENTIAL ENERGY SURFACE FOR TORSIONAL OSCILLATIONS IN DIMETHYL ETHER

 MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION IN CH3BF2

77. T. NISHIKAWA, J. PHYS. SOC. JAPAN 12, 686-689 (1957)
 MICROWAVE STUDIES OF THE INTERNAL MOTION AND STRUCTURE OF METHYLAMINE

78. S. SIEGEL, J. CHEM. PHYS. 27, 989-991 (1957)
 MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION FOR TRANS-FLUOROPROPYLENE

79. J. D. SWALEN AND D. R. HERSCHBACH, J. CHEM. PHYS. 27, 100-108 (1957)
 INTERNAL BARRIER OF PROPYLENE OXIDE FROM THE MICROWAVE SPECTRUM II.

80. W. J. TABOR, J. CHEM. PHYS. 27, 974-975 (1957)
 MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION OF ACETIC ACID

 ON THE ORIGIN OF POTENTIAL BARRIERS TO INTERNAL ROTATION IN MOLECULES

82. H. EYRING, G. H. STEWART, AND R. P. SMITH, PROC. NATL. ACADEMY SCI. U.S. 44,
 259-260 (1958)
 PRINCIPLE OF MINIMUM BENDING OF LOCALIZED AND DELocalized ORBITALS-ETHANE BARRIER AND RELATED EFFECTS

83. S. GOLDEN, J. PHYS. CHEM. 62, 74-75 (1958)
 EVALUATION OF THE PARTITION FUNCTION FOR RESTRICTED INTERNAL ROTATION

 MICROWAVE SPECTRUM OF CH2OCH=CH? EQUILIBRIUM CONFORMATION OF PROPYLENE

 INTERNAL BARRIER OF PROPYLENE OXIDE FROM THE MICROWAVE SPECTRUM III.

86. D. R. LIDE, JR., J. CHEM. PHYS. 29, 1426-1427 (1958)
 INTERNAL BARRIER IN ETHANE

 MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION III.
 TRIMETHYLAMINE

 MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION IV. ISOBUTANE,
 TERT-BUTYL FLUORIDE AND TRIMETHYL PHOSPHINE

89. C. C. LIN, AMER. J. PHYS. 26, 319-323 (1958)
 ON THE CLASSICAL MECHANICS OF
THE INTERNAL ROTATION OF MOLECULES

94. G. M. Harris and F. E. Harris, J. Chem. Phys. 31, 1456-1459 (1959) VALENCE BOND CALCULATION OF THE BARRIER TO INTERNAL ROTATION IN MOLECULES

100. C. C. Lin and J. D. Swalen, Revs. Mod. Phys. 31, 851-892 (1959) INTERNAL ROTATION AND MICROWAVE SPECTROSCOPY

102. J. D. Swalen and C. C. Costain, J. Chem. Phys. 31, 1562-1574 (1959) INTERNAL ROTATION IN MOLECULES WITH TWO INTERNAL ROTORS--MICROWAVE SPECTRUM OF ACETONE

104. E. B. Wilson Jr., Advances in Chemical Physics 2, 367-393 (1959) THE PROBLEM OF BARRIERS TO INTERNAL ROTATION IN MOLECULES

109. R. J. MYERS AND E. B. WILSON, JR., J. CHEM. PHYS. 33, 186-191 (1960) Application of symmetry principles to the rotation-internal torsion levels of molecules with two equivalent methyl groups

111. H. DREIZLER, Z. NATURFORSCH 16A, 477-484 (1961) Group theoretical considerations of the microwave spectrum of molecules containing two methyl groups with hindered rotation and with different carbon isotopes

112. H. DREIZLER, Z. NATURFORSCH 16A, 1354-1367 (1961) Group theoretical analysis of the microwave spectra of molecules with two rotation-hindered trigonally symmetric molecule groups

117. W. F. LIBBY, J. CHEM. PHYS. 35, 1527 (1961) Isotope size effect in van der Waals radii and the barrier to rotation around the carbon-carbon single bond

118. L. PIERCE, J. CHEM. PHYS. 34, 498-506 (1961) Energy levels for internal and overall rotation of two top molecules I. Microwave spectrum of dimethyl silane

119. L. PIERCE AND M. HAYASHI, J. CHEM. PHYS. 35, 479-485 (1961) Microwave spectrum, dipole moment, structure, and internal rotation of dimethyl sulfide

120. M. L. SAGE, J. CHEM. PHYS. 35, 142-148 (1961) Internal rotation of cis 2,3 epoxybutane from the microwave spectrum

121. W. G. FATELEY AND F. A. MILLER, SPECTROCHIM. ACTA 18, 977-993 (1962) Torsional frequencies in the far infrared-II. Molecule with two or three methyl rotors

122. E. HIROTA, J. CHEM. PHYS. 37, 283-291 (1962) Rotational isomerism and microwave spectroscopy I. The microwave spectrum of normal propyl fluoride

123. E. HIROTA, J. CHEM. PHYS. 37, 2918-2920 (1962) Rotational isomerism and microwave spectroscopy II. The microwave spectrum of butyronitrile
124. B. KIRTMAN, J. CHEM. PHYS. 37, 2515-2539 (1962) INTERACTIONS BETWEEN ORDINARY VIBRATIONS AND HINDERED INTERNAL ROTATION I. ROTATIONAL ENERGIES

125. V. MAGNASCO, NUOVO CIMENTO 24, 425-441 (1962) AN EMPIRICAL METHOD FOR CALCULATING BARRIERS TO INTERNAL ROTATION IN SIMPLE MOLECULES

126. K. D. MOLLER AND H. G. ANDRESEN, J. CHEM. PHYS. 37, 1800-1807 (1962) THEORY OF TORSION VIBRATIONS OF (CH3)2X-TYPE MOLECULES

127. Y. A. PENTIN AND V. M. TATEVSKII, IZV. AKAD. NAUK SSSR, SER. FIZ., 26, 1241-1246 (1962) INVESTIGATION OF INTERNAL ROTATION AND CIS-TRANS ISOMERISM OF MOLECULAR STRUCTURE BY SPECTROSCOPIC METHODS

128. C. R. QUADE, TABLES OF INTEGRALS FOR APPLICATION TO THE INTERNAL ROTATION OF CERTAIN ASYMMETRIC INTERNAL ROTORS, DEPARTMENT OF PHYSICS, UNIVERSITY OF OKLAHOMA (1962)

130. R. A. BEAUFET, J. CHEM. PHYS. 38, 2548-2552 (1963) MICROWAVE SPECTRUM, BARRIER TO INTERNAL ROTATION, AND DIPOLE MOMENT OF CIS CROTNONITRILE

134. D. R. HERSCHBACH, UCRL-10404 (1963) BIBLIOGRAPHY FOR HINDERED INTERNAL ROTATION AND MICROWAVE SPECTROSCOPY

135. K. D. MOLLER AND H. G. ANDRESEN, J. CHEM. PHYS. 38, 17-22 (1963) ON THE THEORY OF TORSIONAL VIBRATIONS OF (CH3)3-X TYPE MOLECULES

137. O. L. STIEFVATER AND J. SHERIDAN, PROC. CHEM. SOC. 1963, 368 (1963) MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION IN ACETYL ACETYLENE

138. B. KIRTMAN, J. CHEM. PHYS. 41, 775-788 (1964) INTERACTIONS BETWEEN ORDINARY VIBRATIONS AND HINDERED INTERNAL ROTATION. II. THEORY OF INTERNAL ROTATION FINE STRUCTURE IN SOME PERPENDICULAR BANDS OF ETHANE-TYPE MOLECULES

139. B. KIRTMAN, J. CHEM. PHYS. 41, 3262 (1964) ELECTRON DISTRIBUTIONS
INVOLVED IN BARRIERS TO INTERNAL ROTATION

140. V. W. LAURIE, J. MOL. SPECTRY. 13, 283-287 (1964) INTERNAL ROTATION AND CORIOLIS COUPLING IN SYMMETRIC TOP MOLECULES

141. I. A. MUKHTAROV, OPTIKA I SPECTROSKOPIYA 16, 910 (1964) DETERMINATION THE FREQUENCY OF TORSIONAL VIBRATION FOR TRIFLUOROETHYLENE FROM THE MICROWAVE SPECTRUM

142. S. NAKAGAWA, T. KOJIMA, S. TAKAHASHI, AND C. C. LIN, J. MOL. SPECTRY 14, 201 (1964) MICROWAVE SPECTRUM AND INTERNAL BARRIER OF MethylTHIOCYANATE

143. D. STELMAN, J. CHEM. PHYS. 41, 2111-2115 (1964) DENOMINATOR CORRECTION TO THE VAN VLECK TRANSFORMATION-INTERNAL ROTATION PROBLEM

145. R. C. WOODS III, MOLECULAR SPECTROSCOPY SYMPOSIUM, OHIO STATE UNIV. (1964) A COMPUTER CALCULATION OF INTERNAL ROTATION SPLITTINGS APPLIED TO THE MICROWAVE SPECTRUM OF FLUORAL

147. E. HIROTA, J. CHEM. PHYS. 42, 2071-2089 (1965) ROTATIONAL ISOMERISM AND MICROWAVE SPECTROSCOPY. III. THE MICROWAVE SPECTRUM OF 3-FLUOROPROPENE

149. R. A. SCOTT AND H. A. SCHERAGA, J. CHEM. PHYS. 42, 2209-2215 (1965) METHOD FOR CALCULATING INTERNAL ROTATION BARRIERS

Section IX. INVERSION

Early microwave studies of ammonia8-12, 14-17 led to an immediate interest in the inversion problem. A number of twofold, potential functions2-6, 13, 21, 52, 53 were applied to ammonia to calculate the barrier height and inversion splittings. These functions have also been adapted to inversion in asymmetric rotors.20, 47, 56, 58, 62 Recent interest has been directed toward near-planar molecules,40, 44, 50, 61 and has led to the development of matrix elements in both the harmonic oscillator and quartic oscillator representations.54, 55 These efforts have been aided by far-infrared vibrational data.43

The \(J \)-dependence of the inversion doubling has been treated with expressions of linear20, 47, 59 and exponential dependence.18, 59 Interactions with other molecular vibrations have been of considerable interest in ammonia29, 53 and methylamine.24, 34, 35 The possibility of two coupled inversion-type motions was encountered in hydrazine.47, 57
1. F.Hund, Z. Physik 43, 805-826 (1927) SIGNIFICANCE OF MOLECULAR SPECTRA. PART III. NOTES ON THE OSCILLATION AND ROTATION SPECTRA OF MOLECULES WITH MORE THAN TWO NUCLEI

