UNCLASSIFIED

AD NUMBER

AD492324

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; AUG 1949. Other requests shall be referred to Office of Naval Research, One Liberty Center, 875 North Randolph Street, Arlington, VA 22203-1995.

AUTHORITY

31 Aug 1961, DoDD 5200.9; ONR Notice, 27 Jul 1971

THIS PAGE IS UNCLASSIFIED
PUMP PERFORMANCE
OF THE
MARK 40 PUMPJET

A REPORT ON RESEARCH CONDUCTED UNDER CONTRACT WITH
THE BUREAU OF ORDNANCE OF THE DEPARTMENT OF THE NAVY
AND OFFICE OF NAVAL RESEARCH

DECLASSIFIED
PUMP PERFORMANCE OF THE MARK 40 PUMPJET

by

John H. Beveridge
Mechanical Engineer

Hydraulic Machinery Laboratory
California Institute of Technology
Pasadena, California

Robert T. Knapp, Director

August 1949

12 23p.

UNCLASSIFIED

DECLASSIFIED
DOD DIR 5203.9
TABLE OF CONTENTS

Acknowledgment .. iii
Summary ... 1
Introduction ... 1
Purpose ... 1
Test setup .. 1
Measurements .. 2
Operation .. 2
Test results
 Characteristic Curves for Mark 40 Pumpjet, Fig. 1. . . 3
 Performance Curves for Mark 40 Pumpjet, Fig. 2 . . . 4
 Comparison Curves for Mark 40 Pumpjet and Granby
 Model Pump, Fig. 3 5
 Curves of Pumpjet Performance vs. Drag Coefficient
 Fig. 4 .. 6
 Curves of Pumpjet Performance vs. Jet Area, Fig. 5 .. 7
Discussion of test results 8
Conclusions ... 9
Appendix I
 Sample calculations of pumpjet characteristics from
 test data ... 11
Appendix II
 Determination of the Mark 40 Pumpjet operating point 13
Bibliography .. 23
Acknowledgment

The Mark 40 Pumpjet was tested at the request of the U. S. Naval Ordnance Test Station, Pasadena Annex.

The tests were conducted with the aid of funds from Contracts NORD 9612 and N6-ONR-244, Task Order No. 2.
PUMP PERFORMANCE OF THE MARK 40 PUMPJET

CHARACTERISTIC CURVES FOR THE MARK 40 PUMPJET IN NORMAL PUMP AND REVERSE TURBINE REGIONS OF OPERATION

Summary

From the results of tests conducted in the Hydraulic Machinery Laboratory at the California Institute of Technology, the pump performance was analyzed and found to be satisfactory for the pumpjet installation in the Mark 40 Torpedo. The pump will operate at or very near the point of best efficiency, which is 84.5 ± 1.0 per cent at a projectile speed of 80 knots.

The propulsion unit was tested from zero flow rate point through zero head point into the reverse turbine range. The performance was found to be very similar to that of a conventional centrifugal pump fitted with a diffuser vane case or a volute case.

Introduction

The Mark 40 Torpedo is to be powered with a turbo-pumpjet. The turbo-pumpjet is a gas-turbine-powered centrifugal pump. Water enters the pump through a cylindrical duct in the torpedo nose and is discharged through eight nozzles in the form of high velocity jets. The reaction of the jets furnish the thrust necessary to overcome the projectile drag.

The complete hydraulic propulsion unit, namely, the entrance duct, the pump impeller, the diffuser casing and discharge nozzles, is referred to in this report as the "pumpjet."

Purpose

The object of the tests was to find the head, brake horsepower, and efficiency, vs. flow rate relationships for the Mark 40 pumpjet in the normal pumping, power dissipation, and the reverse turbine regions of operation. Under normal operating conditions the ram effect on the projectile nose assures high positive suction pressure and eliminates the possibility of cavitation. Thus, in this series of tests, cavitation studies were not made.

Test Setup

Hydraulically, the pumpjet unit used in these tests was an exact, full scale, duplicate of the Mark 40 installation. The U. S. Naval Ordnance Test Station, in Pasadena, California, furnished the Laboratory with a Mark 40 nose section and a pumpjet impeller. The nose section contains, in one casting, the entrance duct and the diffuser casing up to the straightener vanes which precede the discharge nozzles. The Mark 40 nozzle section was impractical to use in the test setup; hence, a set of eight duplicate nozzles and straightener vanes, more adaptable to test purposes, was made in the Laboratory shop and installed in the test unit.

