LIMITATIONS IN REPRODUCTION QUALITY

ACCESSION # AD 6007949

1. WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST AVAILABLE COPY.

2. A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.

3. THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION ONLY.

4. THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO REPRINT.

5. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL BE AVAILABLE IN MICROFICHE ONLY.

6. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL NOT BE AVAILABLE.

7. DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.

8. DOCUMENT AVAILABLE ON LOAN FROM CFSTI (TT DOCUMENTS ONLY).

9. DOCUMENT AVAILABLE ON LOAN FROM CFSTI (TT DOCUMENTS ONLY).

TSL-107-10/64
SULFUR HEXAFLUORIDE

Data Sheets

John T. Milek

October 1964

ELECTRONIC PROPERTIES INFORMATION CENTER

HARD COPY $3.00
MICROFICHE $0.75

ARCHIVE COPY
SULFUR HEXAFLUORIDE

Data Sheets

John T. Milek

DS-140

October 1964
FOREWORD

This report was prepared by Hughes Aircraft Company under Contract No. AF 33 (615)-1235. The contract was initiated under Project No. 7381, Task No. 738103. The work was administered under the direction of the Directorate of Materials and Processes, Aeronautical Systems Division, with Mr. R.F. Klinger acting as Project Engineer.

The Electronic Properties Information Center has been established to collect, index and abstract the literature on the electrical and electronic properties of materials and to evaluate and compile the experimental data from that literature. A modified coordinate index to the literature is machine-stored and printed for manual use. The Center publishes summary reports, thesauri, glossaries, data sheets and similar publications as sufficient information is evaluated and compiled. This report consists of the compiled data sheets on Sulfur Hexafluoride.

Many persons have contributed to the program which this report represents. The author wishes especially to acknowledge the contributions of the following: J.W. Atwood, C.L. Blocher, D.L. Grigsby, D.H. Johnson, H.T. Johnson, T.J. Lyndon, M.S. Neuberger, E. Schafer and C.A. Schill.
ABSTRACT

A compilation of the electrical properties of Sulfur Hexafluoride, a dielectric gas is presented. Electrical properties include corona, dielectric constant, dissipation factor and dielectric strength. The latter property data section is segregated into parameter effects as follows: pressure, gap distance, temperature, electrode configurations and gas mixtures. Each property is compiled over the widest possible range of parameters obtained in a thorough search of the world's literature.

This report has been reviewed and is approved for publication.

H. Thayne Johnson
Head
Electronic Properties Information Center

John W. Atwood
Project Manager
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>11</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>General Description</td>
<td>3</td>
</tr>
<tr>
<td>Corona Effects</td>
<td>8</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>16</td>
</tr>
<tr>
<td><strong>Dielectric Strength</strong></td>
<td></td>
</tr>
<tr>
<td>(A) Relative Dielectric Strength</td>
<td></td>
</tr>
<tr>
<td>(B) Dielectric Strength vs Pressure</td>
<td></td>
</tr>
<tr>
<td>(1) Sphere-to-Sphere Geometry</td>
<td>21</td>
</tr>
<tr>
<td>(2) Sphere-to-Plane Geometry</td>
<td>24</td>
</tr>
<tr>
<td>(3) Sphere-to-Rod Geometry</td>
<td>26</td>
</tr>
<tr>
<td>(4) Sphere-to-Point Geometry</td>
<td>27</td>
</tr>
<tr>
<td>(5) Plane-to-Plane Geometry</td>
<td>29</td>
</tr>
<tr>
<td>(6) Plane-to-Rod Geometry</td>
<td>31</td>
</tr>
<tr>
<td>(7) Plane-to-Point Geometry</td>
<td>32</td>
</tr>
<tr>
<td>(8) Rod-to-Rod Geometry</td>
<td>36</td>
</tr>
<tr>
<td>(9) Miscellaneous Geometries</td>
<td>37</td>
</tr>
<tr>
<td>(10) Gas Mixtures</td>
<td>42</td>
</tr>
<tr>
<td>(C) Dielectric Strength vs Gap Spacing</td>
<td></td>
</tr>
<tr>
<td>(1) Sphere-to-Sphere Geometry</td>
<td>45</td>
</tr>
<tr>
<td>(2) Sphere-to-Plane Geometry</td>
<td>46</td>
</tr>
<tr>
<td>(3) Sphere-to-Rod Geometry</td>
<td>48</td>
</tr>
<tr>
<td>(4) Sphere-to-Point Geometry</td>
<td>50</td>
</tr>
<tr>
<td>(5) Plane-to-Plane Geometry</td>
<td>51</td>
</tr>
<tr>
<td>(6) Plane-to-Rod Geometry</td>
<td>52</td>
</tr>
<tr>
<td>(7) Plane-to-Point Geometry</td>
<td>54</td>
</tr>
<tr>
<td>(8) Rod-to-Rod Geometry</td>
<td>55</td>
</tr>
<tr>
<td>(9) Coaxial Cylinder Geometry</td>
<td>56</td>
</tr>
<tr>
<td>(10) Various Configurations</td>
<td>57</td>
</tr>
<tr>
<td>(11) Gas Mixtures</td>
<td>59</td>
</tr>
<tr>
<td>(D) Dielectric Strength vs Temperature</td>
<td>60</td>
</tr>
<tr>
<td>(E) Miscellaneous Breakdown Parameters</td>
<td>61</td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>Publications of the Electronic Properties Information Center</td>
<td>66</td>
</tr>
</tbody>
</table>
INTRODUCTION

