A NOTE ON PRIMITIVE MATRICES
I. N. Herstein

12 November 1952

Approved for OTS release

<table>
<thead>
<tr>
<th>COPY</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARD COPY</td>
<td>$1.00</td>
</tr>
<tr>
<td>MICROFICHE</td>
<td>$0.50</td>
</tr>
</tbody>
</table>

The RAND Corporation

Research undertaken under contract between the Cowles Commission for Research in Economics and The RAND Corporation
A Note on Primitive Matrices

I. N. Herstein

November 12, 1952

Suppose that A is a square matrix consisting of nonnegative elements. In certain considerations it is important to know when all the elements of some power of A are strictly positive. Frobenius [2] gave a very simple necessary and sufficient condition for this to happen. In this note we give a simple proof of this result. Our proof is algebraic in nature and avoids the use of the convergence of powers of a matrix.

All matrices considered here will have real elements. For two such matrices (not necessarily square) $B = (b_{ij}), C = (c_{ij})$ we define

$B \preceq C$ if $b_{ij} \leq c_{ij}$ for each i, j.

$B \preceq C$ if $B \preceq C$ but $B \not\preceq C$.

$B > C$ if $b_{ij} > c_{ij}$ for each i, j.

A square matrix $A \geq 0$ (A is then called nonnegative) is said to be indecomposable if for no permutation matrix P does

$$PAP^{-1} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$

where the A_{11} are square submatrices.

The fundamental result about nonnegative, indecomposable matrices is due to Frobenius [2]; this, and other, results have recently been rederived and extended in a greatly simplified manner by Wielandt [3] and Debreu and Herstein [1]. It is

THEOREM. Let $A \geq 0$ be an indecomposable matrix. Then A has a positive characteristic root r such that

1. r is a simple root.
2. to \(r \) can be associated a characteristic vector \(x > 0 \).

3. \(\text{if} \, a \, \text{an} \, \text{any other characteristic root of} \, A, \, |a| \leq r. \)

If \(A > 0 \) then 3. can be sharpened to \(|a| \leq r \) for all characteristic roots \(a \neq r \) of \(A \).

If \(A \neq 0 \) is indecomposable and if \(A \) has no characteristic root other than \(r \) of maximal absolute value then \(A \) is said to be primitive.

In this paper we prove the

THEOREM* (Probenius). Let \(A \neq 0 \). Then \(A^m > 0 \) for some integer \(m > 0 \) if and only if \(A \) is primitive.

Suppose that \(A^m > 0 \). Then \(A \) must be indecomposable; for if

\[
PAP^{-1} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix} \quad \text{then} \quad PAP^{-1} = \begin{pmatrix} B^m & C^m \\ 0 & D^m \end{pmatrix} \text{contradicting} \ A^m > 0.
\]

Now suppose that \(r \) and \(re^{1+i\pi} \neq r \) are characteristic roots of \(A \) of maximal absolute value. Then \(A^m, A^{m+1} \) are both positive and have \(r^m, re^{im\pi} \), and \(r^{m+1}, r^{m+1}e^{(m+1)i\pi} \) respectively as roots of maximal absolute value.

Since the largest root of a positive matrix is simple and is actually greater than any other root in absolute value. We must have

\[
re^{im\pi} = r, \quad r^{m+1}e^{(m+1)i\pi} = r^{m+1}, \quad \text{whence} \ e^{i\pi} = 1, \text{a contradiction}.
\]

There remains but to show that if \(A \) is primitive then \(A^m > 0 \) for a suitable integer \(m > 0 \). This will be proved as a consequence of the following few lemmas, which by themselves are of some interest.

Lemma 1. If \(A \) is primitive then \(A^m \) is primitive for every positive integer \(m \).

Proof. Since \(r \) is a simple root of \(A \) and is the only root of \(A \) of absolute value \(r \), \(r^m \) is a simple root of \(A^m \) and is the only root of \(A^m \) of absolute value \(r^m \). So we need but show that \(A^m \) is indecomposable for every integer
m > 0. Suppose that for some s A^s is not indecomposable; we can then assume that
A^s = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}. Now \(Ax = rx \) for \(x > C \), so \(A^s x = r^s x \); partition
\(x \) according to the partitioning of \(A^s \) and we have
\[
\begin{pmatrix} B & C \\ 0 & D \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = r^s \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.
\]
That is \(Dx_2 = r^s x_2 \), and since \(x_2 \) is positive, \(r^s \) is a characteristic root
of \(D \). Since the transpose, \(A' \), of \(A \) is also indecomposable, we have
\(A'Y = ry \) for \(Y > 0 \). Partitioning as above we obtain that \(r^s \) is a character-
istic root of \(B' \), and so of \(B \). Being a characteristic root of both \(B \)
and \(D \), \(r^s \) must be a multiple root of \(A^s \), which is a contradiction. The
lemma is thereby proved.