4. N. Rosen and P.M. Morse, Phys. Rev. 42, 210-217 (1932) ON THE VIBRATIONS OF POLYATOMIC MOLECULES

18. C. C. Costain, Phys. Rev. 82, 108 (1951) An empirical formula for the microwave spectrum of ammonia
34. D. Kivelson and D. R. Lide, Jr., J. Chem. Phys. 27, 353-360 (1957) Theory of internal motions and application to CD3ND2
37. E. HEILBRONNER, H. RUTISHAUSER, AND F. GERSON. HELV. CHIM. ACTA 42, 2304-2314 (1959) EIGENVALUES, EIGENFUNCTIONS, AND THERMODYNAMIC FUNCTIONS FOR THE 6-FOLD POTENTIAL OF A LINEAR OSCILLATOR

42. C. O. COSTAIN AND J. M. DOWLING. J. CHEM. PHYS. 32, 158-165 (1960) MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF FORMAMIDE

43. A. DANTI, W. J. LAFFERTY, AND R. C. LORD. J. CHEM. PHYS. 33, 294-295 (1960) FAR INFRARED SPECTRUM OF TRIMETHYLENE OXIDE

44. S. I. CHAN, J. ZINN, AND W. D. GWINN. J. CHEM. PHYS. 34, 1319-1329 (1961) TRIMETHYLENE OXIDE II. STRUCTURE, VIBRATION-rotation INTERACTION, AND ORIGIN OF THERMODYNAMIC FUNCTION FOR RING PUCKERING MOTION

45. F. GERSON. HELV. CHIM. ACTA 44, 471-476 (1961) THE ONE-DIMENSIONAL OSCILLATOR 6-FOLD POTENTIAL AS A BASIS FOR A SYMMETRICAL DOUBLE MINIMUM PROBLEM

46. G. P. SHIPULO. OPTICS AND SPECTROSCOPY 10, 288 (1961) ROTATIONAL SPECTRUM OF CYANAMIDE

47. T. KASUYA. SCI. PAPERS INST. PHYS. AND CHEM. RESEARCH (TOKYO, JAPAN) 56, 1-39 (1962) MICROWAVE STUDIES OF INTERNAL MOTIONS OF HYDRAZINE MOLECULE

48. D. R. LIDE, JR. J. MOLE. SPECTR. 8, 142-152 (1962) VIBRATION-rotation INTERACTIONS IN CYANAMIDE-THE QUESTION OF PLANARITY OF AMIDES

50. G. W. RATHJENS. J. CHEM. PHYS. 36, 2401-2406 (1962) MICROWAVE INVESTIGATION OF CYCLOPENTENE

52. J. D. SWALEN AND J. A. IBERSON. J. CHEM. PHYS. 36, 1914-1918 (1962) POTENTIAL FUNCTION FOR THE INVERSION OF AMMONIA

54. S. I. CHAN AND D. STELMAN. J. MOLE. SPECTR. 10, 278-299 (1963) SOME ENERGY
LEVELS AND MATRIX ELEMENTS OF THE QUARTIC OSCILLATOR

55. S. I. CHAN AND D. STELMAN, J. CHEM. PHYS. 39, 545-561 (1963) OSCILLATORS PERTURBED BY GAUSSIAN BARRIERS

57. T. KASUYA AND T. KOJIMA, J. PHYS. SOC. JAPAN 18, 364-368 (1963) INTERNAL MOTIONS OF HYDRAZINE

58. V. W. LAURIE AND J. WOLLRAH, BULL. AM. PHYS. SOC. 32, 27 (1963) MICROWAVE SPECTRUM AND INVERSION OF DIMETHYLAMINE

60. C. B. MOORE AND G. C. PIMENTEL, J. CHEM. PHYS. 40, 1529-1534 (1964) OUT-OF-PLANE CH₂ BENDING POTENTIAL FUNCTIONS OF DIAZOMETHANE, KETENE, AND RELATED MOLECULES

62. W. M. TOLLES AND W. D. GWINN, J. CHEM. PHYS. 42, 2253-2254 (1965) QUADRUPOLE COUPLING CONSTANTS AND LOWER LIMIT TO THE BARRIER FOR INVERSION IN ETHYLENIMINE
Section X. STARK EFFECT

1. R. DE L. KRONIG, PROC. NATL. ACADEMY SCI. 12, 488-493 (1926) THE DIELECTRIC CONSTANT OF DIATOMIC DIPOLE-GASES ON THE NEW QUANTUM MECHANICS

2. R. DE L. KRONIG, PROC. NATL. ACADEMY SCI. 12, 608-612 (1926) THE DIELECTRIC CONSTANT OF SYMMETRICAL POLYATOMIC DIPOLE-GASES ON THE NEW QUANTUM MECHANICS

3. P. DERYE, POLAR MOLECULES, CHEMICAL CATALOG COMPANY INC. NEW YORK (1929)

4. F. BROUWER, DISSERTATION, AMSTERDAM (1930)

5. W. G. PENNEY, PHIL. MAG. 11, 602-609 (1931) THE STARK EFFECT IN BAND SPECTRA

6. R. P. BELL AND I. E. COOP, TRANS. FARADAY SOC. 34, 1209-1214 (1938) THE DIPOLE MOMENTS OF HYDROGEN AND DEUTERIUM CHLORIDES

9. B. P. DAILEY, PHYS. REV. 72, 84-85 (1947) FIRST ORDER STARK EFFECT IN THE MICROWAVE SPECTRUM OF METHYL ALCOHOL

13. C. H. TOWNES AND F. R. MERRITT, PHYS. REV. 72, 1266-1267 (1947) STARK EFFECT IN HIGH FREQUENCY FIELDS

16. S. GOLDEN, T. WENTINK, R. HILLGER, AND M. W. P. STRANDBERG, PHYS. REV. 73, 92-93 (1948) STARK SPECTRUM OF H2O

17. S. GOLDEN AND F. B. WILSON, JR., J. CHEM. PHYS. 16, 669-685 (1948) THE STARK EFFECT FOR A RIGID ASYMMETRIC ROTOR

19. W. A. NIERENBERG AND M. SLOTNICK, PHYS. REV. 74, 1246 (1948) A NOTE ON
THE STARK EFFECT IN DIATOMIC MOLECULES

21. L.G. WESSON, TABLES OF ELECTRIC DIPOLE MOMENTS, TECHNOLOGY PRESS, CAMBRIDGE, MASS. (1948)

22. H.K. HUGHES, PHYS. REV. 76, 1675-1677 (1949) THE ROTATION L STARK SPECTRUM OF LINEAR MOLECULES

24. A. LENARD, TABLES FOR CALCULATION OF STARK AND ZEEMAN EFFECTS, DEPT. OF PHYSICS, STATE UNIV. OF IOWA (1949) (OUT OF PRINT)

25. W. LOW AND C. H. TOWNES, PHYS. REV. 76, 1295-1299 (1949) MOLECULAR DIPOLE MOMENTS AND STARK EFFECTS. I. STARK EFFECTS ON SYMMETRIC TOP MOLECULES WITH NUCLEAR QUADRUPOLE COUPLING

27. F. COESTER, PHYS. REV. 77, 454-462 (1950) STARK-ZEEMAN EFFECTS ON SYMMETRIC TOP MOLECULES WITH NUCLEAR QUADRUPOLE COUPLING

29. R.G. SHULMAN AND C.H. TOWNES, PHYS. REV. 77, 500-506 (1950) MOLECULAR DIPOLE MOMENTS AND STARK EFFECTS. II. STARK EFFECTS IN OCS

31. D.W. MAGNUSON, J. CHEM. PHYS. 19, 1071 (1951) DETERMINATION OF THE TWO-DIPOLE MOMENT COMPONENTS IN NITROSYL FLUORIDE

32. J.N. SHOOLERY AND A.H. SHARBAUGH, PHYS. REV. 82, 95 (1951) SOME MOLECULAR DIPOLE MOMENTS DETERMINED BY MICROWAVE SPECTROSCOPY

33. S.N. GHOSH, R. TRAMBARULO, AND W. GORDY, J. CHEM. PHYS. 21, 308-310 (1953) ELECTRIC DIPOLE MOMENTS OF SEVERAL MOLECULES FROM THE STARK EFFECT

34. M. MIZUSHIMA, J. CHEM. PHYS. 21, 539-541 (1953) THEORY OF THE STARK EFFECT OF ASYMMETRIC ROTATOR WITH HYPERFINE STRUCTURE

35. S.H. AUTLER AND C.H. TOWNES, PHYS. REV. 100, 703-722 (1955) STARK EFFECT IN RAPIDLY VARYING FIELDS

36. C.C. LIN, BULL. AM. PHYS. SOC. (2) 11, 13 (1956) NEW METHOD FOR THE CALCULATION OF STARK EFFECT IN MICROWAVE SPECTRA

40. A. A. MARYOTT AND S. J. KRYDER, J. CHEM. PHYS. 27, 1221-1222 (1957) DIPOLE MOMENT OF PERCHLORYL FLUORIDE.

41. M. PETER AND M. W. P. STRANDBERG, J. CHEM. PHYS. 26, 1657-1659 (1957) HIGH FIELD STARK EFFECT IN LINEAR ROTORS.

42. C. A. BURRUS, J. CHEM. PHYS. 28, 427-429 (1958) STARK EFFECT FROM 1.1 TO 2.6 MILLIMETERS WAVELENGTH - PH3, PD3, DI, AND CO.

43. C. A. BURRUS AND J. D. GRAYBEAL, PHYS. REV. 109, 1553-1556 (1958) STARK EFFECT AT 2.0 AND 1.2 MILLIMETERS - NITRIC OXIDE.

44. E. A. HALEVI, TRANS. FARADAY SOC. 54, 1441-1446 (1958) POLARITY DIFFERENCES BETWEEN DEUTERATED AND NORMAL MOLECULES.

47. C. A. BURRUS, J. CHEM. PHYS. 31, 1270-1272 (1959) STARK EFFECT AT 0.93, 1.18, AND 1.5 MILLIMETER WAVE LENGTH - DCI, DBR, AND DI.

51. A. A. MARYOTT AND S. J. KRYDER, J. CHEM. PHYS. 31, 617-621 (1959) NON-RESONANT MICROWAVE ABSORPTION AND ELECTRIC DIPOLE MOMENT OF NO IN THE GASEOUS STATE.

52. E. B. WILSON, JR., J. PHYS. CHEM. 63, 1339-1340 (1959) CONDITIONS REQUIRED FOR NON-RESONANT ABSORPTION IN ASYMMETRIC ROTOR MOLECULES.

53. B. N. BHATTACHARYA AND W. GORDY, PHYS. REV. 119, 144-149 (1960) OBSERVATION OF & STARK COMPONENTS IN MICROWAVE SPECTROSCOPY - PRECISION MEASUREMENTS ON HCN.

