The following notice applies to any unclassified (including originally classified and now declassified) technical reports released to "qualified U.S. contractors" under the provisions of DoD Directive 5230.25, Withholding of Unclassified Technical Data From Public Disclosure.

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLLED TECHNICAL DATA

1. Export of information contained herein, which includes, in some circumstances, release to foreign nationals within the United States, without first obtaining approval or license from the Department of State for items controlled by the International Traffic in Arms Regulations (ITAR), or the Department of Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of law.

2. Under 22 U.S.C. 2778 the penalty for unlawful export of items or information controlled under the ITAR is up to ten years imprisonment, or a fine of $1,000,000, or both. Under 50 U.S.C., Appendix 2410, the penalty for unlawful export of items or information controlled under the EAR is a fine of up to $1,000,000, or five times the value of the exports, whichever is greater; or for an individual, imprisonment of up to 10 years, or a fine of up to $250,000, or both.

3. In accordance with your certification that establishes you as a "qualified U.S. Contractor", unauthorized dissemination of this information is prohibited and may result in disqualification as a qualified U.S. contractor, and may be considered in determining your eligibility for future contracts with the Department of Defense.

4. The U.S. Government assumes no liability for direct patent infringement, or contributory patent infringement or misuse of technical data.

5. The U.S. Government does not warrant the adequacy, accuracy, currency, or completeness of the technical data.

6. The U.S. Government assumes no liability for loss, damage, or injury resulting from manufacture or use for any purpose of any product, article, system, or material involving reliance upon any or all technical data furnished in response to the request for technical data.

7. If the technical data furnished by the Government will be used for commercial manufacturing or other profit potential, a license for such use may be necessary. Any payments made in support of the request for data do not include or involve any license rights.

8. A copy of this notice shall be provided with any partial or complete reproduction of these data that are provided to qualified U.S. contractors.

DESTRUCTION NOTICE

For classified documents, follow the procedure in DoD 5220.22-M, National Industrial Security Program, Operating Manual, Chapter 5, Section 7, or DoD 5200.1-R, Information Security Program Regulation, Chapter 6, Section 7. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.
<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD489919</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; SEP 1966. Other requests shall be referred to Air Force Weapons Laboratory, Kirtland AFB, NM. This document contains export-controlled technical data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFWL ltr, 30 Nov 1971</td>
</tr>
</tbody>
</table>
ELECTROMAGNETIC WAVE TRANSMISSION THROUGH A PARABOLIC PLASMA SLAB AT ARBITRARY ANGLES OF INCIDENCE

Whitlow W. L. Au
Lt USAF

Clifford A. Danielson

TECHNICAL REPORT NO. AFWL-TR-66-70
September 1966

AIR FORCE WEAPONS LABORATORY
Research and Technology Division
Air Force Systems Command
Kirtland Air Force Base
New Mexico
ELECTROMAGNETIC WAVE TRANSMISSION THROUGH A PARABOLIC
PLASMA SLAB AT ARBITRARY ANGLES OF INCIDENCE

Whitlow W. L. Au
Lt USAF

Clifford A. Danielson

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLDE), Kirtland AFB, NM, 87117. Distribution is limited because of the technology discussed in the report.
FOREWORD

This research was performed under Program Element 6.24.05.06.4, Project 5791, Task 579122.

Inclusive dates of research were October 1965 through May 1966. The report was submitted 14 June 1966 by the Air Force Weapons Laboratory Project Officer, Lt Whitlow W. L. Au (WLDE).

This technical report has been reviewed and is approved.