In June 1961, a program was initiated under the direction of the Air Force to collect, index and abstract the literature on the electrical and electronic properties of materials and to evaluate and compile the experimental data from that literature. Placed at Hughes Aircraft Company in Culver City, California, the program, now called the Electronic Properties Information Center, was originally intended to cover ten major categories of materials: Semiconductors, Insulators, Ceramics, Ferroelectrics, Metals, Ferrites, Ferromagnetics, Electroluminescent Materials, Thermionic Emitters and Superconductors.

During the first year, studies were completed on the Semiconductor and Insulator categories; and Ceramics was discontinued as a separate category and subsumed under the other nine. Vocabulary studies have how been completed on all categories, and retrospective documentation is virtually complete for Semiconductors and Insulators. A full index to the literature is maintained; and publications such as data sheets, summary reviews, glossaries and thesauri are issued periodically. The use of the Center and these publications are available to anyone wishing information within the scope of the Center's objectives. A full list of publications to date appears at the end of this report.

This report contains data sheets on Sulfur Hexafluoride. The data sheets have been compiled directly from the literature. Articles are allowed to accumulate until it is judged that a sufficient number are available on one material for adequate evaluation. The manual modified coordinate index is then used to retrieve all literature on the material to be compiled. Bibliographies are checked to make sure that valuable and relevant literature is not overlooked. Then the assembled literature is given to the specialist doing the evaluation and compilation.
Evaluation is confined to primary source data except when only secondary citations are available. If equally valid data are available from several sources, all are given. Data are rejected when judged questionable because of faulty or dubious measurements, unknown sample composition, or if more reliable data are available from another source. Selection of data is based upon that which is judged most representative, precise, reliable and covers the widest range of variables. The addition of new data to a previously evaluated property requires a reappraisal of the reported values. Older data may be deleted if the new data are judged more accurate or representative.

After a thorough analysis and evaluation, the data are compiled into data sheets which present it in its most optimum form. This will be, primarily, but not limited to, curves or tabular form. Where possible, graphs are adapted directly from the original sources. If this is not possible, they are drawn from data compiled from the articles. Where thought important, notes are entered with each graph to help the user.

The references, from which the data are drawn, are shown by reference number below each graph with the full bibliographic information at the end of the data sheets. The bibliography is referred to and listed in the order of entry into the Center (accession number). This provides a quick cross reference into the index used with the literature.
SULFUR HEXAFLUORIDE

General Description

Sulfur Hexafluoride (SF$_6$) is a stable, non-toxic gaseous dielectric with excellent electronegative behaviour or characteristics. Its structure is such that all six fluorine atoms are at the corners of a regular octahedron with the sulfur atom at the center:

![Octahedron Diagram]

In pure form SF$_6$ gas does not have any odor and is harmless; it does not burn and is heat resistant up to 500°C depending on conditions. At 150°C, SF$_6$ begins to undergo chemical decomposition and is initiated catalytically to various degrees by different metals. Possible decomposition products are SF$_2$, SF$_4$, S$_2$F$_{10}$ and HF. It is insoluble in water and has a molecular weight of 146.06. In the gaseous state, SF$_6$ follows the ideal gas laws fairly closely.
Physical Properties

- Melting point: -50.8°C at 32.5 psia (-58°F to -68°F)
- Sublimation temperature: -63.8°C (-80°F)
- Critical temperature: 45.547 ± 0.003°C (113°F to 129°F)
- Critical pressure: 545.47 psia
- Critical density: 0.730 gm/cc

The density of sulfur hexafluoride over the temperature range from -273 to 45°C.

The pressure density relation for sulfur hexafluoride.

[Ref. 16775]
Physical Properties

The vapor pressure-temperature relation for sulfur hexafluoride.

The specific heat of sulfur hexafluoride measured at constant volume.

[Ref. 16775]
Applications

$\text{SF}_6$ provides an outstanding insulating medium for a wide range of electrical and electronic equipment and applications. It is remarkably inert and possesses exceptional thermal stability, unique arc-quenching properties and high dielectric strength. The gas has found dielectric applications in the following: waveguides, x-ray apparatus, switch gear, cathode ray accelerators, television filter plexers, audio equipment, airborne electronics, Van de Graaf machines, transformers, radar duplexers and gap tubes. Sulfur Hexafluoride is being used extensively as a means of obtaining high peak power performance in waveguide systems.