55. P. FAVERO AND J. G. BAKFR, NUOVO CIMENTO 17, 734-739 (1960) ANOMALOUS
STARK EFFECTS IN THE MILLIMETER WAVE SPECTRUM OF FORMYL FLUORIDE

57. S. H. KWEI AND D. R. HERSCHBACH, J. CHEM. PHYS. 32, 1270-1271 (1960) STARK EFFECT AND DIPOLE MOMENT OF CH3CHF2

58. D. R. LIDE, JR., J. CHEM. PHYS. 33, 1519-1522 (1960) STRUCTURE OF ISOBUTANE MOLECULE-CHANGE OF DIPOLE MOMENT ON ISOTOPIC SUBSTITUTION

60. L. WHARTON, L. P. GOLD, AND W. KLEMPERER, J. CHEM. PHYS. 34, 1255 (1960) DIPOLE MOMENT OF LITHIUM HYDRIDE

63. H. KIM, R. KELLER, AND W. D. GWINN, J. CHEM. PHYS. 37, 2748-2750 (1962) DIPOLE MOMENT OF FORMIC ACID, HCOOH, HCOOD

64. W. M. TOLLES, J. L. KINSEY, R. F. CURL, AND R. F. HEIDELBERG, J. CHEM. PHYS. 37, 927-930 (1962) MICROWAVE SPECTRUM OF CHLORINE DIOXIDE. V. STARK AND ZEEMAN EFFECTS

66. J. S. MUENTER AND V. W. LAURIE, MOLECULAR SPECTROSCOPY SYMPOSIUM, OHIO STATE UNIV. (1964) ISOTOPE EFFECTS ON MOLECULAR DIPOLE MOMENTS. MICROWAVE SPECTRUM OF MONODEUTEROACETYLENE

Section XI. ELECTRONIC AND MAGNETIC EFFECTS (ZEEMAN EFFECT)

1. E.L. HILL. PHYS. REV. 34, 1507-1516 (1929) ON THE ZEEMAN EFFECT IN DOUBLET BAND SPECTRA

2. J.H. VAN VLECK. PHYS. REV. 33, 467-506 (1929) ON \(\Delta\) -TYPE DOUBLING AND ELECTRON SPIN IN THE SPECTRA OF DIATOMIC MOLECULES

3. R.S. MULLIKEN AND A. CHRISTY. PHYS. REV. 38, 87-119 (1931) \(\Delta\) -TYPE DOUBLING AND ELECTRON CONFIGURATIONS IN DIATOMIC MOLECULES

4. F.H. CRAWFORD. REV. MOD. PHYS. 6, 90-117 (1934) ZEEMAN EFFECT IN DIATOMIC MOLECULAR SPECTRA

5. R. RENNER. Z. PHYSIK 92, 172-193 (1934) INTERACTION OF ELECTRONIC AND NUCLEAR MOTIONS IN TRIATOMIC ROD-SHAPED MOLECULES

7. H. M. FOLEY. PHYS. REV. 72, 504-505 (1947) SECOND-ORDER MAGNETIC PERTURBATIONS IN NUCLEAR QUADRUPOLE SPECTRA AND THE PSEUDO-QUADRUPOLE EFFECT IN DIATOMIC MOLECULES

8. C.K. JEN. PHYS. REV. 72, 986 (1947) MICROWAVE SPECTRA AND ZEEMAN EFFECT IN A RESONANT CAVITY ABSORPTION CELL

9. R.S. HENDERSON AND J.H. VAN VLECK. PHYS. REV. 74, 106-107 (1948) COUPLING OF ELECTRON SPINS IN ROTATING POLYATOMIC MOLECULES

10. J.M. JAUCH. PHYS. REV. 74, 1262 (1948) SPIN -ORBIT EFFECT IN THE HYPERFINE STRUCTURE OF THE AMMONIA INVERSION SPECTRUM

11. C.K. JEN. PHYS. REV. 74, 1396-1406 (1948) THE ZEEMAN EFFECT IN MICROWAVE MOLECULAR SPECTRA

12. G.C. WICK. PHYS. REV. 73, 51-57 (1948) ON THE MAGNETIC FIELD OF A ROTATING MOLECULE

15. W. GORDY, O.R. GILLIAM, AND R. LIVINGSTON. PHYS. REV. 76, 443-444 (1949) NUCLEAR MAGNETIC MOMENTS FROM MICROWAVE SPECTRA I (127) AND I (129)

16. C.K. JEN. PHYS. REV. 76, 471 (1949) ROTATIONAL MAGNETIC MOMENTS FOR H2O AND HD

MAGNETIC RESONANCE ABSORPTION IN NITROGEN DIOXIDE
20. A.F. HENRY, PHYS. REV. 80, 396-401 (1950) THE ZEEMAN EFFECT IN OXYGEN

21. A.F. HENRY, PHYS. REV. 80, 549-552 (1950) HYPERFINE STRUCTURE OF ZEEMAN LEVELS IN NITRIC OXIDE

22. H. MARGENAU AND A. HENRY, PHYS. REV. 78, 587-592 (1950) THEORY OF MAGNETIC RESONANCE IN NITRIC OXIDE

23. K. B. MCAFEE, JR., PHYS. REV. 78, 340 (1950) MAGNETIC ELECTRON SPIN-NUCLEAR SPIN INTERACTION IN THE ROTATIONAL SPECTRUM OF NO2

24. N. F. RAMSEY, PHYS. REV. 78, 699-703 (1950) MAGNETIC SHIELDING OF NUCLEI IN MOLECULES

25. R. S. ANDERSON, C. M. JOHNSON, AND W. GORDY, PHYS. REV. 83, 1061-1062 (1951) RESONANT ABSORPTION OF OXYGEN AT 2.5-MILLIMETER WAVELENGTH

27. C. K. JEN, PHYS. REV. 81, 197-203 (1951) ROTATIONAL MAGNETIC MOMENTS IN POLYATOMIC MOLECULES

30. J. H. VAN VLECK, REV. MOD. PHYS. 23, 213-227 (1951) THE COUPLING OF ANGULAR MOMENTUM VECTORS IN MOLECULES

31. R. BERINGER, ANN. N. Y. ACADEMY SCI. 55, 814-821 (1952) MICROWAVE RESONANCE ABSORPTION IN PARAMAGNETIC GASES

32. R. BERINGER AND E. B. RAWSON, PHYS. REV. 86, 607 (1952) LAMBDA-DOUBLING IN A MICROWAVE SPECTRUM OF NITRIC OXIDE

34. J. R. ESHBACH AND M. W. P. STRANDBERG, PHYS. REV. 85, 24-34 (1952) ROTATIONAL MAGNETIC MOMENTS OF \(I = \Sigma \) MOLECULES

35. R. A. FROST AND H. M. FOLEY, PHYS. REV. 88, 1337-1349 (1952) MAGNETIC HYPERFINE STRUCTURE IN DIATOMIC MOLECULES

36. C. K. JEN, ANN. N. Y. ACADEMY SCI. 55, 822-830 (1952) MOLECULAR AND NUCLEAR MAGNETIC MOMENTS

38. R. STERNHEIMER, PHYS. REV. 86, 316-324 (1952) EFFECT OF THE ATOMIC CORE ON THE MAGNETIC HYPERFINE STRUCTURE
39. B.F. BURKE AND M.W.P. STRANDBERG, PHYS. REV. 90, 303-308 (1953) ZEEMAN EFFECT IN ROTATIONAL SPECTRA OF ASYMMETRIC ROTOR MOLECULES

40. J.T. COX, P.B. PEYTON, JR., AND W. GORDY, PHYS. REV. 91, 222 (1953) ZEEMAN EFFECT IN THE MICROWAVE SPECTRA OF METHYL FLUORIDE AND METHYL ACETYLENE

43. N.F. RAMSEY, PHYS. REV. 91, 303-307 (1953) ELECTRON COUPLED INTERACTIONS BETWEEN NUCLEAR SPINS IN MOLECULES

45. J.O. ARTMAN AND J.P. GORDON, PHYS. REV. 96, 1237-1245 (1954) ABSORPTION OF MICROWAVES BY OXYGEN IN THE MILLIMETER WAVELENGTH REGION

50. M. MIZUSHIMA, PHYS. REV. 94, 569-574 (1954) THEORY OF THE HYPERFINE STRUCTURE OF NO MOLECULE

51. M. MIZUSHIMA AND R. M. HILL, PHYS. REV. 93, 745-748 (1954) MICROWAVE SPECTRUM OF O2

57. R.L. White, Rev. Mod. Phys. 27, 276-288 (1955) Magnetic hyperfine structure due to rotation in \(^1\Sigma \) molecules

64. D.W. Posener, Aust. J. Phys. 11, 1-17 (1958) Coupling of nuclear spins in molecules

68. C.A. Burrus, J. Chem. Phys. 30, 976-983 (1959) Zeeman effect in the 1- to 3-millimeter wave region- molecular g factors of several light molecules

94. H. E. RADFORD. PHYS. REV. 136, 1571-1575 (1964) HYPERFINE STRUCTURE OF THE B $^2\Sigma^+$ STATE OF CN

95. W. T. PAYNES. J. CHEM. PHYS. 41, 3020-3032 (1964) SPIN SPLITTINGS AND ROTATIONAL STRUCTURES OF NONLINEAR MOLECULES IN DOUBLET AND TRIPLET ELECTRONIC STATES

96. P. THADDEUS, L. C. KRISHER, AND P. CAHILL. J. CHEM. PHYS. 41, 1542-1547 (1964) HYPERFINE STRUCTURE IN THE MICROWAVE SPECTRUM OF NH2D

Section XII. GENERAL MICROWAVE PAPERS AND RELATED TOPICS

2. M. BORN AND J. R. OPPENHEIMER, ANN. PHYSIK 4-84, 457-484 (1927) QUANTUM THEORY OF MOLECULES

3. B. PODOLSKY, PHYS. REV. 32, 812-816 (1928) QUANTUM-MECHANICALLY CORRECT FORM OF HAMILTONIAN FUNCTION FOR CONSERVATIVE SYSTEMS

4. P. M. MORSE, PHYS. REV. 34, 57-64 (1929) DIATOMIC MOLECULES ACCORDING TO THE WAVE MECHANICS II. VIBRATIONAL LEVELS

5. C. ECKART, REV. MOD. PHYS. 2, 305-380 (1930) THE APPLICATION OF GROUP THEORY TO THE QUANTUM DYNAMICS OF MONATOMIC SYSTEMS