See bibliography at end of report.
The test setup is shown diagrammatically in Figs. 6 and 7. The pumpjet was placed in a closed hydraulic circuit. The entrance duct was fitted to a contraction nozzle designed to deliver a uniform energy flow to the impeller which is the condition that would be experienced by the prototype. Preceding the nozzle was a long, straight length of 12 in. pipe. The eight discharge nozzles were each followed by a needle type regulating valve which was used to equalize the flow in all nozzles. The regulating valves were adjusted with the pumpjet operating at the best efficiency point. This adjustment was necessary because the pressure in the discharge manifold, unlike that on the actual torpedo, was not everywhere equal. The torus-like discharge manifold merely afforded a convenient means of collecting the flow from the various jets.

The pumpjet was powered by the Laboratory dynamometer through a direct drive. Figs. 8 through 12 show the test unit in various stages of completion.

Measurements

The dynamometer standard torque mechanism was used to obtain the input torque for normal pump and power dissipation regions of operation and the output torque for the reverse turbine tests. The dynamometer speed was measured and controlled by the existing standard frequency speed control.

The rate of flow through the unit was measured by the appropriate size venturimeter permanently located in the Laboratory. The meters were located in the pump discharge line.

The differential head generated by the pump was measured by a differential pressure gage. On the suction side of the pump the pressure tap was located on a piezometer slot in the inlet duct. On the discharge side of the pump a pressure tap was located at a point just ahead of the grid straightener vanes in each of the discharge nozzle passages (Fig. 7). The discharge pressure lines from the eight nozzles were led to a common manifold (Fig. 11) and then to the gage. The differential head, so determined, did not include the losses incurred in the grids or the nozzles. In preliminary tests the discharge pressure was measured approximately 1/2 in. downstream from the grids in two nozzles only. The differential pressure across the pump, in this case, was of the order of 2 per cent less than that obtained when the discharge pressure was measured ahead of the grids.

Operation

The tests were conducted without any mechanical difficulties from the pumpjet with the exception of the outboard ball bearing. This bearing, exposed to fresh water, failed after an estimated operating time of 5-10 hours. It was run at speeds up to 4000 rpm, the highest test speed. It was found that packing the bearing in the test unit with commercial automobile water pump grease greatly extended its life. It is unlikely that this bearing will fail from this cause in the prototype since its time of operation is very short.

Test Results

The results of the tests are presented graphically in Figs. 1 through 5
CHARACTERISTIC CURVES FOR MARK 40 PUMPJET

HYDRAULIC MACHINERY LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
TESTED BY J.H. BEVERIDGE JUNE, 1948

SYMBOLS:
- STD AREA JET OPERATING POINT
- RUN 1 89-123-16
- RUN 2 88-123-18

FLOW RATE, c.f.s. per 1000 rpm

Fig. 1
PERFORMANCE CURVES FOR MARK 40 PUMPJET

Fig. 2
Fig. 3

COMPARISON CURVES FOR
MARK 40 PUMMRJT & GRANBY
SINGLE VOLUME MODEL PUMP
HYDRAULIC MACHINERY LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
TESTED BY J.H. BEVERIDGE JUNE, 1949

SYMBOLS:

NOTE: IMPellers FROM SAME PATTERN
MARK 40 - 7 1/8" DIA., GRANBY - 7 3/8" DIA.
PUMPJET PERFORMANCE vs DRAG COEFFICIENT for STANDARD AREA JETS

PROJECTILE SPEED = 60 KNOTS
C.I.T. MAY, 1949 J.H. BEVERIDGE

Fig. 4
Fig. 5

PUMPUET PERFORMANCE vs JET AREA
G.T. MAY, 1949 J.H. BEVERIDGE

SYMBOLS:
- $C_p = 0.68$
- $C_p = 0.07$
- $C_p = 0.06$

PROJECTILE SPEED = 80 K
ST&D JET AREA = 0.0431 ft²

UNIT FLOW RATE, cts per 1000 rpm

OVERALL EFFICIENCY, % PROPULSION EFFICIENCY, %

PERCENT OF STANDARD JET AREA
Discussion of Test Results

The characteristic curves were obtained for three contiguous regions of operation, namely, normal pump, power dissipation, and reverse turbine. All three flows were in the same direction, that is, from the suction nozzle to the discharge. The normal pump region of characteristic curves was used to obtain the steady state operating conditions of the pumpjet for the proposed projectile velocity of 80 knots. (See Appendix II). The steady state operating point is marked on the characteristic curves in Figs. 1 through 3. The steady state operating point indicated in Fig. 1 is based on an assumed drag coefficient of 0.06. It is seen that the operating point is at or very near the point of best efficiency.