In a recent review study at Rome Air Development Center of the available microwave behavior of $\text{SF}_6$ it was reported that power ratios (breakdown power of $\text{SF}_6$ over that of air at normal pressures with all other parameters constant) of $\text{SF}_6$ varied from a low of 3 to a high of 40 in the literature. The mechanisms of these inconsistencies were discussed in terms of geometric configuration, contamination, localized hot spots, localized corona discharges, etc. (Ref. V.C. Vannicola, "Sulfur Hexafluoride in High-Power Microwave Systems", Rome Air Development Center, Report no. RADC-TDR-62-443, November 1962. AD 289-954.)

Leeds and Friedrich (Engineers Digest, V. 13, p. 1073-1075, 1962) reviewed recent developments in the use of $\text{SF}_6$ for circuit breakers. $\text{SF}_6$ had superior arc extinguishing properties because it acted like an "electron sponge." This has made possible its usage in a variety of different commercial switchgear apparatus: plain breaks, self generated gas flow by arc heating, gas flow by puffer action and gas flow by opening blast valves between high and low pressure reservoirs.
Notes

Sulfur Hexafluoride is currently undergoing study and testing by the Electrical Tests Subcommittee II of ASTM Committee D-27 on Electrical Insulating Liquids and Gases. The Gaseous Dielectrics Section of the Subcommittee has undertaken the development of a standard test cell for the evaluation of the dielectric strength of SF₆ and other gases. Round-robin tests have been conducted and some results reported in the "Symposium on Electrical Insulating Gases," ASTM-STP No. 346, 1963, Philadelphia, Pa., American Society for Testing and Materials.

The EPIC method of dielectric strength data presentation has fallen in line with the philosophy of ASTM Committee D-27 on Electrical Insulating Liquids and Gases as expressed in M.L. Manning's article "Gaseous Insulation: Its Importance and Need for Test Methods," ASTM-STP No. 346, 1962, p. 3-23. The philosophy involves the segregation of dielectric strength data by a) electrode geometry effects, b) by pressure effects, c) gap distance effects, d) type of applied voltage.
SULFUR HEXAFLUORIDE

CORONA EFFECTS

A-C spark-over and corona onset voltages of sulfur hexafluoride for indicated gaps between 1/16 inch hemisphere point and 6 inch diameter plane in 12 inch diameter steel tank as a function of pressure.

[Ref. 11302]

Sparkover and corona onset voltages of SF₆ in a 12 in. diameter steel tank as a function of pressure at 25°C.

[Ref. 10936]
SULFUR HEXAFLUORIDE

CORONA EFFECTS

Corona onset voltage of sulfur hexafluoride as a function of gas pressure.

- Spark breakdown voltage
- Corona onset voltage

Corona onset and spark breakdown characteristics for sulfur hexafluoride.

- Corona onset voltage
- Spark breakdown voltage

[Ref. 1655]

[Ref. 1853]
SULFUR HEXAFLUORIDE

CORONA EFFECTS

Breakdown voltage to corona voltage ratio as a function of pressure for sulfur hexafluoride and air under both positive and negative point polarity.

[Ref. 6140]

Corona Onset and Flashover Voltage in SF₆ Gas, 3/4-Inch Diameter Square-Cut Rod-to-Plane Electrodes

Full-Wave Tests (1 1/2 × 40 μsec)

<table>
<thead>
<tr>
<th>Pressure, Psig*</th>
<th>Spacing, Inches</th>
<th>Corona Onset Voltage, %</th>
<th>Flashover Voltage, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Point Negative</td>
<td>Point Positive</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>125</td>
<td>128</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>132</td>
<td>140</td>
</tr>
</tbody>
</table>

Note: For each spacing, the corona onset voltage at atmospheric pressure and positive point = 100%.

* Pounds per square inch gage.

[Ref. 6209]
SULFUR HEXAFLUORIDE

CORONA EFFECTS

Corona current/voltage characteristics for sulfur hexafluoride.

(a) 15 lb/in² absolute
(b) 25 lb/in² absolute
(c) 30 lb/in² absolute
(d) 35 lb/in² absolute
(e) 40 lb/in² absolute
(f) 45 lb/in² absolute
(g) 50 lb/in² absolute

Voltage, kv

[Ref. 1853]

Corona onset voltage as a function of gap spacing in point-plane corona test (corrected to 760 mm) using polonium α-source. Radius is 0.060 mm.

(a) SF₆, point positive
(b) SF₆, point negative

[Ref. 6209]
SULFUR HEXAFLUORIDE

CORONA EFFECTS

The corona breakdown relation for sulfur hexafluoride as affected by pressure.