8. E. FERMI, Z. PHYSIK 71, 250-259 (1931) ON THE RAMAN EFFECT IN CARBON DIOXIDE

9. R. S. MULLIKEN, REV. MOD. PHYS. 3, 89-155 (1931) THE INTERPRETATION OF BAND SPECTRA. PART II C. EMPIRICAL BAND TYPES

10. E. WIGNER, GROUP THEORY AND ITS APPLICATION TO THE QUANTUM MECHANICS OF ATOMIC SPECTRA, BRAUNSCHWEIG (1931)

11. H. EYRING, J. AM. CHEM. SOC. 54, 3191-3203 (1932) STERIC HINDERANCE AND COLLISION DIAMETERS

12. R. DE L. KRONIG, PHYSICA 1, 617-622 (1933) NOTE ON THE DETERMINATION OF ISOTOPIC MASSES FROM BAND SPECTRA

14. N. WRIGHT AND H. M. RANDALL, PHYS. REV. 44, 391-398 (1933) THE FAR INFRARED ABSORPTION SPECTRA OF AMMONIA AND PHOSPHINE GASES UNDER HIGH RESOLVING POWER

17. C. ECKART, PHYS. REV. 46, 383-387 (1934) THE KINETIC ENERGY OF POLYATOMIC MOLECULES

19. O.M. JORDAHL, PHYS. REV. 45, 87-97 (1934) THE EFFECT OF CRYSTALLINE ELECTRIC FIELDS ON THE PARAMAGNETIC SUSCEPTIBILITY OF CUPRIC SALTS

20. C.L. PEKERIS, PHYS. REV. 45, 98-103 (1934) THE ROTATION-VIBRATION COUPLING IN DIATOMIC MOLECULES

25. L. PAULING AND E.B. WILSON, JR., INTRODUCTION TO QUANTUM MECHANICS, MCGRAW-HILL BOOK COMPANY INC., NEW YORK (1935)

30. C. GILBERT, PHYS. REV. 49, 619-624 (1936) THE THEORY OF THE BAND SPECTRA OF PH AND NH

31. J.H. VAN VLECK, J. CHEM. PHYS. 4, 327-338 (1936) ON THE ISOTOPE CORRECTIONS IN MOLECULAR SPECTRA

32. A. BUDO, Z. PHYSIK 105, 73-80 (1937) ROTATIONAL STRUCTURE OF \(^2 \) \(\leftrightarrow ^4 \) TT BANDS

33. B.L. CRAWFORD AND P.C. CROSS, J. CHEM. PHYS. 5, 621-625 (1937) ELEMENTS OF THE FACTORED SECULAR EQUATION FOR THE SEMI-RIGID WATER TYPE ROTATOR WITH APPLICATION TO THE HYDROGEN SULFIDE BAND AT 10,000 A

34. J.B. HOWARD, J. CHEM. PHYS. 5, 642-650 (1937) THE NORMAL VIBRATIONS AND THE VIBRATIONAL SPECTRUM OF C2H6

35. E.C. KEMBLE, FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS, MCGRAW-HILL BOOK COMPANY INC., NEW YORK (1937)

36. T.E. NEVIN, NATURE 140, 1101 (1937) ROTATIONAL ANALYSIS OF THE VISIBLE O2+ BANDS

39. H. Margenau, Revs. Mod. Phys. 11, 1-35 (1939) Van der Waals Forces

40. T.Y. Wu, Vibrational Spectra and Structure of Polyatomic Molecules, National University of Peking, Kun-Ming, China (1939)

41. B.T. Darling and D.M. Dennison, Phys. Rev. 57, 128-139 (1940) The Water Vapor Molecule

42. D.M. Dennison, Revs. Mod. Phys. 12, 175-214 (1940) Infra-Red Spectra of Polyatomic Molecules, Part II

44. E.B. Wilson, Jr., Chem. Revs. 27, 17-38 (1940) The Present Status of the Statistical Method of Calculating Thermodynamic Functions

52. D. Ter Haar, Phys. Rev. 70, 222-223 (1946) The Vibrational Levels of an Anharmonic Oscillator

MICROWAVE ABSORPTION SPECTRA OF N₂O

PRELIMINARY ANALYSIS OF THE MICROWAVE SPECTRUM OF SO₂

58. B.P. DAILEY AND F.R. WILSON, JR., PHYS. REV. 72, 522 (1947)
MICROWAVE SPECTRA OF SEVERAL POLYATOMIC MOLECULES

BOND DISTANCES IN OCS FROM MICROWAVE ABSORPTION LINES

MICROWAVE ABSORPTION FREQUENCIES OF N(14)H₃ AND N(15)H₃

PRECISION FREQUENCY MEASUREMENTS OF MICROWAVE ABSORPTION LINES AND THEIR
FINE STRUCTURE

MICROWAVE SPECTRA- THE HYPERFINE STRUCTURE OF AMMONIA

63. W. GORDY, J.W. SIMMONS, AND A.G. SMITH, PHYS. REV. 72, 344-345 (1947)
NUCLEAR AND MOLECULAR CONSTANTS FROM MICROWAVE SPECTRA- METHYL
CHLORIDE AND METHYL BROMIDE

64. W. GORDY, A.G. SMITH, AND J.W. SIMMONS, PHYS. REV. 71, 917 (1947)
MICROWAVE SPECTRA- METHYL IODIDE

ANALYSIS OF THE HYPERFINE STRUCTURE IN THE MICROWAVE SPECTRUM OF
THE SYMMETRIC TOP MOLECULE CH₃I

MILLIMETER-WAVE SPECTRA HYPERFINE STRUCTURE OF BRCN AND ICN

ABSORPTION OF METHYL ALCOHOL AND METHYLAMINE FOR 1-25-CM WAVES

THE MICROWAVE ABSORPTION SPECTRUM OF CARBONYL SULFIDE

69. G.W. KING AND R.M. HAINER, PHYS. REV. 71, 135 (1947)
INTERPRETATION OF THE MICROWAVE ABSORPTION OF HDO AT 1.3 CFNIMETERS

EXPECTED MICROWAVE ABSORPTION COEFFICIENTS OF WATER AND RELATED
MOLECULES

71. H. RING, H. EDWARDS, M. KESSLER, AND W. GORDY, PHYS. REV. 72, 1262-1263 (1947)
MICROWAVE SPECTRA- METHYL CYANIDE AND METHYL ISOCYANIDE

72. W.V. SMITH AND R.L. CARTER, PHYS. REV. 72, 638-639 (1947)
SATURATION EFFECT IN MICROWAVE SPECTRUM OF AMMONIA

ROTATIONAL SPECTRA OF SOME LINEAR MOLECULES NEAR 1-CM WAVE-LENGTH

74. C.H. TOWNES, A.N. HOLDEN, AND F.R. MERRITT, PHYS. REV. 72, 513-514 (1947)

74
MICROWAVE SPECTRA OF LINEAR MOLECULES

75. R.T. WEIDNER, Phys. Rev. 72, 1268-1269 (1947) THE MICROWAVE SPECTRUM OF IODINE MONOCHLORIDE AT 4.5 CENTIMETERS WAVE-LENGTH

76. D. WILLIAMS, Phys. Rev. 72, 974 (1947) FURTHER WORK ON SATELLITES IN THE MICROWAVE SPECTRUM OF AMMONIA

81. O.R. GILLIAM, H.O. EDWARDS, AND W. GORDY, Phys. Rev. 74, 635-636 (1948) ANOMALIES IN THE HYPERFINE STRUCTURE OF CH3I AND ICN

84. M. KESSLER AND W. GORDY, Phys. Rev. 74, 123 (1948) METHODS IN MICROWAVE SPECTROSCOPY

85. M. MIZUSHIMA, Phys. Rev. 74, 705-706 (1948) ON THE AMMONIA MOLECULE

86. A. ROBERTS, Phys. Rev. 73, 1405 (1948) ROTATIONAL SPECTRUM OF OCl(14)S AND THE NUCLEAR SPIN OF C(14)

87. A.H. SHARBAUGH, Phys. Rev. 74, 1870 (1948) MICROWAVE DETERMINATION OF THE MOLECULAR STRUCTURE OF CHLOROSILANE

91. M.W.P. STRANDBERG, Phys. Rev. 74, 1245 (1948) MICROWAVE ROTATIONAL ABSORPTION IN D2O

94. B. BAK, E. S. KNUDSEN, AND E. MÁDSEN, PHYS. REV. 75, 1627-1629 (1949)
MICROWAVE ABSORPTION OF SOME ORGANIC VAPORS

THE MICROWAVE SPECTRA OF CH₃NCS AND CH₃SCN

96. D. BIANCO, G. MATLACK, AND A. ROBERTS, PHYS. REV. 76, 473 (1949)
ISOTOPIC FREQUENCIES IN THE MICROWAVE SPECTRA OF OCS AND CH₃CL

MICROWAVE SPECTRUM OF FORMALDEHYDE

MICROWAVE SPECTRA OF NITROUS OXIDE

MICROWAVE SPECTRUM OF CF₃CL

100. G. L. CUNNINGHAM, A. W. BOYD, W. D. GWINN, AND W. I. LEVAN, J. CHEM. PHYS. 17,
211-212 (1949)
STRUCTURE OF ETHYLENE OXIDE

MICROWAVE ROTATIONAL SPECTRA AND STRUCTURES OF GEH₃CL, SIH₃CL, AND
CH₃CL

102. H. D. EDWARDS, O. R. GILLIAM, AND W. GORDY, PHYS. REV. 76, 196 (1949)
MICROWAVE SPECTRUM OF METHYL ALCOHOL AND OF METHYL AMINE

NUCLEAR AND MOLECULAR INFORMATION FROM THE MICROWAVE SPECTRUM OF FCL

MICROWAVE INVESTIGATIONS OF METHYL FLUORIDE, FLUOROFORM, AND
PHOSPHORUS TRI-FLUORIDE

O₁(17) AND S₁(36) IN THE ROTATIONAL SPECTRUM OF OCS

ON THE AMMONIA MOLECULE II.