The position of the unit operating point of the pumpjet is dependent upon the drag coefficient of the projectile. The term "unit operating point" refers to the operating point on the characteristic curves having coordinates of flow rate per 1000 rpm, head per (1000 rpm)² and brake horsepower per (1000 rpm)³. A series of drag coefficients from 0.06 to 0.08 was assumed in the calculations and the pumpjet unit operating point corresponding to each drag coefficient was found and plotted in Fig. 2. It is to be noted in Fig. 2 that the position of the unit operating point does not vary greatly over the range of drag coefficients chosen. However, Fig. 4 shows that the pumpjet speed, flow rate, head, and brake horsepower do vary widely over the range of drag coefficients chosen. Thus the difficult and somewhat speculative determination of the correct drag coefficient is not as critical a problem in locating the pumpjet unit operating point as might at first be anticipated.

A change in the throat area of the discharge nozzles, and hence the area of the jets, also changes the pumpjet unit operating point. This effect is indicated in Fig. 5 for the same projectile speed of 80 knots and for various drag coefficients. The total throat area of the nozzles tested, denoted in this report as the standard jet area, was 0.0431 sq. ft on a diameter of 0.994 in. It can be concluded from Fig. 5 that the nozzles used were very close to the optimum for the given set of operating conditions.

It is of interest to compare the characteristic curves of the unit tested, which uses a slightly modified Granby model pump impeller, and the Byron Jackson Granby model pump. Comparison shows (Fig. 3) that the conversion from a normal single volute case to the diffuser jet case does not materially alter the general character of the characteristic curves. The fact that the test unit does not show as high a peak efficiency as the Granby model pump is not too surprising if it is noted that the surface area, hence the skin friction loss, of the diffuser jet case is considerably greater than that found in the single volute case.
Conclusions

1. The characteristic curves of the Mark 40 Pumpjet are very similar to the characteristic curves of a modern centrifugal pump.

2. The Mark 40 Pumpjet operating point is at or very near the point of maximum efficiency. There are no instabilities in the characteristic curves near the anticipated operating point.

3. The Mark 40 Pumpjet pump efficiency and propulsion efficiency are relatively insensitive to variation of projectile drag over the range of drag coefficients from 0.06 to 0.08.

4. The present total jet area (0.0431 sq. ft) is very satisfactory as far as the overall efficiency of the Mark 40 Pumpjet is concerned.

For detailed information as to the procedure employed in calculating the pump head, flow rate, brake horsepower, and efficiency from the test data, reference should be made to Appendix I which presents, in outline form, complete sample calculations of these quantities. In Appendix II is outlined the method used in estimating the pumpjet operating point for the proposed projectile speed of 80 knots.
APPENDIX I

SAMPLE CALCULATIONS OF PUMPJET CHARACTERISTICS
FROM TEST DATA

Run N-56-123-15, Point Number 27

The test data taken from the above run is introduced in the step of the calculations to which it pertains.

I. Pump Speed, N, rpm

 Speed preset at 2200 rpm

 Note: The speed is controlled by setting the speed control gear box to the nearest 0.5 rpm.

II. Torque

 Torque = dynamometer lower torque reading + zero + windage + friction
 = 00.00 + 54.99 + 06.70
 = 61.69 ft lbs

 Total torque = 49.29 ft lbs

 Note: Windage and friction losses include pumpjet no-load bearing friction but not the John Crane seal friction.

