ON A NEW APPROACH TO THE
NUMERICAL SOLUTION OF A CLASS OF
PARTIAL DIFFERENTIAL INTEGRAL
EQUATIONS OF TRANSPORT THEORY

Richard Bellman and Robert Kalaba

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND
ON A NEW APPROACH TO THE
NUMERICAL SOLUTION OF A CLASS OF
PARTIAL DIFFERENTIAL INTEGRAL
EQUATIONS OF TRANSPORT THEORY

Richard Bellman and Robert Kalaba

This research is sponsored by the United States Air Force under Project RAND—Con-
tract No. AF 49(638)-700—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff. Research and Development. Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DDC AVAILABILITY NOTICE
Qualified requesters may obtain copies of this report from the Defense Documentation
Center (DDC).

Approved for OTS release
This Memorandum is part of RAND's continuing search for new ways of utilizing the modern digital computer. The authors present a method for numerically integrating nonlinear partial differential integral equations, which occur in such fields as radiative transfer and mathematical biology. The method is then specifically applied to solving a basic equation of transport in a spherical shell.
SUMMARY

In this Memorandum, the authors show how to approximate a non-linear partial differential integral equation by a system of ordinary differential equations. A table of necessary constants is provided, and the results of a test calculation on an equation of radiative transfer in a spherical shell are described.
CONTENTS

PREFACE.. iii

SUMMARY... v

Section
I. INTRODUCTION.. 1

II. DERIVATIVES AS LINEAR COMBINATIONS OF FUNCTIONAL VALUES. 3

III. SAMPLE CALCULATION... 6

REFERENCES... 9
I. INTRODUCTION

In applying invariant imbedding to the radiative transfer processes associated with plane parallel regions, we encounter a functional equation of the form

\[\frac{\partial S(z,v,u)}{\partial z} + \left(\frac{1}{v} + \frac{1}{u} \right) S = g(u,v,z) \]

where \(S(0,v,u) = 0 \) (see Refs. 1, 2, and 3). Here \(z \geq 0, 0 \leq u, v \leq 1 \).

This can be approximated by means of a finite dimensional set of ordinary differential equations by introducing quadrature techniques.

Write

\[\int_0^1 S(z,v,u') \frac{du'}{u} \approx \sum_{i=1}^N w_i S(z,v,x_i)/x_i \]

\[\int_0^1 S(z,v',u) \frac{dv'}{v} \approx \sum_{i=1}^N w_i S(z,x_i,u)/x_i \]

where \(x_1, x_2, \ldots, x_N \) are the \(N \) roots of the shifted Legendre polynomials, \(P_N^*(x) = P_N(1-2x) \). Using these approximate relations and setting \(S(z,x_i,x_j) = S_{ij}(x) \), Eq. (1) reduces to a finite dimensional system subject to initial conditions. This technique has been quite successful in practice, as evidenced by the results in the cited references.
If we turn to the study of corresponding transfer processes for spherical and cylindrical regions, we meet a much more formidable equation

\[
\frac{\partial S}{\partial z}(v, u, z) + \frac{1-v^2}{2v} \frac{\partial S}{\partial v} + \frac{1-u^2}{2u} \frac{\partial S}{\partial u} + \left(\frac{1}{v} + \frac{1}{u} \right) S - \left(\frac{v^2 + u^2}{v^2} \right) \frac{S}{z} = g(u, v, z) + \lambda \left[1 + \frac{1}{2} \int_0^1 S(z, v, u') \frac{du'}{u} \right] \left[1 + \frac{1}{2} \int_0^1 S(z, v', u) \frac{dv'}{v} \right].
\]

In the following we shall briefly sketch an approximation technique which enables us to reduce the numerical solution of Eq. (3) to that of a finite system of ordinary differential equations, and shall also describe a sample calculation. More detailed results will be presented subsequently. The method has been applied successfully to a number of other classes of functional equations involving partial derivatives. Finally, we note that equations involving partial derivatives and integrals occur with great frequency in mathematical biology. (4-6)

An approach of Chandrasekhar's is described in Ref. 1.
II. DERIVATIVES AS LINEAR COMBINATIONS OF FUNCTIONAL VALUES

In order to generalize the approach to Eq. (1), we replace the partial derivatives \(S_u \) and \(S_v \) by linear combinations of the values of \(S \) at the points \(u, v = x_i, x_j, \ i, j = 1, 2, \ldots, N \). Given a function \(f(x) \), we want an approximate relation of the form

\[
\frac{f'(x_i)}{x_i} = \sum_{j=1}^{N} a_{ij} f(x_j), \quad i = 1, 2, \ldots, N \tag{4}
\]

To determine the coefficients \(a_{ij} \), we ask, by analogy with the Gaussian quadrature formula, that Eq. (4) be exact if \(f(x) \) is a polynomial of degree \(N-1 \) or less. To obtain \(a_{ij} \), we use the test functions

\[
f_m(x) = P_N^*(x) / \left((x-x_m) P_N^*(x_m) \right)
\]

A simple calculation then yields:

\[
a_{im} = \frac{P_N^*(x_i)}{(x_i-x_m) P_N^*(x_m)}, \quad i \neq m \tag{5}
\]

\[
a_{mm} = \frac{P_N^{**}(x_m)}{2P_N^*(x_m)} = \frac{1-2x_m}{2(x^2-x_m)}
\]

for \(m = 1, 2, \ldots, N \). In view of the symmetry of \(P_N^*(x) \) about \(x = .5 \), it is clear that \(a_{ij} = -a_{N+1-i, N+1-j} \), a result which yields both a useful check on the calculation of these parameters and a reduction in the size of the tables. A table of values of \(a_{ij} \) for \(N = 5, 7, 9 \) follows. These values were calculated by H. Kagiwada and verified by J. Jolissant.
Table 1
THE COEFFICIENTS a_{ij} FOR N = 5