107. W. J. PIETENPOL AND J. D. ROGERS, PHYS. REV. 76, 690-691 (1949)
MICROWAVE ABSORPTION SPECTRUM OF METHYLENE BROMIDE

108. A. ROBERTS AND W. F. EDEGELL, J. CHEM. PHYS. 17, 742-743 (1949)
THE MICROWAVE SPECTRUM OF CF₂=CH₂

The determination of the molecular structure of bromosilane
by microwave measurements

110. A. H. SHARBAUGH AND J. MATTERN, PHYS. REV. 75, 1102 (1949)
MICROWAVE SPECTRUM OF METHYL BROMIDE

111. J. W. SIMMONS, PHYS. REV. 76, 686 (1949)
THE MICROWAVE SPECTRA OF CD₃CL
AND CD₃I

112. W. V. SMITH AND R. R. UNTERBERGER, J. CHEM. PHYS. 17, 1348 (1949)
MICROWAVE
INVESTIGATIONS OF CHLOROFORM

120. B. Bak, E. S. Knudsen, E. Madsen, and J. Rastrep-Andersen, Phys. Rev. 79, 190 (1950) Preliminary Analysis of the Microwave Spectrum of Ketene

121. B. Bak, R. Sloan, and D. Williams, Phys. Rev. 80, 101-102 (1950) Microwave Investigation of SCSE

128. O. R. Gilliam, C. M. Johnson, and W. Gordy, Phys. Rev. 78, 140-144 (1950) Microwave Spectroscopy in the Region from Two to Three Millimeters

133. W. KESSLER, H. RING, R. TRAMBARULO, AND W. GORDY, PHYS. REV. 79, 54-56 (1950) MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF METHYL CYANIDE AND METHYL ISOCYANIDE

134. P. KISLIUK AND C. H. TOWNES, J. CHEM. PHYS. 18, 1109-1111 (1950) THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURE OF PHOSPHORUS AND ARSENIC TRICHLORIDE

136. W. LOW AND C. H. TOWNES, PHYS. REV. 80, 608-611 (1950) EVIDENCE FROM NUCLEAR MASSES ON PROPOSED CLOSED SHELLS AT 20 NUCLEONS

139. W. J. PIETENPOL, J. D. ROGERS, AND D. WILLIAMS, PHYS. REV. 78, 480-481 (1950) MICROWAVE SPECTRA OF ASYMMETRIC TOP MOLECULES

140. S. J. SENATORE, PHYS. REV. 78, 293-294 (1950) MICROWAVE ABSORPTION SPECTRA OF POF3

141. A. H. SHARBAUGH, B. S. PRITCHARD, AND T. C. MADISON, PHYS. REV. 77, 302 (1950) MICROWAVE SPECTRUM OF CF3BR

144. J. SHERIDAN AND W. GORDY, PHYS. REV. 77, 292-293 (1950) INTERATOMIC DISTANCES IN CF3BR, CF3I, AND CF3CN

145. J. SHERIDAN AND W. GORDY, PHYS. REV. 77, 719 (1950) MICROWAVE SPECTRA AND MOLECULAR CONSTANTS OF TRIFLUOROSILANE DERIVATIVES, SIF3H, SIF3CH3, SIF3Cl, AND SIF3Br

146. J. SHERIDAN AND W. GORDY, PHYS. REV. 79, 224 (1950) MICROWAVE SPECTRUM OF METHYL BROMACETYLENE

MICROWAVE SPECTRUM AND MOLECULAR CONSTANTS OF HYDROGEN CYANIDE
ERRATA—PHYS. REV. 86, 1055 (1952)

THE STRUCTURE OF METHYL BROMIDE FROM MICROWAVE SPECTRA

THE MICROWAVE SPECTRUM OF BROMINE MONOFLUORIDE

THE MICROWAVE SPECTRUM OF BRCL

THE ISOTOPIC ANALYSIS OF NITROGEN BY MEANS OF A MICROWAVE MASS SPECTROGRAPH

MICROWAVE SPECTRA AND MOLECULAR CONSTANTS OF CD3NC AND CD3CN

154. R. TRAMBARULO AND W. GORDY, J. CHEM. PHYS. 18, 1613-1616 (1950)
THE MICROWAVE SPECTRUM AND STRUCTURE OF METHYL ACETYLENE

MICROWAVE DETERMINATION OF THE STRUCTURE OF CHLOROFORM

156. A.A. WESTENBERG AND E.B. WILSON, JR., J. AM. CHEM. SOC. 72, 199-200 (1950)
THE MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF CYANOACETYLENE

MICROWAVE SPECTRA AND MOLECULAR CONSTANTS OF TERTIARY BUTYL CHLORIDE, BROMIDE, AND IODIDE

158. J.Q. WILLIAMS AND W. GORDY, PHYS. REV. 79, 225 (1950)
MICROWAVE SPECTRUM OF BROMOFORM AND PHOSPHORUS TRIBROMIDE

159. E. AMBLE, PHYS. REV. 85, 210 (1951)
THE STRUCTURE AND DIPOLE MOMENT OF TRIOXANE

160. W.E. ANDERSON, J.SHERIDAN, AND W.GORDY, PHYS. REV. 81, 819-821 (1951)
MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF GEF3CL

161. W.E. ANDERSON, R. TRAMBARULO, J. SHERIDAN, AND W.GORDY, PHYS. REV. 82, 58-60 (1951)
THE MICROWAVE SPECTRUM AND MOLECULAR CONSTANTS OF TRIFLUOROMETHYL ACETYLENE

162. D.G. RURKHARD AND D.M. DENNISON, PHYS. REV. 84, 408-417 (1951)
THE MOLECULAR STRUCTURE OF METHYL ALCOHOL

163. R.O. CARLSON, C.A. LEE, AND B.P. FABRICAND, PHYS. REV. 85, 784-787 (1951)
THE MOLECULAR BEAM ELECTRIC RESONANCE METHOD STUDY OF THALLIUM MONOCHLORIDE

164. G.F. CRABLE AND W.V. SMITH, J. CHEM. PHYS. 19, 502 (1951)
THE STRUCTURE AND DIPOLE MOMENT OF SO2 FROM MICROWAVE SPECTRA

165. G.L. CUNNINGHAM, JR., A.W. BOYD, R.J. MYERS, W.D. GWINN, AND W.F. LEVAN,
J. CHEM. PHYS. 19, 676-685 (1951)
THE MICROWAVE SPECTRA, STRUCTURE, AND DIPOLE MOMENTS OF ETHYLENE OXIDE AND ETHYLENE SULFIDE
166. S. GESCHWIND AND R. GUNTHER-MOHREN, PHYS. REV. 81,882-883 (1951) MICROWAVE STUDY OF GF, SI, AND S MASSES

168. F. K. HURD AND W. D. HERSCHBERGER, PHYS. REV. 82, 95-96 (1951) MICROWAVE SPECTRUM OF METHYL MERCAPTAN

169. C. M. JOHNSON, R. TRAMBARULO, AND W. GORDY, PHYS. REV. 84, 1178-1180 (1951) MICROWAVE SPECTROSCOPY IN THE REGION FROM TWO TO THREE MILLIMETERS, PART II.

170. P. KISLIUK AND C. H. TOWNES, PHYS. REV. 83, 210 (1951) NEW MICROWAVE DATA ON TRICHLORIDES OF ELEMENTS OF THE FIFTH COLUMN

172. C. C. LOOMIS AND M. W. P. STRANDBERG, PHYS. REV. 81, 798-807 (1951) MICROWAVE SPECTRUM OF PHOSPHINE, ARSINE, AND STILBENE

174. N. W. LUFT, DIS. FARADAY SOC. 10, 117-118 (1951) GENERAL DISCUSSION

175. H. LYONS, L. J. RUEGER, R. G. NUCKOLLS, AND M. KESSLER, PHYS. REV. 81, 630-631 (1951) MICROWAVE SPECTRA OF DEUTERO-AMMONIAS

176. K. B. MCAFEE, JR., PHYS. REV. 82, 971 (1951) MICROWAVE SPECTRUM OF NO2

178. J. D. ROGERS, W. J. PIETENPOL, AND D. WILLIAMS, PHYS. REV. 83, 431-434 (1951) THE MICROWAVE ABSORPTION SPECTRUM OF NITROSYL CHLORIDE NOCL

179. J. D. ROGERS AND D. WILLIAMS, PHYS. REV. 82, 131 (1951) MICROWAVE ABSORPTION SPECTRUM OF HYDROGEN AZIDE

180. J. D. ROGERS AND D. WILLIAMS, PHYS. REV. 83, 210 (1951) MICROWAVE ABSORPTION SPECTRUM OF FORMIC ACID VAPOR

181. T. F. ROGERS, PHYS. REV. 83, 881 (1951) FAR WING ABSORPTION OF ATMOSPHERIC SPECTRUM LINES

182. T. M. SHAW AND J. J. WINDLE, J. CHEM. PHYS. 19, 1063-1064 (1951) MICROWAVE SPECTRUM AND DIPOLE MOMENT OF METHYL MERCAPTAN

183. J. SHERIDAN AND W. GORDY, J. CHEM. PHYS. 19, 965-970 (1951) THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF TRIFLUOROSILANE DERIVATIVES

185. M. H. SIRVETZ, J. CHEM. PHYS. 19, 938-941 (1951) THE MICROWAVE SPECTRUM OF
SULFUR DIOXIDE

186. M.H. SIRVETZ, J. CHEM. PHYS. 19, 1609-1610 (1951) THE MICROWAVE SPECTRUM OF FURAN

188. R. M. TALLEY AND A. H. NIELSEN, J. CHEM. PHYS. 19, 805-806 (1951) VIBRATION ROTATION TRANSITIONS OF C2D2 IN THE MICROWAVE REGION

190. R. O. CARLSON, C. A. LEE, AND B. P. FABRICAND, PHYS. REV. 85, 784-787 (1952) THE MOLECULAR BEAM ELECTRIC RESONANCE METHOD STUDY OF THALLIUM MONOCHLORIDE

191. V. W. COHEN, ANN. N. Y. ACAD. SCI. 55, 904-914 (1952) SPECTROSCOPY OF RADIOACTIVE MOLECULES

193. S. N. GHOSH, R. TRAMBARULO, AND W. GORDY, J. CHEM. PHYS. 20, 605-607 (1952) MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF FLUOROFORM, CHLOROFORM, AND METHYL CHLOROFORM

194. N. J. HAWKINS, V. W. COHEN, AND W. S. KOSKI, J. CHEM. PHYS. 20, 528 (1952) THE MICROWAVE SPECTRA OF POF3 AND PSF3

196. A. JAVAN AND A. V. GROSSE, PHYS. REV. 87, 227 (1952) MICROWAVE SPECTRUM OF MnO3F

197. H. R. JOHNSON AND M. W. STRANDBERG, J. CHEM. PHYS. 20, 687-695 (1952) THE MICROWAVE SPECTRUM OF KETENE

198. P. KISLIUK AND G. A. SILVEY, J. CHEM. PHYS. 20, 517 (1952) THE MICROWAVE SPECTRUM OF CF3SF3

199. S. KOJIMA, K. TSUKADA, S. HAGIWARA, M. MIZUSHIMA, AND T. ITO, J. CHEM. PHYS. 20, 804-808 (1952) MICROWAVE SPECTRA OF CHB3 IN THE REGION FROM 11 TO 12.5 CENTIMETERS