III. Brake Horsepower, BHP

 Total BHP input to pump

 BHP = speed x torque x constant
 = 2200 x 49.29 x 2\pi
 = 20.64

 Unit brake horsepower, bhp_{1000}, bhp per (1000 rpm)3

 bhp_{1000} = \frac{20.64}{2200} = 1.94 bhp/(1000 \text{ rpm})3

 BHP for speed n is

 BHP_n = 1.94 \left(\frac{n}{1000}\right)3

IV. Flow Rate, Q, of s

 Total Q

 \[Q = \frac{G \Delta L}{144} \sqrt{\frac{8g x \Delta q x \left(\frac{\Delta H}{H_0} - 1\right)}{\left(\frac{\Delta q}{L}\right)^2 - 1}} \]
Q = flow rate, cfs
Cd = coefficient of discharge of meter = 1.0
AL = area of entrance end of meter = 26.0 in.²
AT = throat area of meter = 11.23 in.²
Δq = differential head across meter, ft Hg
$\frac{\rho_{Hg}}{\rho_{H_2O}}$ = ratio sp. wt. Hg to sp. wt. H₂O = 13.6

$g = \text{gravitational acceleration} = 32.2 \text{ ft/sec}^2$

For the above test

Δq = 1.008 ft Hg
Q = $\sqrt{5.06 \times \Delta q}$
Q = 2.47 cfs

Unit flow rate, Q₁₀₀₀, cfs per 1000 rpm

Q₁₀₀₀ = $\frac{2.47 \times 1.12}{2000}$ cfs/1000 rpm

Flow rate at speed, rₙ

Qₙ = $\frac{1.12}{1000}$ cfs

V. Head Generated by Pump, H, ft of water

Total H

$H = \frac{144(P_3 - P_2) + \frac{v^2}{2g}}{\frac{\rho_{Hg}}{\rho_{H_2O}}}$

or, in terms of Q,

$H = \frac{144(P_3 - P_2)}{\frac{\rho_{Hg}}{\rho_{H_2O}}} + \frac{Q^2}{2g} \left[\frac{1}{A_3} - \frac{1}{A_2} \right]$

where subscript 2 refers to the pump suction and 3 to a point just ahead of the straightener vanes in the nozzle passages. (See Fig. 7 and page 14.)

$P_3 - P_2 = \Delta P$, differential pressure across pump + gage correction, psi.

$\delta = \text{sp. wt. of fresh water} = 62.4 \text{ lbs/ft}^3$

For the above example

H = $\frac{144(26.1 + 0.8)}{62.4} - (0.90)

H = 60.8 ft
Unit head, \(h_{1000} \) ft per \((1000 \text{ rpm})^2\)

\[h_{1000} = \frac{60.8}{(2200)^2} = 12.56 \text{ ft}/(1000 \text{ rpm})^2 \]

Head at speed, \(n \),

\[H = 12.56 \left(\frac{n}{1000} \right)^2 \]

VI. Pump Efficiency, \(\eta_p \), per cent

\[\eta_p = \frac{\text{WHP}}{\text{BHP}} \]

WHP = water horsepower

\[\eta_p = \frac{\frac{82.4 \times 100}{550}}{\text{BHP}} \]

\[\eta_p = \frac{(62.4)(2.67)(60.8)(100)}{(550)(20.64)} \]

\[\eta_p = 82.7 \text{ per cent} \]

VII. Results

\[\text{BHP} = 20.64 \]

\[\text{bhpl}_{1000} = 1.94 \text{ bhp}/(1000 \text{ rpm})^2 \]

\[Q = 3.47 \text{ cfs} \]

\[q_{1000} = 1.12 \text{ cfs}/(1000 \text{ rpm}) \]

\[H = 60.8 \text{ ft} \]

\[h_{1000} = 12.56 \text{ ft}/(1000 \text{ rpm})^2 \]

\[\eta_p = 82.7 \text{ per cent} \]

\[H = 2200 \text{ rpm} \]

APPENDIX II

DETERMINATION OF THE MARK 40 PUMPJET OPERATING POINT

I. Data

\[d = \text{projectile dia.} = 31 \text{ in.} \]

\[d_e = \text{discharge nozzle throat dia.} = \text{jet dia.} = 0.994 \text{ in.} \]

\[\alpha = \text{inclination of jets to axis of projectile} = 15^\circ . \]

\[V_p = \text{projectile velocity} = 80 \text{ knots or } 135 \text{ ft/sec}. \]
II. Projectile Drag, D, lbs

$$D = C_D \times A_F \times \frac{\rho V_1^2}{2}$$

where

A_F = frontal cross sectional area of projectile
$= 0.785 \left(\frac{21}{12} \right)^2 = 2.40 \text{ ft}^2$.

ρ = mass density of fluid (fresh water)
$= \frac{62.4 \text{ lb-sec}^2}{32.2 \text{ ft}^4}$

V_1 = projectile velocity = 135 ft/sec

C_D = drag coefficient. Assumed values are: 0.06, 0.07, 0.08.