Electrodes - 1/2" square rods
Test Gap = 2 inches
SULFUR HEXAFLUORIDE

CORONA EFFECTS

Corona extinction field (-) $E$ as a function of $1/\sqrt{R}$ where $R$ is radius of wire in 1/4 inch or 1/2 inch coaxial cylinder.

- Peek's data
- 1/2 inch outer cylinder
- 1 inch outer cylinder
- 1/4 inch outer cylinder

\[ [\text{Ref. 6209}] \]

Total breakdown voltage as a function of positive dc bias voltage, 2 atm. absolute pressure at 25°C.

\[ [\text{Ref. 10936}] \]
SULFUR HEXAFLUORIDE

CORONA EFFECTS

Corona onset and spark breakdown characteristics for mixtures of sulfur hexafluoride and nitrogen.

(a) 20 lb/in² absolute, SF₆ plus N₂
(b) 30 lb/in² absolute, SF₆ plus N₂
(c) 40 lb/in² absolute, SF₆ plus N₂
(d) 50 lb/in² absolute, SF₆ plus N₂
(e) 65 lb/in² absolute, SF₆ plus N₂

--- Corona onset voltage
---- Spark breakdown voltage

[Ref. 1853]

Corona current/voltage characteristics for 20 lb/in² sulfur hexafluoride plus nitrogen.

[Ref. 1853]
SULFUR HEXAFLUORIDE

CORONA EFFECTS

Corona current as a function of voltage characteristics for 30 lb/in² sulfur hexafluoride plus nitrogen.

(a) Total pressure, 30 lb/in² absolute
(b) Total pressure, 35 lb/in² absolute
(c) Total pressure, 40 lb/in² absolute
(d) Total pressure, 45 lb/in² absolute
(e) Total pressure, 50 lb/in² absolute
(f) Total pressure, 55 lb/in² absolute
(g) Total pressure, 60 lb/in² absolute

[Ref. 1853]

Corona current as a function of voltage characteristics for 40 lb/in² sulfur hexafluoride plus nitrogen.

(a) Total pressure, 40 lb/in² absolute
(b) Total pressure, 45 lb/in² absolute
(c) Total pressure, 50 lb/in² absolute
(d) Total pressure, 55 lb/in² absolute
(e) Total pressure, 60 lb/in² absolute
(f) Total pressure, 65 lb/in² absolute

[Ref. 1853]
Dielectric constant of sulfur hexafluoride (25°C and 24,240 psi) as a function of gas pressure.
**SULFUR HEXAFLUORIDE**

**DIELECTRIC CONSTANT**

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Pressure</th>
<th>Temperature</th>
<th>Dielectric Constant</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td>27.5°C</td>
<td>1.00191</td>
<td>4299</td>
</tr>
<tr>
<td>760 mm Hg</td>
<td></td>
<td>19.4°C</td>
<td>1.0021</td>
<td>1181</td>
</tr>
<tr>
<td>708 mm Hg</td>
<td></td>
<td>27.5°C</td>
<td>1.00191</td>
<td>11266</td>
</tr>
<tr>
<td>(10-500kc)</td>
<td>-</td>
<td>-50°C ± 1°C</td>
<td>1.81 ± 0.02</td>
<td>1508</td>
</tr>
</tbody>
</table>

For other conditions of pressure and temperature the following equation is cited in reference no. 11266.

\[
\varepsilon = 1 + 10^{-6} E
\]

where \( E = \) dielectric coefficient

For \( E_{25°C}^0 = 2049 \) (limiting value = 0-1 atm.)

For \( E_{25°C}^0 = 2026 \) (limiting value = 0 atm.: if gases were perfect)

For \( E_{-80°C}^0 = 2018 \) (limiting values at -80°C)
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(A) Relative Dielectric Strength

<table>
<thead>
<tr>
<th>Relative Dielectric Strength</th>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>760 mm Hg</td>
<td>-49.2°C</td>
</tr>
</tbody>
</table>

Relative dielectric strength of sulfur hexafluoride (test made between tungsten rod and 1 inch diameter sphere spaced 1-inch.)

Atmospheric Pressure and Room Temperature

Relative Dielectric Strength

<table>
<thead>
<tr>
<th>Conditions</th>
<th>60 Cycles</th>
<th>Positive</th>
<th>Impulse</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonuniform field - 1&quot; spacing</td>
<td>SF₆</td>
<td>5</td>
<td>3.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Uniform field - 1/4&quot; spacing</td>
<td>SF₆</td>
<td>2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Looped Toroids - 2&quot; spacing</td>
<td>SF₆</td>
<td>1.85</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

Relative impulse strength of sulfur hexafluoride and air at both 25 and 100°C as a function of pressure.

Electrodes 0.5 inch stainless steel sphere to 3 inch diameter plane.
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(A) Relative Dielectric Strength

60-cycle relative strength of sulfur hexafluoride to dry air as a function of configuration and spacing of the electrodes. Gases at 25°C and at atmospheric pressure.