201. D. R. LIDE, JR., J. AM. CHEM. SOC. 74, 3548-3552 (1952) THE MICROWAVE SPECTRUM AND STRUCTURE OF METHYLENE FLUORIDE

203. J. M. MAYS, ANN. N. Y. ACAD. SCI. 55, 789-799 (1952) SPECTROSCOPIC...
MEASUREMENTS ON HIGH-BOILING, REACTIVE, AND UNSTABLE MOLECULES

204. J. M. MAYS AND B. P. DAILEY, J. CHEM. PHYS. 20, 1695-1703 (1952)
MICROWAVE SPECTRA AND STRUCTURES OF XYH3 MOLECULES

J. CHEM. PHYS. 20, 1112-1114 (1952)
STRUCTURE OF METHYL HALIDES

206. R. MOCKLER, J. H. BAILEY, AND W. GORDY, PHYS. REV. 87, 172 (1952)
MICROWAVE INVESTIGATIONS OF HSICL3 AND CH3SICL3

THE MICROWAVE SPECTRUM OF VINYLACETATE

THE MICROWAVE SPECTRUM AND MOLECULAR CONSTANTS OF HYDROGEN CYANIDE

209. N. F. RAMSEY, PHYS. REV. 87, 1075-1079 (1952)
VIBRATIONAL AND CENTRIFUGAL EFFECTS ON NUCLEAR INTERACTIONS AND ROTATIONAL MOMENTS IN MOLECULES

210. A. L. SCHAWLOW, ANN. N. Y. ACAD. SCI. 55, 955-965 (1952)
SIGNIFICANCE OF THE RESULTS OF MICROWAVE SPECTROSCOPY FOR NUCLEAR THEORY

211. J. SHERIDAN AND W. GORDY, J. CHEM. PHYS. 20, 591-595 (1952)
THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF TRIFLUOROMETHYL BROMIDE, IODIDE, AND CYANIDE

212. J. SHERIDAN AND W. GORDY, J. CHEM. PHYS. 20, 735-738 (1952)
THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF METHYL BROMOACETYLENE AND METHYL IODOACETYLENE

MASSES OF THE STABLE TELLURIUM ISOTOPES FROM THE MICROWAVE SPECTRUM OF TEC5

THE MICROWAVE SPECTRA OF THE DEUTERATED METHYL HALIDES

THE MICROWAVE SPECTRUM OF NITRYL FLUORIDE

216. S. J. TETENBAUM, PHYS. REV. 86, 440-446 (1952)
MICROWAVE SPECTRUM OF BRCN AT SIX MILLIMETERS

217. S. J. TETENBAUM, PHYS. REV. 88, 772-774 (1952)
SIX-MILLIMETER SPECTRA OF OCS AND N2O

218. T. L. WEAVER AND D. WILLIAMS, J. CHEM. PHYS. 20, 755 (1952)
THE MICROWAVE ABSORPTION SPECTRUM OF ACETONE VAPOR

EVIDENCE FOR A COMPLETELY PLANAR STRUCTURE OF PYRROLE FROM ITS MICROWAVE SPECTRUM

THE MICROWAVE SPECTRUM OF VINYL CYANIDE

221. Q. WILLIAMS, J. T. COX, AND W. GORDY, J. CHEM. PHYS. 20, 1524-1525 (1952)
MOLECULAR STRUCTURE OF BROMOFORM
222. G. WILLIAMS, J. SHERIDAN, AND W. GORDY, J. CHEM. PHYS. 20, 164-167 (1952) MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF POF₃, PSF₃, POCL₃, AND PSCL₃

225. B. BAK, J. BRUHN, AND J. RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 752-753 (1953) MICROWAVE SPECTRUM AND STRUCTURE OF S1D₃F

226. B. BAK, J. BRUHN, AND J. RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 753-754 (1953) MICROWAVE SPECTRUM AND STRUCTURE OF S1D₃CL

227. B. BAK AND J. RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 1305-1306 (1953) MICROWAVE INVESTIGATION OF PYRIDINE

228. Y. BEERS AND S. WEISRAUM, PHYS. REV. 91, 1014 (1953) AN ULTRA-HIGH FREQUENCY ROTATIONAL LINE OF HDO

230. G. BIRNBAUM AND A. A. MARYOTT, PHYS. REV. 92, 270-273 (1953) CHANGE IN THE INVERSION SPECTRUM OF ND₃ FROM RESONANT TO NONRESONANT ABSORPTION

231. C. A. BURRUS AND W. GORDY, PHYS. REV. 92, 1437-1439 (1953) ONE-TO-TWO MILLIMETER WAVE SPECTROSCOPY. III. NO AND DI

232. C. A. BURRUS AND W. GORDY, PHYS. REV. 92, 274-277 (1953) ONE-TO-TWO MILLIMETER WAVE SPECTROSCOPY. II. H₂S

233. H. D. CRAWFORD, J. CHEM. PHYS. 21, 2099 (1953) TWO NEW LINES IN THE MICROWAVE SPECTRUM OF HEAVY WATER

234. B. P. DAILEY, PHYS. REV. 90, 337-338 (1953) THE ROTATIONAL SPECTRUM AND MOLECULAR STRUCTURE OF CYCLOPROPYL CHLORIDE

236. G. ERLANDSSON, ARKIV. FYSIK 6, 477-478 (1953) MICROWAVE SPECTRUM OF FLUOROBENZENF

238. G. ERLANDSSON, ARKIV. FYSIK 6, 491-495 (1953) PRELIMINARY ANALYSIS OF THE MICROWAVE SPECTRUM OF FORMIC ACID

239. R. C. FERGUSON AND E. B. WILSON, JR., PHYS. REV. 90, 338 (1953) THE MICROWAVE SPECTRUM AND STRUCTURE OF THIONYL FLUORIDE

240. A. HONIG, M. L. STITCH, AND M. MANDEL, PHYS. REV. 92, 901-902 (1953) MICROWAVE SPECTRA OF CSF, CSCL, AND CSBR

245. W. C. King and W. Gordy, Phys. Rev. 90, 319-320 (1953) One to Two Millimeter Wave Spectroscopy, 1

251. M. Mizushima and P. Venkateswarlu, J. Chem. Phys. 21, 705-709 (1953) The Possible Microwave Absorption in the Molecules Belonging to the Point Groups D2d and TD

252. R. C. Mockler, J. H. Bailey, and W. Gordy, J. Chem. Phys. 21, 1710-1713 (1953) Microwave Spectra and Molecular Structures of HSICl3, CH3SiCl3, and (CH3)3SiCl

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors and Title</th>
<th>Journal and Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>261</td>
<td>K. SHIMODA and T. NISHIKAWA</td>
<td>J. PHYS. SOC. JAPAN 8, 133-134 (1953)</td>
</tr>
<tr>
<td>262</td>
<td>K. SHIMODA and T. NISHIKAWA</td>
<td>J. PHYS. SOC. JAPAN 8, 425-426 (1953)</td>
</tr>
<tr>
<td>263</td>
<td>M.E. SIRVETZ and R.E. WESTON</td>
<td>J. CHEM. PHYS. 21, 898-902 (1953)</td>
</tr>
<tr>
<td>264</td>
<td>D.F. SMITH</td>
<td>J. CHEM. PHYS. 21, 609-614 (1953)</td>
</tr>
<tr>
<td>265</td>
<td>N. SOLIMENE and B.P. DAILEY</td>
<td>PHYS. REV. 91, 464 (1953)</td>
</tr>
<tr>
<td>266</td>
<td>T.E. TURNER, V. C. FIORA, W. M. KENDRICK, and B.L. HICKS</td>
<td>J. CHEM. PHYS. 21, 564-565 (1953)</td>
</tr>
<tr>
<td>267</td>
<td>P. VENKATESWARLU, R. C. MOCKLER, and W. GORDY</td>
<td>J. CHEM. PHYS. 21, 1713-1715 (1953)</td>
</tr>
<tr>
<td>268</td>
<td>S. WEISBAUM, Y. REERS, and G. HERRMANN</td>
<td>PHYS. REV. 90, 338 (1953)</td>
</tr>
<tr>
<td>270</td>
<td>B.BAK, L. HANSEN, and J. RASTRUP-ANDERSEN</td>
<td>J. CHEM. PHYS. 22, 876-880 (1954)</td>
</tr>
<tr>
<td>271</td>
<td>B.BAK, L. HANSEN, and J. RASTRUP-ANDERSEN</td>
<td>J. CHEM. PHYS. 22, 1257 (1954)</td>
</tr>
<tr>
<td>272</td>
<td>C.A. BURRUS and W. GORDY</td>
<td>PHYS. REV. 93, 897-898 (1954)</td>
</tr>
<tr>
<td>273</td>
<td>C.A. BURRUS, A. JACHE, and W. GORDY</td>
<td>PHYS. REV. 95, 706-708 (1954)</td>
</tr>
<tr>
<td>276</td>
<td>G. ERLANDSSON</td>
<td>ARKIV FYSIK 7, 189-192 (1954)</td>
</tr>
<tr>
<td>277</td>
<td>G. ERLANDSSON</td>
<td>J. CHEM. PHYS. 22, 563-564 (1954)</td>
</tr>
<tr>
<td>278</td>
<td>G. ERLANDSSON</td>
<td>ARKIV FYSIK 8, 341-342 (1954)</td>
</tr>
</tbody>
</table>
279. G. ERLANDSSON, J. CHEM. PHYS. 22, 1152 (1954) MICROWAVE SPECTRUM OF BENZONITRILE

281. W. GORDY, J. PHYS. RADIUM 15, 521-523 (1954) SPECTROSCOPY FROM 1 TO 5 MM WAVELENGTH

283. W. GORDY AND J. SHERIDAN, J. CHEM. PHYS. 22, 92-95 (1954) MICROWAVE SPECTRA AND STRUCTURES OF METHYL MERCURY CHLORIDE AND BROMIDE

290. A. JACHE, G. LEVINS, AND W. GORDY, PHYS. REV. 95, 299 (1954) MILLIMETER WAVE SPECTRUM OF ARSIN

THE MICROWAVE SPECTRUM OF REO3F

300. M. MATRICON AND BUNNET, J. PHYS. RADIUS 15, 647-648 (1954) SPECTRUM OF ETHYLAMINE

302. M. PETER AND M. W. STRANDBERG, PHYS. REV. 95, 622 (1954) MICROWAVE SPECTRUM OF OCS

306. N. SOLIMENE AND B. P. DAILEY, J. CHEM. PHYS. 22, 2042-2044 (1954) MICROWAVE SPECTRUM OF 1,1-DIFLUOROETHANE

308. R. TRAMBARULO AND P. M. MOSER, J. CHEM. PHYS. 22, 1622-1623 (1954) MICROWAVE SPECTRUM OF FORMIC ACID

309. R. S. WAGNER AND B. P. DAILEY, J. CHEM. PHYS. 22, 1459 (1954) MICROWAVE SPECTRUM OF ETHYL CHLORIDE

313. A. H. BARRETT AND M. MANDEL, PHYS. REV. 99, 666 (1955) MICROWAVE SPECTRA OF INDIUM CHLORIDE AND BROMIDE

314. N. G. BASOV AND A. M. PROKHOROV, ZHUR. EKSPTL. I TEORET. FIZ. 28, 249-250 (1955) POSSIBLE METHOD FOR OBTAINING ACTIVE MOLECULES FOR A MOLECULAR GENERATOR