These drag coefficients were chosen in lieu of drag studies in progress in the Hydrodynamics Laboratory water tunnel. In Ref. (2) $C_D = 0.049$ was used in preliminary calculations.

$$D = (0.06)(2.40)\left(\frac{62.4}{32.2} \right) \left(\frac{155}{2} \right)^2$$

$D = 5390$ lbs for $C_D = 0.06$

$D = 2970$ lbs for $C_D = 0.07$

$D = 2340$ lbs for $C_D = 0.08$

$C_D = 0.08$ is used in the following calculations.

III. Pumpjet flow rate, Q, ofs

For steady state operation the axial thrust of the jets, T, is equal to the drag of the projectile, D.
From momentum considerations

\[T = \rho Q \left(V_4 \cos \alpha - V_1 \right) \]

where

- \(T \) = thrust, lbs
- \(\rho \) = mass density, fresh water
- \(Q \) = flow rate, cfs
- \(V_4 \) = jet velocity, ft per sec
- \(\alpha \) = inclination of nozzles to projectile axis
- \(V_1 \) = free stream velocity, ft per sec

In terms of \(Q \)

\[T = \rho Q \left(\frac{Q}{4} \cos \alpha - V_1 \right), \text{ or} \]

\[T = \frac{62.4}{23.2} \left[0.066 \cdot Q^2 - 155 \cdot Q \right] \]

\[T = 45.5 \cdot Q^2 - 262 \cdot Q \]

For \(T = D = 3590 \) lbs

\[Q = 19.3 \text{ cfs} \]

IV. Pumpjet head, \(H \), ft

\[H = \left[\frac{p_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 \right] - \left[\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 \right] \]

where

- \(p_2 \) = static pressure, ft
- \(\frac{V_2^2}{2g} \) = velocity head, ft
- \(\frac{V_1^2}{2g} \) = velocity head, ft
- \(Z_2 \) = elevation, ft

Assume

- Ram efficiency = 100 per cent
- Discharge nozzle efficiency = 100 per cent

\[H = \left(\frac{p_2 - p_1}{\gamma} \right) + \left(\frac{V_4^2 - V_1^2}{2g} \right) \]

To estimate \(p_4 \), the pressure about the circumferential surface of the projectile in the vicinity of the discharge nozzle ports, reference was made to the experimental work by Lyons in which the ratio of the pressure drop between a point in the

CONFIDENTIAL
free stream, P_1, and a point on the body surface, P_4, to the free stream velocity head, $\rho V_1^2/2$,

$$
\frac{P_4 - P_1}{\rho V_1^2/2} = \frac{p}{q} \quad \text{(Lyons' designation)}
$$

was determined for various points along the profile of a body denoted as "Model A". The geometrical shape of the "Model A" nose section matches the profile of the Mark 40 torpedo nose section. From tabulated data in Table 8, on page 26 of the above reference, the average value of the ratio may be taken as -0.18. It is realized that this absolute value may be somewhat in error. The relatively undisturbed flow pattern about the test "Model A" and the pattern about the Mark 40 torpedo with jets in operation, is not exactly similar. However, as may be seen from the expression in the next step, a 50 per cent variation (0.08 or 0.24 instead of 0.18) in the selected value introduces only a ±2.5 per cent variation in the pump head under the given conditions. The above procedure is introduced as an indication of the proper procedure and is subject to modification as more applicable experimental data are made available.

Inserting in the previous expression for H,

$$
\frac{P_4 - P_1}{\rho V_1^2/2} = -0.18 \quad \text{gives,}
$$

$$
H = \frac{V_1^2}{2g} - 1.16 \frac{V_1^2}{2g} \quad \text{or, in terms of } Q,
$$

$$
H = \frac{Q^2}{2gA_4} - 1.16 \frac{(135)^2}{2g} = 8.36Q^2 - 328
$$

For $Q = 12.3$ cfs

$H = 937$ ft

V. Water horsepower, WHP

$$
WHP = \frac{\sqrt{QH}}{550}
$$

$$
WHP = \frac{(12.3)(135)(937)}{550}
$$

$$
WHP = 1908
$$
VI. Thrust horsepower, THP

\[\text{THP} = \text{drag x projectile velocity} \]

\[\text{THP} = \frac{(3330)(135)}{550} \]

\[\text{THP} = 838 \]