Relative breakdown strength of mixtures of helium + sulfur hexafluoride.

[Ref. 11279]

[Ref. 1931]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(A) Relative Dielectric Strength

The ratio of the corona and breakdown voltages for air and SF₆ as a function of the testing conditions in a nonuniform field.

The changing relation of the impulse voltage breakdown of SF₆ and air as the gas pressure of each is increased.

Electrodes - point-to-plane
Test Gap - 1 1/2 inches
Voltage Wave Form - 1 1/2 x 40 microsec.
Point Electrode Polarity - positive
Test Temperature - 27°C
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(1) Sphere-to-Sphere Geometry

Breakdown voltage between 5 cm diameter spheres for sulfur hexafluoride.

--- Negative impulse
--- Power Frequency

[Ref. 1589]

Electrodes - 1 inch spheres
Gap Distance - 1/4 inch
Temperature - room
Pressure - atmospheric

The dielectric strength of sulfur hexafluoride gas measured by impulse voltage in a uniform electrical field.

[Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(8) Dielectric Strength vs Pressure

(1) Sphere-to-Sphere Geometry

Breakdown data for sulfur hexafluoride (5-cm diameter spherical electrodes).

Breakdown Voltage, (kv)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Absolute Pressure Atm.</th>
<th>Power Frequency</th>
<th>Negative direct</th>
<th>Negative impulse</th>
<th>Relative electric strength</th>
<th>Impulse ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F₆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>45.0 86.0 44.0 83.5</td>
<td></td>
<td>47.7 91.3</td>
<td>2.6 2.7</td>
<td></td>
<td>1.06 1.06</td>
</tr>
<tr>
<td>2</td>
<td>79.0 161.0</td>
<td></td>
<td>91.0 171.0</td>
<td>2.47 2.87</td>
<td></td>
<td>1.15 1.06</td>
</tr>
<tr>
<td>3</td>
<td>112.5 218.0</td>
<td>134.5 244.0</td>
<td>2.48 2.58</td>
<td>1.19 1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>145.5 268.0</td>
<td>175.0 309.0</td>
<td>2.47 2.53</td>
<td>1.22 1.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Ref. 1181]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(1) Sphere-to-Sphere Geometry

Impulse dielectric strength voltages of $\text{SF}_6$ using two 1-inch diameter spheres.

60-cycle dielectric strength of $\text{SF}_6$ tested between two 1-inch diameter spheres spaced 1/4 inch and at a gage pressure up to 30 psi.
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(2) Sphere-to-Plane Geometry

60-cycle breakdown voltages of SF\textsubscript{6} as a function of pressure. (Gas at room temperature.) Electrodes 0.5 inch diameter sphere to 3 inch diameter plane.

Impulse breakdown of SF\textsubscript{6} at room temperature as a function of pressure. Electrodes 0.5 inch sphere to 3 inch diameter plane. Positive impulse wave 1 1/2 by 40 microseconds.
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(?) Dielectric Strength vs Pressure

(2) Sphere-to-Plane Geometry

60-cycle breakdown voltages of SF$_6$ at 100°C as a function of pressure. Electrodes 0.5 inch stainless steel sphere to 3 inch diameter point.

<table>
<thead>
<tr>
<th>Gage Pressure, lbs/sq in.</th>
<th>AC Breakdown Voltage (kV RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

[Ref. 11279]

Impulse breakdown voltages of SF$_6$ at 100°C as a function of pressure. Electrodes 0.5 inch stainless steel sphere to 3 inch diameter plane. Positive impulse wave 1 1/2 by 40 microseconds.

[Ref. 11279]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(3) Sphere-to-Rod Geometry

Impulse dielectric strength of SF$_6$ as a function of pressure. Positive-wave tests made between tungsten rod and 1 inch diameter sphere spaced 1 inch.

[Ref. 4299]

60-cycle dielectric strength of SF$_6$ as a function of pressure. Tests made between tungsten rod and 1 inch sphere spaced 1 inch.

[Ref. 4299]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric strength vs Pressure

(4) Sphere-to-Point Geometry

Breakdown voltage characteristics with point-sphere electrodes for SF₆.

Dielectric strength of a 2 inch gap-point to 1 inch diameter sphere as a function of pressure.

[Ref. 1589]

[Ref. 11279]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(D) Dielectric Strength vs Pressure

(4) Sphere-to-Point Geometry

Breakdown voltage for sulfur hexafluoride with point-sphere electrodes.

--- Power frequency, positive d.c. and impulse
--- Negative d.c. and impulse
--- Positive d.c. and impulse with radium.

[Ref. 1181]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(1) Dielectric Strength vs Pressure

(5) Plane-to-Plane Geometry

Dielectric strength of sulfur hexafluoride as a function of pressure, 3 inch diameter round-edged plane-to-plane, 1/2 inch spacing.