320. G. Erlandsson, Arkiv Fysik 9, 341-343 (1955) Microwave Spectrum of Cyclopentene Oxide

354. A.I. PARCHELOV, M. MIKHAYLOVA, AND A.M. POLKOVNIKOV, SOVIET PHYS. JETP 2, 760 (1956) MICROWAVE ROTATION SPECTRUM OF THE ETHYL CHLORIDE MOLECULE

355. G. BIRD, J. CHEM. PHYS. 25, 1040-1043 (1956) MICROWAVE SPECTRUM OF NO2-

356. G. ERLANDSSON, J. CHEM. PHYS. 25, 379 (1956) MILLIMETER WAVE SPECTRUM OF FORMIC ACID

357. G. ERLANDSSON, J. CHEM. PHYS. 25, 572-580 (1956) MILLIMETER WAVE SPECTRUM OF FORMALDEHYDE

365. V. W. LAURIE, J. CHEM. PHYS. 24, 635-636 (1956) MICROWAVE SPECTRUM AND DIPOLE MOMENT OF CYCLOPENTADIENE

366. A. A. MARYOTT AND G. BIRNBAUM, J. CHEM. PHYS. 24, 1022-1026 (1956) MICROWAVE ABSORPTION IN COMPRESSED GASES-SATURATED HYDROCARBONS

368. A. OKAYA, J. PHYS. SOC. JAPAN 11, 258-263 (1956) MICROWAVE HYPERFINE SPECTRUM OF FORMALDEHYDE

371. P. Swarup, Z. Physik 144, 632-636 (1956) Absorption and Dispersion of Microwaves in Methyl Bromide

375. R. Wertheimer, Compt. Rend. 242, 243-244 (1956) Absorption Spectrum of Formic Acid Vapor in the Vicinity of 3 mm

376. R. Wertheimer, Arch. Sci. (Geneva) 19, 47-48 (1956) Absorption Spectrum of Formic Acid Vapor Between the Wavelengths of 4.5 and 2.5 mm

PURE ROTATION SPECTRA OF LIGHT AND HEAVY VINYL BROMIDE BY MICROWAVE METHOD

PURE ROTATION SPECTRA OF VINYL BROMIDE

391. H. HAPPI, Z. PHYSIK 147, 567-572 (1957) MICROWAVE SPECTRUM OF THALLIUM(I) IODIDE AND RISMUTH CHLORIDE IN THE 3 CM AND 1.5 CM BAND

POTENTIAL BARRIER AND MOLECULAR STRUCTURE OF METHYL MERCAPTAN FROM ITS MICROWAVE SPECTRA

393. KRISHNAJI AND G. P. SRIVASTAVA, PHYS. REV. 106, 1186-1189 (1957)
MICROWAVE ABSORPTION IN ETHYL CHLORIDE

MICROWAVE SPECTRUM, STRUCTURE, DIPOLE MOMENT, AND QUADRUPOLE COUPLING CONSTANTS OF FORMAMIDE

395. V. W. LAURIE, J. CHEM. PHYS. 26, 1359-1362 (1957) MICROWAVE SPECTRUM, DIPOLE MOMENT, AND STRUCTURE OF DIFFLUOROSILANE

MICROWAVE SPECTRUM AND STRUCTURE OF FORMIC ACID

MICROWAVE SPECTRUM AND STRUCTURE OF SULFURYL FLUORIDE

FREQUENCY OF THE AMMONIA (3,3) LINE

401. I. A. MUKHTAROV, SOVIET PHYSICS-DOKLADY 2, 357-358 (1957) MICROWAVE SPECTRA OF 1,2-DIFLUOROCHLOROETHANE

402. B. D. OSIPOV, OPTIKA I SPECTROSKOPIYA 3, 94-95 (1957) HYPERFINE STRUCTURE OF ROTATIONAL TRANSITION J=3-4 OF THE MEI(127) MOLECULE

404. S. SEKINO AND T. NISHIKAWA, J. PHYS. SOC. JAPAN 12, 43-48 (1957) MICROWAVE SPECTRUM OF VINYLIDENE CHLORIDE

405. H. SELEN, ARKIV. FYSIK 13, 81-83 (1957) MICROWAVE SPECTRUM OF CHLOROBENZENE

407. T. SPARSTAD AND E. AMBLE, J. CHEM. PHYS. 27, 317 (1957) Microwave spectrum and structure of \((\text{CH}_3)_3\text{CCN}\)

408. L. F. THOMAS, J. S. HEFKIS, AND J. SHERIDAN, Z. Elektrochem. 61, 935-937 (1957) Microwave spectra of some molecules containing \(-\text{CF}_3\) and \(\text{SF}_3\) groups

409. V. G. VESELAGO AND A. M. PROKHOROV, SOVIET PHYS. JETP 4, 751 (1957) The HOSE microwave spectrum

410. R. S. WAGNER AND B. P. DAILEY, J. CHEM. PHYS. 26, 1588-1593 (1957) Microwave spectrum of ethyl chloride

411. R. S. WAGNER, B. P. DAILEY, AND N. SOLIMENE, J. CHEM. PHYS. 26, 1593-1596 (1957) Microwave spectrum of ethyl bromide

413. R. WERTHEIMER, ARCH. SCI. (GENEVA) 10, 184-186 (1957) Molecular constants of formic acid from the rotational spectrum

414. R. WERTHEIMER AND M. CLOUCARD, COMPT. REND. 245, 1793-1794 (1957) Absorption of sulfuric anhydride \((\text{SO}_2)\) in the millimeter wave region

418. A. I. BARCHUKOV AND N. G. BASOV, OPTIKA I SPECTROSKOPIYA 4, 532 (1958) Frequencies and intensities of hyperfine structure lines of \(\text{CH}_3\) (the transition \(1=0\)-1)

419. A. I. BARCHUKOV, T. M. MURINE, AND A. M. PROKHOROV, OPTIKA I SPECTROSKOPIYA 4, 521-523 (1958) Microwave spectrum and rotation constants of ethyl chloride molecule

420. A. I. BARCHUKOV AND A. M. PROKHOROV, OPTIKA I SPECTROSKOPIYA 5, 530-534 (1958) Quadrupole bond, dipole moment, and the internal rotation barrier in the \(\text{CH}_3\text{GeH}_3\) molecule determined from its rotational spectrum

421. A. I. BARCHUKOV AND A. M. PROKHOROV, OPTIKA I SPECTROSKOPIYA 4, 799 (1958) Microwave spectrum of \(\text{CH}_3\text{GeH}_3\)

422. A. H. BARRETT AND M. MANDEL, PHYS. REV. 109, 1572-1589 (1958) Microwave spectra of thallium, indium, and gallium monohalides

423. M. COWAN AND W. GORDY, PHYS. REV. 111, 209-211 (1958) Precision measurements of millimeter and submillimeter wave spectra—deuterium chloride, deuterium bromide, and deuterium iodide

442. J.D. SWALEN AND B.P. STOICHEFF, J. CHEM. PHYS. 28, 671-674 (1958) MICROWAVE SPECTRUM OF METHYL DIFLUOROSILANF

446. D. CHRISTENSEN, SPECTROCHIM. ACTA 15, 767 (1959) PRELIMINARY INVESTIGATION OF THE MICROWAVE ABSORPTION OF ALPHA-FLUORONAPHTHALENE

450. R.F. CURL, JR., J. CHEM. PHYS. 30, 1529-1536 (1959) MICROWAVE SPECTRUM, BARRIER TO INTERNAL ROTATION, AND STRUCTURE OF METHYL FORMATE

451. A. DANTI AND J.L. WOOD, J. CHEM. PHYS. 30, 582-584 (1959) FAR INFRARED SPECTRUM AND THE BARRIER TO INTERNAL ROTATION IN 1,1,1,2-TRIFLUOROTETRAHANE

452. V.E. DERR AND J.J. GALLAGHER, RULL., AM. PHYS. SOC. 4, 455 (1959) NITRIC OXIDE CONSTANTS FROM MICROWAVE SPECTROSCOPY

454. A. GIACOMO, NUOVO CIMENTO 14, 1082-1092 (1959) ON SOME PHENOMENA RELATED TO THE SATURATION OF ROTATIONAL RESONANCES

456. D.R. JENNINGS AND T.M. SUGDEN, TRANS. FARADAY SOC. 55, 1473-1479 (1959) MICROWAVE SPECTRUM AND STRUCTURE OF 1,1 DIFLUOROVINYL CHLORIDE

458. T.KASUYA AND T.OKA, J. PHYS. SOC. JAPAN 14, 980-981 (1959) MICROWAVE SPECTRUM OF ETHYL IODIDE

470. I. A. Mukhtarov, Optika i Spektroskopiya 6, 260 (1959) Microwave Spectrum of the FH2CH2CL(37) Molecule

478. J. K. Tyler, A. P. Cox, and J. Shridan, Nature 183, 1182-1183 (1959) Molecular Symmetry in Cyclopenta-1,2,3,4-tetraene and Some Ruffled Compounds from Their Microwave Spectra
DETERMINATION OF THE STRUCTURE AND DIPOLE MOMENT OF HDSE FROM ITS MICROWAVE SPECTRUM

ABSORPTION SPECTRUM OF SULFURIC ANHYDRIDE IN THE MILLIMETER WAVE REGION

MICROWAVE DETERMINATION OF THE STRUCTURE OF ETHYL FLUORIDE

THE RADIO-FREQUENCY SPECTRUM OF H2+

MICROCLUSTER STRUCTURE AND MOLECULAR SPECTRUM OF MONOCHLORACETONITRILE

MICROWAVE SPECTRUM OF MALONONITRILE, CH2(CH)2 I. THE MOLECULAR STRUCTURE IN THE GROUND VIBRATIONAL STATE

ULTRAHIGH FREQUENCY ABSORPTION OF CH3GEF3

MICROWAVE SPECTRUM OF 18O FORMIC ACID AND THE STRUCTURE OF FORMIC ACID

500. C. C. Lin, Phys. Rev. 119, 1027-1028 (1960) Hyperfine structure of the microwave spectra of the NO molecule and the nuclear quadrupole moment of nitrogen