VII. Pump speed to satisfy items III and IV, \(N \), rpm

\[\frac{\text{unit flow rate}}{\text{unit head}} = \frac{\text{flow rate, cfs}}{\text{head, ft}} = \frac{12.5}{0.401} \]

On the performance curves, Fig. 2, the ratio

\[\frac{\text{unit flow rate}}{\text{unit head}} \]

is plotted against unit capacity

for various points on the pump \(h_1 \) curve. Entering this plot at \(\frac{\text{unit flow rate}}{\text{unit head}} = 0.401 \) indicates the corresponding unit capacity

\[q_{1000} = 1.585 \text{ cfs/1000 rpm} \]

Thus

\[N = \frac{12.5}{1.585} = 9983 \text{ rpm} \]

VIII. Pump operating point on unit \(h_1 \) curve

Step VII above automatically locates the desired point.

Thus from performance curves

\[h_{1000} = 10.86 \text{ ft/(1000 rpm)}^2 \]

\[\text{bhp}_{1000} = 1.91 \text{ bhp/(1000 rpm)}^3 \]

\[\eta_p = 84.5 \text{ per cent} \]

It is interesting to check \(h_{1000} \) and \(\text{bhp}_{1000} \) against the \(H \) and BHP values previously determined.

\[H = (10.86)\left(\frac{935}{1000}\right)^2 = 935 \text{ ft} \]

\[\text{BHP} = (1.91)\left(\frac{935}{1000}\right)^3 = 1539 \]
IX. Propulsion efficiency η_j, per cent

$$\eta_j = \frac{THP \times 100}{WHP} = \frac{(858)(100)}{1308}$$

$\eta_j = 63.7$ per cent

X. Overall efficiency, η, per cent

$$\eta = \frac{WHP \times THP}{BHP \times WHP} = \eta_p \times \eta_j = \frac{(64.5)(63.7)}{937}$$

$\eta = 55.8$ per cent

XI. Specific speed of pump

$$n_s = \frac{H \sqrt{Q}}{H_{\text{in}}} = \frac{9180 \sqrt{12.5}}{(937)^{1/2}}$$

$n_s = 190$ (Q in cfs)

$n_s = 4050$ (Q in gpm)
Fig. 8 - In the center of the discharge manifold, right foreground, may be seen the nozzle ring which contains the grid straightener vanes and affords a mounting for the jet nozzles. Some of the flow regulating valves are in place on the discharge manifold. The dynamometer is in the center background.

Fig. 9 - The Mark 40 diffuser jet pump case secured to the nozzle ring.
Fig. 10 - View from the drive end of the pumpjet. The nozzle ring with the discharge nozzles and their throat sections are visible behind the flow regulating valves.
Fig. 11 - Note the drive shaft in place and the pressure line installation.
Fig. 18 - Laboratory setup for testing full scale pump for the pumpjet propulsion unit for the Mk 60 Torpedo.

<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Recipient Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 495 Summer Street, Boston 10, Mass.</td>
</tr>
<tr>
<td>17</td>
<td>Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 50 Church St., New York 7, N.Y.</td>
</tr>
<tr>
<td>18</td>
<td>Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 8th, North Rush St., Chicago 11, Ill.</td>
</tr>
<tr>
<td>19</td>
<td>Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 831 Donahue St., San Francisco 21, Calif.</td>
</tr>
<tr>
<td>20 - 21</td>
<td>Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 1030 East Green St., Pasadena 1, Calif.</td>
</tr>
<tr>
<td>25</td>
<td>Executive Secretary, Research and Development Board, National Defense Building, Washington, D.C.</td>
</tr>
<tr>
<td>26</td>
<td>Bureau of Aeronautics, Department of the Navy, Washington 25, D.C. Attn: Aero and Hydro Branch (Code D6)</td>
</tr>
<tr>
<td>27</td>
<td>Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R62c</td>
</tr>
<tr>
<td>28</td>
<td>Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R63d</td>
</tr>
<tr>
<td>29</td>
<td>Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R66</td>
</tr>
<tr>
<td>30 - 31</td>
<td>Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R69</td>
</tr>
<tr>
<td>32 - 36</td>
<td>Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code A63</td>
</tr>
<tr>
<td>37</td>
<td>Naval Ordnance Laboratory, U.S. Navy Bureau of Ordnance, White Oak, Silver Spring 19, Md., Attn: Dr. R.J. Seeger</td>
</tr>
<tr>
<td>38 - 40</td>
<td>Underwater Ordnance Division, Naval Ordnance Test Station, 3202 E. Foothill Blvd., Pasadena, Calif.</td>
</tr>
<tr>
<td>41</td>
<td>Bureau of Ships, Department of the Navy, Washington 25, D.C. Attn: Research Division (Code 372)</td>
</tr>
<tr>
<td>42 - 44</td>
<td>David Taylor Model Basin, Department of the Navy, Washington 7, D.C. Attn: Hydromechanics Department</td>
</tr>
<tr>
<td>45</td>
<td>Department of the Army, General Staff, National Defense Building, Washington, D.C., Attn: Director of Research and Development</td>
</tr>
</tbody>
</table>