Paschen curve for sulfur hexafluoride (gap 1 mm, parallel circular brass plates, 4 inches in diameter and 1/4 inch thick with rounded edges of 1/8 inch radius.)
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

\( \text{(5) Dielectric Strength vs Pressure} \)

(5) Plane-to-Plane Geometry

The dielectric strength-pressure relation for sulfur hexafluoride gas, showing the effect of gap distance.

Electrodes - 3" diameter, rounded edge planes
Test temperature - room
Gap Distance - inches as shown on each curve

[Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(6) Plane-to-Rod Geometry

Dielectric strength of sulfur hexafluoride as a function of pressure.
1/4 inch square rod-to-plane, 1 inch spacing.

[Ref. 10452]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(7) Dielectric Strength vs Pressure

(7) Plane-to-Point Geometry

Corona onset and spark-breakdown characteristics for sulfur hexafluoride.

ev. Corona onset voltage

Spark-breakdown voltage

Spark breakdown voltage of sulfur hexafluoride as a function of pressure.

[Ref. 1853]

[Ref. 1655]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(9) Dielectric Strength vs Pressure

(7) Plane-to-Point Geometry

Gas pressure as a function of dielectric strength for d.c. and 60 cps a.c. voltage. Dielectric strength increases normally with pressure up to about 1 atm. Further increase in pressure produces a divergence from the straight line until a maximum strength is reached at about 2 atm. Increasing pressure beyond this point results in a drop in strength, the minimum occurring at about 5 atm.

[Ref. 6140]
and
[Ref. 16775]

a.c. spark-over and corona onset voltages of sulfur hexafluoride for indicated gaps between 1/16 inch hemisphere point and 6 inch diameter plane in 12 inch diameter steel tank as a function of pressure.

[Ref. 11302]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(7) Plane-to-Point Geometry

The effect of gas pressure on the voltage necessary to cause a prebreakdown current of 20 micro amperes in sulfur hexafluoride gas at room temperature.

- Gap distance = 3 mm (0.118 inches)
- Electrodes - point-to-plane
- Electrode Point - positive polarity

The effect of pressure on the dielectric strength of sulfur hexafluoride gas in a nonuniform (DC) electrical field for selected gap distances.

- Electrodes - 1/16" point to 6" plane
- Electrode Polarity - point electrode as shown
- Gap Distance - as shown on curve

[Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(5) Dielectric Strength vs Pressure

(7) Plane-to-Point Geometry

The effect of pressure on the 60 cycle breakdown of sulfur hexafluoride gas at selected gap distances.

Electrodes - 1/16" point to 6" plane
Gap Distance - as shown on curve

[Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(9) Dielectric Strength vs Pressure

(8) Rod-to-Rod Geometry

Breakdown voltage, nonuniform field, 1/4" rod.

The impulse breakdown of sulfur hexafluoride gas as affected by pressure.

Electrodes - 1/2" square cut rods
Gap Distance - 2 inches
Voltage Form - 1 1/2 x 40 microsec.
Voltage Polarity - positive

[Ref. 1860]  
[Ref. 16775]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(9) Miscellaneous Geometries

Power frequency flashover voltage of solid insulation in sulfur hexafluoride. Uniform tangential stress.

--- Breakdown voltage in the absence of solid insulation
--- Surface flashover

Gas Pressure, lb/sq in. (abs.)

Impulse and 60 cycle sparkover and withstand voltages of sulfur hexafluoride using 2 inch gap spacing.

[Ref. 1589]

[Ref. 4299]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(b) Dielectric Strength vs Pressure

(9) Miscellaneous Geometries

Breakdown voltage as a function of pressure for SF₆ (across a sparkplug.)

Pressure in Inches, Hg (abs.)

[Ref. 10489]

Breakdown voltage of mixtures of SF₆ and air as a function of pressure abs. 60 cps a-c applied across a sparkplug.

[Ref. 10482]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(9) Miscellaneous Geometries

A, B, C - occur in chronological order

A - initial breakdown onset voltage
B - voltage necessary to extinguish arc after 1 minute of continuous arcing in confined volume
C - onset voltage for breakdown after 1 minute continuous arcing in confined volume, followed by extinguishing

A, B, C - for dielectric gas as received from the manufacturer

A', B', C' - for 50% dielectric gas and 50% air mixture

Breakdown voltage, extinguish voltage as a function of pressure.

[Ref. 10002]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(9) Miscellaneous Geometries

RG-49U Waveguide (plane-to-plane configuration, left) - frequency, 2773 mc; cavity loaded Q, 159.5; PRF, 225 pps; pulse length, two microseconds. Single Ridge-to-plane S-Band Configuration (right) - frequency, 2812 mc; cavity loaded Q, 165; PRF, 225 pps; pulse length, two microseconds; cross-section drawing not to scale. Diffusion and ion pair recombination have decisive effect on breakdown phenomena. Both depend on electrode configuration and spacing. Pressure and ionic nature of gas under test also affect results.