Lemma 2. (Wielandt). Let \(\varepsilon \) be any positive number. Suppose \(A \neq 0 \) is an
nn matrix. Then \((\varepsilon I + A)^{n-1} > 0 \) where \(I \) is the identity
matrix.

Proof. It clearly suffices to show that for any vector \(x, x > 0 \),
\[
(\varepsilon I + A)^{n-1} x > 0. \]
Let
\[
x_{j+1} = (\varepsilon I + A)^{-1} x.
\]
Hence a zero component can occur in \(x_{j+1} \) only where a zero component al-
ready occurred in \(x_j \). However, not every such zero component can be pre-
served in \(x_{j+1} \). For if so, by a suitable reordering of the coordinates,
\[
x_j = \begin{pmatrix} p \\ 0 \end{pmatrix}, \quad p > 0,
\]
whence \(x_{j+1} = \varepsilon \begin{pmatrix} p \\ 0 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} p \\ 0 \end{pmatrix} = \begin{pmatrix} q \\ 0 \end{pmatrix},
\]
from which it follows that \(a_{21}p > 0 \). This together with \(p > 0 \) forces
\(a_{21} = 0 \), violating the indecomposability of \(A \). So each application of
\(\varepsilon I + A \) to \(x \) decreases the number of zero coordinates by at least one.
Hence \((\varepsilon I + A)^{n-1} x > 0 \).

As an easy consequence of Lemma 2 we obtain
Lemma 3. If $A = (a_{ij})$ is indecomposable and $a_{ii} > 0$ for each i then $A^{n-1} > 0$.

For let ϵ be chosen satisfying $0 < \epsilon < \min a_{ii}$. Then $A = \epsilon I + B$ where $B > 0$ is indecomposable. Lemma 2 then yields $A^{n-1} > 0$.

Let $A^m = (a_{ij}^{(m)})$. Then we have

Lemma 4. Let $A > 0$ be indecomposable. Then for any i,j we can find an $m = \gamma(i,j) > 0$ so that $a_{ij}^{(m)} > 0$.

Proof. Consider first the case $i \neq j$. Since

$$(I+\epsilon A)^{n-1} = A^{n-1} + \left(\begin{array}{c} \epsilon A^{n-2} \\ \vdots \\ \epsilon A \end{array}\right) I > 0$$

by Lemma 2, $a_{ij}^{(m)} > 0$ for some $m \leq n-1$. Now suppose $i = j$. Since A is indecomposable, no column of zeros can occur in A. So there is a k with $a_{ki} > 0$. If $k = i$ then $a_{ii}^{(m)} > 0$ for all m trivially. If, on the other hand, $k \neq i$, then $a_{ik}^{(m)} > 0$ for some m, and since $\sum a_{ik}^{(m+1)} = \sum a_{ik}^{(m)} a_{ij} > 0$ for $m > 0$ the lemma is proved.

We are now in position to complete the proof of Theorem*. Let A be primitive. Pick m_1 so that in A^{m_1}, $a_{ij}^{(1)} > 0$. Let $A_1 = A^{m_1} = (a_{ij}^{(1)})$.

By Lemma 1 A_1 is primitive, so there is an m_2 such that in $A_2 = A^{m_2}$, $a_{22}^{(1)} > 0$. Since $a_{11}^{(1)} = a_{11} > 0$, $a_{11}^{(1)} > 0$. Let $A_2 = A_1^{m_2}$. Continuing in this way we arrive at an $A_n = A^{m_1 m_2 \ldots}$ which is primitive and whose diagonal elements are all positive. By Lemma 3 $A^n > 0$ for some t, hence $A^m > 0$ for some suitably chosen integer m.

Cowles Commission for Research in Economics

and The University of Chicago
FOOTNOTES

1. This paper is a result of the work being done at the Cowles Commission for Research in Economics on the "Theory of Resource Allocation" under sub-contract to the RAND Corporation.

2. Numbers in square brackets refer to the bibliography at the end of this paper.

BIBLIOGRAPHY