CONFIDENTIAL

DISTRIBUTION LIST

16 Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 495 Summer Street, Boston 10, Mass.
17 Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 50 Church St., New York 7, N.Y.
18 Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 8th, North Rush St., Chicago 11, Ill.
19 Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 831 Donahue St., San Francisco 21, Calif.
20 - 21 Commanding Officer, Branch Office, U.S. Navy Office of Naval Research, 1030 East Green St., Pasadena 1, Calif.
25 Executive Secretary, Research and Development Board, National Defense Building, Washington, D.C.
26 Bureau of Aeronautics, Department of the Navy, Washington 25, D.C. Attn: Aero and Hydro Branch (Code D6)
27 Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R62c
28 Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R63d
29 Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R66
30 - 31 Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code R69
32 - 36 Bureau of Ordnance, Department of the Navy, Washington 25, D.C. Attn: Code A63
37 Naval Ordnance Laboratory, U.S. Navy Bureau of Ordnance, White Oak, Silver Spring 19, Md., Attn: Dr. R.J. Seeger
38 - 40 Underwater Ordnance Division, Naval Ordnance Test Station, 3202 E. Foothill Blvd., Pasadena, Calif.
41 Bureau of Ships, Department of the Navy, Washington 25, D.C. Attn: Research Division (Code 372)
42 - 44 David Taylor Model Basin, Department of the Navy, Washington 7, D.C. Attn: Hydromechanics Department
45 Department of the Army, General Staff, National Defense Building, Washington, D.C., Attn: Director of Research and Development

CONFIDENTIAL
Army Chemical Center, Medical Division, Maryland, Attn: Dr. F. A. Odell

Ballistic Research Laboratories, Department of the Army, Aberdeen Proving Ground, Maryland, Attn: Mr. R. H. Kent

Director of Research, National Advisory Committee for Aeronautics, 1721 F. Street, N. W., Washington 25, D. C.

Director, Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Virginia

Dr. J. H. Wayland, Division of Civil and Mechanical Eng. and Aeronautics, California Institute of Technology, Pasadena, California

Professor G. Birkhoff, Department of Mathematics, Harvard University, 576 Widener Library, Cambridge 38, Massachusetts

Dr. K. S. M. Davidson, Experimental Towing Tank, Stevens Institute of Technology, Hoboken, New Jersey

Dr. J. H. McKillen, Naval Ordnance Laboratory, Naval Gun Factory, Washington 25, D. C.

Dr. F. A. Maxfield, Bureau of Ordnance, (Code Re6a), Department of the Navy, Washington 25, D. C.

Dr. A. Miller, Bureau of Ordnance (Code Re3d), Department of the Navy, Washington 25, D. C.

Dr. H. Rouse, Iowa Institute of Hydraulic Research, State University, of Iowa, Iowa City, Iowa

Dr. J. V. Wehausen, Hydromechanics Department, David Taylor Model Basin, Department of the Navy, Washington, D. C.

Superintendent, U. S. Navy Postgraduate School, Annapolis, Maryland

Director, U. S. Naval Electronics Laboratory, Point Loma, San Diego, California

Research Analysis Group, National Research Council, 2101 Constitution Avenue, Washington, D. C.

Commanding Officer, Naval Torpedo Station, Newport, Rhode Island

Commander, Naval Ordnance Test Station, Inyokern China Lake, Calif.

Commander, Naval Ordnance Laboratory, White Oak, Silver Spring 19, Md.

Inspector of Naval Material, Development Contract Section, 2206 South Academy Street, Los Angeles 15, California

UNCLASSIFIED