[Ref. 6221]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(9) Miscellaneous Geometries

Hemisphere-to-Plane S-Band Configuration (left) - Frequency, 2757 mc; cavity loaded Q, 131; PRF, 225 pps; pulse length, two microseconds; cross-section drawing not to scale. Center: Rounded-Point-to-Plane S-Band Configuration - frequency, 2752 mc; PRF, 225 pps; pulse length, two microseconds; cross-section drawing not to scale. Right: Single-Ridge-to-Plane L-Band Configuration - frequency, 1316.5 mc; cavity loaded Q, 222; PRF, 360 pps; pulse length, six microseconds; cross-section drawing not to scale.

[Ref. 6221]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(10) Gas Mixtures

Effect of air on dielectric strength of SF$_6$. 

[Ref. 11266]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(R) Dielectric Strength vs Pressure

(10) Gas Mixtures

The dielectric strength of sulfur hexafluoride mixtures with nitrogen, tested in a uniform field.

Electrodes - bright mild steel
Test Gap - 1 mm

The mixtures were obtained by adding nitrogen to an initial pressure of sulfur hexafluoride as indicated.

[Ref. 16775]

The dielectric strength of sulfur hexafluoride mixtures with air.

Electrodes - bright mild steel
Test Gap - 1 mm
Field Configuration - uniform

The mixtures were obtained by adding air to an initial pressure of sulfur hexafluoride.

[Ref. 16775]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(B) Dielectric Strength vs Pressure

(10) Gas Mixtures

Breakdown voltage as a function of pressure for different percentages of sulfur hexafluoride mixed in air (across a sparkplug.)

Corona onset and spark breakdown characteristics for mixtures of sulfur hexafluoride and nitrogen.

--- Corona onset voltage
--- Spark breakdown voltage

(a) 20 psi abs., SF$_6$ + N$_2$
(b) 30 psi abs., SF$_6$ + N$_2$
(c) 40 psi abs., SF$_6$ + N$_2$
(d) 50 psi abs., SF$_6$ + N$_2$
(e) 65 psi abs., SF$_6$ + N$_2$

[Ref. 10489]

[Ref. 1853]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(1) Sphere-to-Sphere Geometry

Dielectric strength as a function of gap distance in a uniform field.

<table>
<thead>
<tr>
<th>Gap (in)</th>
<th>Radio Frequency</th>
<th>Power Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>26.4</td>
<td>27.2</td>
</tr>
<tr>
<td>0.4</td>
<td>34.3</td>
<td>36.1</td>
</tr>
<tr>
<td>0.5</td>
<td>44.3</td>
<td>45.0</td>
</tr>
</tbody>
</table>

[Ref. 5140]

The dielectric strength of sulfur hexafluoride in a uniform field as affected by gap distance.

Electrodes - 2 inch brass spheres
Gas Pressure - atmospheric
Gas Temperature - room
Test Voltage - 60 cycles

[Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(2) Sphere-to-Plane Geometry

60 cycle breakdown voltages of SF₆ as a function of configuration and spacing of the electrodes (at 25°C and atmospheric pressure.)

Rapidly applied 60 cycle voltage breakdown strength as a function of gap distance.

[Ref. 11279]

[Ref. 1625]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(2) Sphere-to-Plane Geometry

One-minute withstand 60 cycle voltage strength as a function of gap distance.

[Ref. 1625]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(3) Sphere-to-Rod Geometry

Rapidly applied 60 cycle voltage breakdown strength as a function of gap spacing for SF₆.

One-minute withstand 60 cycle voltage strength as a function of gap distance.

[Ref. 1625]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(3) Sphereto-Rod Geometry

60 cycle dielectric strength of SF₆ gas. Tests made between tungsten rod and 1" diameter sphere (grounded).

Negative - impulse dielectric strength of SF₆. Tests made between tungsten rod and 1" diameter sphere (grounded).

Positive - impulse dielectric strength of SF₆. Tests made between tungsten rod and 1" diameter sphere (grounded).
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(4) Sphere-to-Point Geometry

Dielectric strength of sulfur hexafluoride as a function of electrode spacing for point to sphere configuration at atmospheric pressure and 25°C.

[Ref. 11279]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(5) Plane-to-Plane Geometry

The dielectric strength-gap distance relation in sulfur hexafluoride gas as affected by the pressure applied.

Electrodes - 3" diameter, rounded edge planes
Temperature - room
Gas Pressure - as shown on each curve.

[Ref. 1860]

[Ref. 1877]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(6) Plane-to-Rod Geometry

Gap distance-strength relationship in a non-uniform electrical field as affected by pressure. Note that dielectric strength of the gas under 5 psig pressure actually decreases as gap distance increases beyond 1 1/4 inches.

Rapidly applied 60 cycle voltage breakdown strength as a function of gap distance.