<table>
<thead>
<tr>
<th>i</th>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
<th>a_{14}</th>
<th>a_{15}</th>
<th>a_{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.10134081E02</td>
<td>0.15403904E02</td>
<td>-0.80870874E01</td>
<td>0.39207982E01</td>
<td>-0.11035337E01</td>
<td>0.14035337E01</td>
</tr>
<tr>
<td>2</td>
<td>-0.19205120E01</td>
<td>-0.15167064E01</td>
<td>0.48055013E01</td>
<td>-0.18571160E01</td>
<td>0.48883323E-00</td>
<td>0.60233632E00</td>
</tr>
</tbody>
</table>

Table 2
THE COEFFICIENTS a_{ij} FOR N = 7

<table>
<thead>
<tr>
<th>i</th>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
<th>a_{14}</th>
<th>a_{15}</th>
<th>a_{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.19136364E02</td>
<td>0.30166068E02</td>
<td>-0.18345136E02</td>
<td>0.12020668E02</td>
<td>-0.73554054E01</td>
<td>0.37037909E01</td>
</tr>
<tr>
<td>2</td>
<td>-0.30774001E01</td>
<td>-0.32947313E01</td>
<td>0.94826608E01</td>
<td>-0.49141384E01</td>
<td>0.27743267E01</td>
<td>-0.13485609E01</td>
</tr>
<tr>
<td>3</td>
<td>0.73878641E00</td>
<td>-0.37433740E01</td>
<td>-0.97174703E00</td>
<td>0.56413488E01</td>
<td>-0.24639939E01</td>
<td>0.10951929E01</td>
</tr>
<tr>
<td>4</td>
<td>-0.36940283E-00</td>
<td>0.14803137E01</td>
<td>-0.43048331E01</td>
<td>-0.99475983E-13</td>
<td>0.43048331E01</td>
<td>-0.14803137E01</td>
</tr>
</tbody>
</table>
Table 3

THE COEFFICIENTS a_{ij} FOR $N = 9$

$i = 1$
-0.30899183E 02 0.49462602E 02 -0.31847722E 02 0.23009713E 02
-0.16634325E 02 0.11463908E 02 -0.71444762E 01 0.36223711E 01
-0.10328869E 01

$i = 2$
-0.46321847E 01 -0.55540647E 01 0.15529632E 02 -0.88594615E 01
0.58950087E 01 -0.39077266E 01 0.23856884E 01 -0.11961277E 01
0.33923594E-00

$i = 3$
0.99779608E 00 -0.51953604E 01 -0.19666417E 01 0.90706996E 01
-0.46474057E 01 0.27969636E 01 -0.16303335E 01 0.79812006E 00
-0.22383800E-00

$i = 4$
-0.41927865E-00 0.17238123E 01 -0.52755643E 01 -0.72470224E 00
0.67044574E 01 -0.30840075E 01 0.16267280E 01 -0.76033320E 00
0.20889316E-00

$i = 5$
0.25654308E-00 -0.97060200E 00 0.22877170E 01 -0.56744949E 01
0.56843419E-11 0.56744949E 01 -0.22877170E 01 0.97080200E 00
-0.25654308E-00
III. SAMPLE CALCULATION

Presented below are the results of a particular calculation of interest in determining the flux reflected by a spherical shell atmosphere. We approximated Eq. (3), with \(g(u,v,z) = 0 \), by the system of ordinary differential equations

\[
\frac{dS_{ij}(z)}{dz} + \frac{1 - v_i^2}{v_i z} \sum_{k=1}^{N} a_{ik} S_{kj} + \frac{1 - v_j^2}{v_j z} \sum_{k=1}^{N} a_{kj} S_{ik} \\
+ \left(\frac{1}{v_i} + \frac{1}{v_j} \right) S_{ij} - \frac{v_i^2 + v_j^2}{v_i v_j^2} \frac{S_{ij}}{z}
\]

\((6) \)

\[
= \lambda \left[1 + \frac{1}{2} \sum_{k=1}^{N} \frac{S_{ik} w_k}{v_k} \right] \left[1 + \frac{1}{2} \sum_{k=1}^{N} \frac{S_{kj} w_k}{v_k} \right],
\]

\(z \geq a \),

with initial conditions \(S_{ij}(a) = 0 \).

We set \(\lambda = 1 \), usually the severest test, and integrated over \(z \) from \(a \) to \(a + 3 \) with the values \(a = 100, 500 \) and \(1,000 \). The constant \(a \) is the inner radius of the spherical shell. For comparison with the plane parallel case in Ref. 1, we also printed out values of \(r_{ij}(z) = S_{ij}(z)/4x_i \).

Some results are shown graphically in Fig. 1. Note that as the radius of the inner surface of the shell increases, the reflection function of the shell approaches that of the slab. This is one test
Fig. 1 — Some reflected intensity patterns for shells with albedo \(\lambda = 1 \) and thickness \(x = 3 \), for various angles of incidence.
of the validity of the approximation technique used. In addition, comparison of the N=7 and N=9 cases indicates excellent agreement.
REFERENCES

