OPTICAL SPECTRA AND MOLECULAR PARAMETERS OF LIGHT ELEMENT MOLECULES

by

John L. Margrave

Department of Chemistry
William Marsh Rice University
Houston, Texas 77001
Jackson 8-4141, Ext. 602

For

Army Research Office (Durham)

for the period 1 January to 31 March 1964

Progress Report No. 4

Contract No. DA 31-124-ARO(D)-91
ARPA Order No. 40, Task No. 5
Amendment No. 19 dated 16 January 1963
1 March 1963 to 28 February 1965
LOAN DOCUMENT TRANSMITTAL

Please attach a copy of this form to any loan documents sent to the Scientific and Technical Information Facility. A single copy of this form and the document should be sent to the following address:

Scientific and Technical Information Facility
Attention: NASA Representative
Box 5700
Bethesda 14, Maryland

Every effort will be made to return this document in the shortest possible time.

Please complete.

Sent by:

<table>
<thead>
<tr>
<th>CHECKED FOR N NUMBERS</th>
<th>CHECKED AGAINST N-62 NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See other side for NASA contractor report

For Facility Use Only

LOAN DOCUMENT PROCESSING RECORD

N62- ____________ Date received: ____________
X62- ____________

THIS DOCUMENT IS ON LOAN

Please process as follows:

- Film for Microform and make Xerox copy
- Microform completed
- Xerox copy made
- Xerox copy sent to Input Station
- Original sent to Mail Room
- Document returned to sender

Date	Initials

THIS LOAN DOCUMENT FORM MUST BE SENT TO THE CASE FILE

Facility Test Form 443, Sept. 1962
COMPLETE FOR NASA CONTRACTOR DOCUMENTS ONLY

DOCUMENT TYPES

1. ______ Report is unclassified and is suitable for unlimited announcement and distribution to the aeronautics and space community, and for public sale.

2. ______ Report is unclassified, but contains information of limited usefulness and does not justify widespread automatic distribution to the aeronautical and space community. It can, however, be announced and made publicly available.

3. ______ Report is unclassified, but for official reasons, must be restricted as follows:
 a. ______ Government agencies and their contractors only.
 b. ______ Government agencies only.
 c. ______ NASA activities only.

4. ______ Report bears a security classification and is suitable for distribution within the limits of security considerations to:
 a. ______ Government agencies and their contractors only.
 b. ______ Government agencies only.
 c. ______ NASA activities only.

5. ______ Reprint of a journal article reporting NASA-supported work.

6. ______ Article prepared for journal publication (preprint or other copy) reporting NASA-supported work. (Normally handled as No. 2 above.)

Estimated date of publication: ____________________

7. ______ Material for presentation at a meeting or conference
 Name of Meeting: ____________________________ Date:__________
 Sponsor(s): ________________________________
 a. ______ Scheduled for publication in proceedings. (Normally handled as No. 2 above.)

Estimated date of publication: ____________________

Not scheduled for publication in proceedings and subject to the following limitations or announcement and dissemination:

b. ______ Government agencies and their contractors only.
 c. ______ Government agencies only.
 d. ______ NASA activities only.
I. Personnel

A. S. Kanan, K. Sathianandan (not on contract funds),
and J. L. Margrave

II. Research Progress

The following research progress is to be reported:

(a) Vacuum Ultraviolet Spectroscopy

Due to a malfunction in the vacuum system of the two-meter
McPherson spectrometer, Model 240, work on the spectrograph was interrupted
temporarily before it was repaired by the McPherson Company.

Oxygen difluoride (OF₂) was excited in a hollow cathode
discharge tube. No promising results were obtained in the visible and
ultraviolet region. Work is continued in the vacuum ultraviolet region
using various excitation devices.

A mixture of N₂ and Cl₂ was excited in a hollow cathode
discharge tube and emission spectra were observed in the visible and
ultraviolet regions. Preliminary studies did not indicate the presence
of species of interest. The vacuum ultraviolet region will be investigated.

(NO₂)₃ was prepared and excited in a microwave discharge.
The spectrum from this source is being investigated. A differential pumping
system was attached to the spectrometer at the entrance slit to allow
studies in windowless discharge tubes.

Absorption studies of various fluorides are planned.
(b) Visible and Near Ultraviolet Spectroscopy

Emission spectra from CF₄, HF₃, SiF₄, and H₂ introduced separately into the hot zone of the plasma were obtained. Preliminary studies showed successful mixing of these gases with the hot plasma. However, difficulties due to impurities in argon made it difficult to obtain spectra of CF, CF₂, HF, and H₂ molecules. The spectra of SiF and SiO were identified from the SiF₄-Ar system. Spectra of O₂ and NO were identified in the case of CF₄ and HF₃, respectively. An arrangement to inhibit interference of O₂ is under consideration.

(c) Infrared Spectroscopy

A special cell has been designed with cooling systems for work on the infrared spectrum of TeO₂ vapor. Also, several unsuccessful attempts were made to obtain the infrared spectrum of CrO₃ vapor. At elevated temperatures the substance decomposes to a series of lower oxides.

Infrared studies of SiF₂(matrix) have been considered and a plan for getting SiF₂ deposited is being devised.

(d) Thermodynamic Properties of Light Element Molecules

Mass spectrometric studies of NiF₂(g), MnF₂(g) and MnF(g) are in progress which will yield bond energies and heats of formation.

(e) Manuscripts and Meetings