[Ref. 6140] and [Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(6) Plane-to-Rod Geometry

One-minute withstand 60 cycle voltage strength as a function of gap distance.

Breakdown voltage, nonuniform field, 1/4" rod.

[Ref. 1625]

[Ref. 1860]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(7) Plane-to-Point Geometry

60 cycle breakdown voltages of \( \text{SF}_6 \) for point-to-plane configuration as a function of gap spacing.

a.c. sparkover voltage of \( \text{SF}_6 \) as a function of electrode spacing between a 1/16 inch hemisphere point and a 6 inch diameter plane at 3 atmospheres pressure.
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(8) Rod-to-Rod Geometry

Rapidly applied 60 cycle voltage breakdown strength as a function of gap spacing.

One minute withstand 60 cycle strength as a function of gap spacing.
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(9) Coaxial Cylinder Geometry

Breakdown voltage for sulfur hexafluoride between coaxial cylinders.

- Power frequency, positive d.c. and impulse
- Negative d.c. and impulse
- Positive impulse with radium
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(10) Various Configurations

The effect of electrode configuration on the dielectric strength of sulfur hexafluoride as a function of gap distance at atmospheric pressure when tested under impulse conditions.

The dielectric strength-gap distance relation for sulfur hexafluoride gas as a function of the electrode configuration measured at atmospheric pressure.

Test temperature - 25°C
Voltage Wave Form - 1 1/2 x 40 microseconds
Polarity - positive

[Ref. 16775]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(10) Various Configurations

The comparative dielectric strength of sulfur hexafluoride gas tested under dc and ac voltage at room temperature and pressure.

ac voltage - 60 cycles
dc polarity - positive

The effect of electrode configuration on the dielectric strength of sulfur hexafluoride gas at atmospheric pressure.

Test temperature - room
Test voltage - 60 cycles

[Ref. 16775]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(C) Dielectric Strength vs Gap Spacing

(11) Gas Mixtures

Spark breakdown voltages for air, He, H₂, SF₆ and mixtures of He + SF₆ for 1 inch diameter hemispheres. (74.5 centimeters Hg, 29.5 degrees centigrade, 60 cycle voltage.)
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(D) Dielectric Strength vs Temperature

Impulse breakdown voltages of sulfur hexafluoride at atmospheric pressure as a function of temperature.

[Ref. 11279]

The dielectric strength-temperature relation for sulfur hexafluoride tested at atmospheric pressure.

Electrodes - 1/2 inch sphere-to-plane
Gap Distance - 1/2 inch
Voltage - 1 1/2 x 40 microsecond wave form

[Ref. 16775]
SULFUR HEXAFLUORIDE
DIELECTRIC STRENGTH

(E) Miscellaneous Breakdown Parameters

Breakdown voltage as a function of time to breakdown for SF₆ for 2 inch gap between 2 inch diameter sharp-edged electrode and 6 inch diameter plane in 12 inch steel tank at 78.5 cm mercury absolute and 25°C for positive polarity.

Spark breakdown voltage for SF₆ + He mixtures. Parameter + gap between 1 inch diameter hemispheres (74.6 cm Hg, 29.5°C).

[Ref. 6209]

[Ref. 1931]
SULFUR HEXAFLUORIDE

DIELECTRIC STRENGTH

(1) Miscellaneous Breakdown Parameters

Showing the changing relation of the impulse voltage breakdown of sulfur hexafluoride and air as the gas pressure of each is increased.

- Electrodes: point-to-plane
- Test gap: 1 1/2 inches
- Voltage waveform: 1 1/2 x 40 μsec
- Point electrode polarity: positive
- Test temperature: 27°C

Showing the interrupting capacity of sulfur hexafluoride gas, air, and a 50% mixture thereof at 2300 volts, zero power factor, using a three inch plain break switch.

[Ref. 16775]
SULFUR HEXAFLUORIDE

DISSIPATION FACTOR

\[
\begin{align*}
\text{at 1 atm. pressure} & \quad \tan \delta = < 2 \times 10^{-7} & \text{Ref.} & \quad 11266 \\
\text{at 21 atm. pressure} & \quad \tan \delta = < 5 \times 10^{-6} & \text{Ref.} & \quad 11266 \\
\text{at } -50 \pm 1^\circ C & \text{ (10-500Kc)} & \quad \tan \delta = < 0.001 & \text{Ref.} & \quad 1508 \\
\text{(liquid SF}_6\text{)} & & & \\
\end{align*}
\]
SULFUR HEXAFLUORIDE REFERENCES


PUBLICATIONS OF THE ELECTRONIC PROPERTIES INFORMATION CENTER

DS-117  ( No longer available - Superseded by DS-137. )
DS-118  ( No longer available - Superseded by DS-137. )
DS-119  ( No longer available - Superseded by DS-137. )
DS-120  ( No longer available - Superseded by DS-137. )

DS-126 (No longer available - Superseded by DC-137.)


OTHER REPORTS