513. A. M. Prokhorov and G. P. Shipulo, Optics and Spectroscopy 8, 218-219 (1960) Microwave investigation of the molecules F3BNH3 and F3BN(CH3)3

517. T. SHIMIZU AND H. TAKUMA, J. PHYS. SOC. JAPAN 15, 646-650 (1960) MICROWAVE SPECTRUM OF CIS 1,2 DICHLOROETHYLENE

520. B. BAK, U. DEPT. COM. OFFICE TECH. SERV., AD 262, 113-26 PP. (1961) DETERMINATION OF THE STRUCTURE OF α- AND β-FLUORONAPHTHALENES AND OTHER SELECTED MOLECULFS BY INFRARFD AND MICROWAVE TECHNIQUES

528. S. DE HEPCE, ANN. SOC. SCI. BRUXELLES 75, 194-211 (1961) ROTATIONAL SPECTRA OF VINYL BROMIDES IN THE GROUND STATE AND A VIBRATIONALLY EXCITED STATE IN THE MICROWAVE REGION

537. V.W. LAURIE, J. CHEM. PHYS. 34, 1516-1519 (1961) MICROWAVE SPECTRUM OF ISOBUTYLENE, DIPOLE MOMENT, INTERNAL BARRIER, EQUILIBRIUM CONFORMATION AND STRUCTURE

544. J.D. ROGERS AND D. WILLIAMS, J. CHEM. PHYS. 34, 2195-2196 (1961) NITROSYL CHLORIDE STRUCTURE

545. K.M. SINNOTT, J. CHEM. PHYS. 34, 851-861 (1961) MICROWAVE SPECTRUM OF ACETYL CHLORIDE

547. J.F. WESTERKAMP, BOL. ACAD. NAEL. CIENC. 42, 191-200 (1961) ASYMMETRIC TOP MOLECULES IN THE MICROWAVE REGION II. CARBONYL CYANIDE AND PERFLUOROMETHYL ETHER

OXYGEN MOLECULE AND THE VELOCITY OF LIGHT

553. B.B.AK., D.CHRISTENSEN, L.Hansen-Nygaard, L.Lipschitz, and J.Rastrup-Andersen, Mol. Spectry 9, 225–227 (1962) Microwave spectra of 1,3,4-thiadiazole and 1,3,4-thiadiazole. Dipole moment of 1,3,4-thiadiazole

568. D.R. LIDF, JR., J. CHEM. PHYS. 37, 2074-2079 (1962) MICROWAVE STUDIES OF BUTADIENE DERIVATIVES I. SPECTRUM OF FLUOROPRENE

572. J. MICHELSEN-EFFINGER, BULL. CLASSE SCI., ACAD. ROY. BELG. 48, 438-452 (1962) ROTATION SPECTRUM OF ETHYL ALCOHOL BY MICROWAVES

573. A.M. MIRRI, P. FAVERO, A. GUARNIERI, AND G. SEMERANO, ROLL. SCI. FAC. CHIM. IND. BOLOGNA 20, 110-114 (1962) MILLIMETER SPECTRUM OF ASYMMETRIC TRIATOMIC NITROSYL CHLORIDE MOLECULES

574. A. MOZUMDER, PROC. NATL. INST. SCI. INDIA 28, 57-73 (1962) THE MICROWAVE SPECTRUM OF METHYL ALCOHOL I. GENERAL THEORY

576. I.A. MUKHTAROV, IZV. ANKAD. NAUK. AZER. SSR SER. FIZ. MAT. I TEKHN NAUK 1962, 59-63 (1962) MICROWAVE SPECTRUM OF 1,1,2-TRIFLUOROTOLUENE

577. L.J. NUGENT AND C.D. CORNWELL, J. CHEM. PHYS. 37, 523-534 (1962) MICROWAVE SPECTRUM OF METHYLDIFLUOROAROSINE

580. L. PIERCE AND SR. V. DOBYNS, J. AM. CHEM. SOC. 84, 2651-2652 (1962) MOLECULAR STRUCTURE, DIPOLE MOMENT, AND QUADRUPOLE COUPLING CONSTANTS OF DIAZIRINE

581. M.G.K. PILLAI, J. PHYS. CHEM. 66, 179-180 (1962) MICROWAVE SPECTRUM OF FORMALDOXIME

583. W.G. ROTHSCHILD AND B.P. DAILEY, J. CHEM. PHYS. 36, 2931-2940 (1962) MICROWAVE SPECTRUM OF HROMOCYCLORUTANE

584. R.H. SCHWENDEMAN AND G.D. JACOBS, J. CHEM. PHYS. 36, 1245-1250 (1962) MOLECULAR STRUCTURE OF ETHYL CHLORIDE

585. R.H. SCHWENDEMAN AND G.D. JACOBS, J. CHEM. PHYS. 36, 1251-1257 (1962)
MICROWAVE SPECTRUM, STRUCTURE, QUADRUPOLE COUPLING CONSTANTS, AND BARRIER TO INTERNAL ROTATION OF CHLOROMETHYLSILANE

586. G. SEMERANO, U. S. DEPT. COM. OFFICE TECH. SERV., PB. REPT. 149, 450 (1962) THE ELECTRONIC AND MICROWAVE SPECTRUM OF FORMYL FLUORIDE

587. K. SHIMODA, MASER SPECTROSCOPY, PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI, XVII COURSE, TOPICS ON RADIOFREQUENCY SPECTROSCOPY

588. G. P. SHIPULU, OPTIKA 1 SPEKTROSKOPIYA 13, 593-594 (1962) MICROWAVE SPECTRUM OF THE HDNCN AND D2NCN MOLECULES

597. S. S. BUTCHER, J. CHEM. PHYS. 38, 2311 (1963) MICROWAVE SPECTRUM OF PROPYLENE SULFIDE

598. J. C. CHAUFFOUREAUX, ANN. SOC. SCI., BRUXELLES 77, 171-176 (1963) GROUND STATE OF VINYLIDENE FLUORIDE, DATA ON THE FIRST EXCITED STATE

619. I. A. Mukhtarov, Optika i Spektroskopija 15, 563-564 (1963) Microwave Spectrum of CF2=CHF

THE MICROWAVE SPECTRUM OF TRIFLUOROETHANE

638. A. Bauer and J. Bellet, Compt. Rend., 258, 873-876 (1964) ROTATION SPECTRUM OF SO2 IN MILLIMETER WAVELENGTHS (6 MM. AND 2.2 MM.)
639. R.A. BEAUDET, J. CHEM. PHYS. 40, 2705-2715 (1964) MICROWAVE SPECTRUM, BARRIER TO INTERNAL ROTATION, AND QUADRUPOLE COUPLING CONSTANTS OF CIS-1-CHLOROPROPYLENE

641. C.C. COSTAIN AND G.P. SRIVASTAVA, J. CHEM. PHYS. 41, 1620-1627 (1964) MICROWAVE ROTATION SPECTRA OF HYDROGEN-BONDED MOLECULES

642. P.A. CURNUCK AND J. SHERIDAN, NATURE 202, 591-592 (1964) MICROWAVE SPECTRUM OF FLUOROBROMOETHANE

647. G. JONES AND W. GORDY, PHYS. REV. 135, 295-296 (1964) EXTENSION OF SUBMILLIMETER WAVE SPECTROSCOPY BELOW A HALF MILLIMETER WAVELENGTH

648. G. JONES AND W. GORDY, PHYS. REV. 136, 1229-1232 (1964) SUBMILLIMETER-WAVE SPECTRA OF HCL AND HBR

649. R. KEWLEY, K. VEL. N. SASTRY, AND M. WINNEWISER, J. MOL. SPECTRY. 12, 387-401 (1964) MICROWAVE AND MILLIMETER WAVE SPECTRA OF HYDRAZOIC ACID

651. D.R. LIDE, JR., PROC. MEETING INTERAGENCY CHEM. ROCKET PROPULSION GROUP THERMOCHEM. 1ST, NEW YORK, 1963 1, 1-2 (1964) RECENT MICROWAVE SPECTRAL STUDIES OF HIGH-TEMPERATURE SPECIES

653. D.R. LIDE, JR. AND M. JEN, J. CHEM. PHYS. 40, 252-253 (1964) MICROWAVE STUDIES OF BUTADIENE DERIVATIVES II. ISOPRENE

655. D.B. MCLAY, CAN. J. PHYS. 42, 720-730 (1964) MICROWAVE SPECTRUM OF DICHLOROFLUOROMETHANE

656. Y. MORINO, Y. KIKUCHI, S. SAITO, AND F. HIROTA, J. MOL. SPECTRY. 13, 95-118 (1964) EQUILIBRIUM STRUCTURE AND POTENTIAL FUNCTION OF SULFUR DIOXIDE FROM THE MICROWAVE SPECTRUM IN THE EXCITED
VIBRATIONAL STATE

657. I.A. MUKHTAROV, OPTIKA I SPEKTROSKOPIYA 16, 360 (1964) MICROWAVE SPECTRUM OF THE MOLECULE F2DCD2F

658. T. OKA, K. TAKAGI, AND Y. MORINO, J. MOL. SPECTRY 14, 27-52 (1964) MICROWAVE SPECTRUM OF FORMALDEHYDE IN VIBRATIONALLY EXCITED STATES

659. T. OKA, K. TSUCHIYA, S. IWATA, AND Y. MORINO, BULL. CHEM. SOC. JAPAN 37, 4-7 (1964) MICROWAVE SPECTRUM OF S-TRIOXANE

660. H. E. RADFORD, J. CHEM. PHYS. 40, 2732-2733 (1964) SYNTHESIS OF DIATOMIC MOLECULES

661. V. M. RAO AND R. F. CURL, JR., J. CHEM. PHYS. 40, 3688-3690 (1964) MICROWAVE SPECTRUM OF VINYL FORMATE

662. J. S. RIGDEN AND S. S. BUTCHER, J. CHEM. PHYS. 40, 2109-2114 (1964) MICROWAVE SPECTRUM OF METHYL HYPOCHLORITE

665. G. P. SRIVASTAVA, PHYSICA 30, 1913-1916 (1964) MICROWAVE SPECTRUM OF MONOFLUORO ACETIC ACID

666. F. L. TOBIASON AND R. H. SCHWENDEMAN, J. CHEM. PHYS. 40, 1014-1021 (1964) MICROWAVE SPECTRUM, MOLECULAR STRUCTURE, AND QUADRUPOLE COUPLING CONSTANTS OF 2-CHLOROPROPANE

667. J. K. TYLER, J. CHEM. PHYS. 40, 1170-1171 (1964) MICROWAVE SPECTRUM OF METHINOPHOSPHIDE, HCP

107