Whitlow W. L. Au
Lt, USAF
Project Officer

Parley D. Cronquist
Major, USAF
Chief, Electronics Branch

George C. Darby, Jr.
Colonel, USAF
Chief, Development Division
ABSTRACT

The power transmission and reflection coefficients are derived for electromagnetic waves propagating through a plasma slab having a parabolic electron distribution. The analysis considers transverse electromagnetic waves (TE Mode) impinging on a plasma slab at arbitrary angles of incidence. The solutions are in terms of complex hypergeometric functions and their derivatives. Numerical results for the transmission and reflection coefficients are plotted as functions of peak plasma frequency, peak collision frequency, signal frequency, slab thickness, and angle of incidence. The results of this study can be applied to transmission of electromagnetic energy through laboratory plasmas that are bounded by walls. Numerical results are in agreement with experimental results for a rectangular glow discharge plasma.
This page intentionally left blank.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>10</td>
</tr>
<tr>
<td>V</td>
<td>13</td>
</tr>
<tr>
<td>VI</td>
<td>18</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>29</td>
</tr>
<tr>
<td>II</td>
<td>31</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>34</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geometry of Wave-Plasma Interaction</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Parabolic Electron Density Distribution</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Transmission and Reflection Coefficients for Glow Discharge Tube</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Transmission Coefficient versus $\frac{\omega}{\omega_{p_{max}}}$</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Reflection Coefficient versus $\frac{\omega}{\omega_{p_{max}}}$</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Transmission Coefficient versus $\frac{\nu}{\omega_{p_{max}}}$</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Reflection Coefficient versus $\frac{\nu}{\omega_{p_{max}}}$</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Transmission Coefficient versus $\frac{\nu}{\omega}$</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Reflection Coefficient versus $\frac{\nu}{\omega}$</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Transmission Coefficient versus $\frac{d}{\lambda}$</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>Transmission and Reflection Coefficients versus Angle of Incidence</td>
<td>28</td>
</tr>
</tbody>
</table>
SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_e</td>
<td>Electron density (electrons/cm3)</td>
</tr>
<tr>
<td>m</td>
<td>mass of an electron</td>
</tr>
<tr>
<td>e</td>
<td>charge of an electron</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>average electron velocity</td>
</tr>
<tr>
<td>N_i</td>
<td>density of each i constituent</td>
</tr>
<tr>
<td>Q_i</td>
<td>electron collision cross section of the i constituent</td>
</tr>
<tr>
<td>c</td>
<td>speed of light, 3×10^8 meters per second</td>
</tr>
<tr>
<td>σ</td>
<td>electrical conductivity of the plasma</td>
</tr>
<tr>
<td>ω_0</td>
<td>permeability of free space</td>
</tr>
<tr>
<td>ε_0</td>
<td>permittivity of free space</td>
</tr>
<tr>
<td>ε^*</td>
<td>effective permittivity of the plasma</td>
</tr>
<tr>
<td>n</td>
<td>index of refraction</td>
</tr>
<tr>
<td>k_0</td>
<td>free-space wave number, ω/c</td>
</tr>
<tr>
<td>ω</td>
<td>signal frequency</td>
</tr>
<tr>
<td>ω_p</td>
<td>plasma frequency</td>
</tr>
<tr>
<td>$\omega_{p,max}$</td>
<td>maximum plasma frequency</td>
</tr>
<tr>
<td>ν_c</td>
<td>electron-neutral collision frequency</td>
</tr>
<tr>
<td>y_0</td>
<td>center of the plasma slab</td>
</tr>
<tr>
<td>n</td>
<td>distance from the center of the slab, $y-y_0$</td>
</tr>
<tr>
<td>θ</td>
<td>angle of incidence</td>
</tr>
<tr>
<td>$F_x(y)$</td>
<td>y-dependent part of the x-component of electric field intensity in the plasma</td>
</tr>
<tr>
<td>$\nu(\delta)$</td>
<td>dependent variable of the transformed equation</td>
</tr>
<tr>
<td>δ</td>
<td>independent variable of the transformed equation</td>
</tr>
<tr>
<td>E</td>
<td>electric field intensity</td>
</tr>
<tr>
<td>E_I</td>
<td>amplitude of incidence electric field</td>
</tr>
</tbody>
</table>
SYMBOLS (cont'd)

- E_R amplitude of reflected electric field
- E_T amplitude transmitted electric field
- H magnetic field intensity
- $\text{hyp}(a;c;x)$ hypergeometric function
- j $\sqrt{-1}$
SECTION I

INTRODUCTION

The propagation characteristics of electromagnetic waves traversing a bounded homogeneous plasma at various angles of incidences are well known and relatively simple to calculate. However, in most cases (laboratory plasmas, plasma sheaths surrounding reentry vehicles, etc.), the electron density distribution of the plasma must be considered. Many laboratory plasmas, created by such devices as glow discharges, R-F generators, and arc discharges, have electron densities that can be approximated by a parabolic distribution (references 2, 8, 9). Results of recent experiments using a plasma hollow-cathode glow discharge tube indicate that a parabolic electron density distribution is a good approximation to the plasma profile (reference 4).

In this present study an investigation is made of the transmission characteristics of transverse electromagnetic waves propagating through a plasma slab having a parabolic electron distribution. Here, the normal incidence parabolic case considered by Bower (reference 3) is extended to include arbitrary angles of incidence. Several errors were detected in Bower's study which made his results for the power transmission and reflection coefficients incorrect.
SECTION II

PLASMA PROPERTIES

In studying the interaction between electromagnetic waves and plasmas, only the effects of the free electrons in the plasma need be considered. The mass of the electrons is much smaller than that of the positive ions; therefore, the electrons oscillate about their equilibrium position at a much higher frequency than the ions. When this frequency is in the neighborhood of the electromagnetic signal frequency, the electrons interact with the electromagnetic wave and absorb some of the propagating energy. Therefore, the electrical properties of the plasma, as "seen" by the electromagnetic wave, are primarily a function of the free electrons in the plasma.

The electrical properties of a plasma slab can be described by a dielectric constant and an electrical conductivity. These are functions of the plasma frequency. The free electrons in a plasma are in a state of constant agitation and each electron oscillates about its equilibrium position. The frequency of the electron oscillation is called the plasma frequency and is defined as

\[\omega_p(y) = \left(\frac{N_e(y)e^2}{\varepsilon_0 m}\right)^{1/2} \text{ radians/second} \quad (1) \]

where

- \(N_e \) = electron density (electrons/cm\(^3\))
- \(\varepsilon_0 \) = permittivity of free space
- \(m \) = mass of an electron
- \(e \) = charge of an electron

When the values for the various physical constants are inserted into Equation (1), the plasma frequency is given by

\[\omega_p(y) = \left[3.18 \times 10^3 N_e(y)\right]^{1/2} \text{ radians/second} \quad (2) \]
As the electrons oscillate, many of them will undergo collisions with neutral particles. The average number of collisions per unit time is defined as the collision frequency \(v_c \). The collision frequency is a function of the electron collision cross sections of the various constituents of the plasma and their densities. The collision frequency is given by

\[
v_c = \bar{v} \sum_i N_i Q_i \text{ collisions/second}
\]

where

\[
\bar{v} = \text{average electron velocity}
\]

\[
N_i = \text{density of each} \ i \ \text{constituent}
\]

\[
Q_i = \text{electron collision cross section of the} \ i \ \text{constituent (m}^2\text{)}
\]

In this work, the collision frequency is assumed to be constant throughout the plasma slab. Albini and John (reference 1) have shown that the assumption of a constant collision frequency introduces very small errors when the electron density variation is large compared to the variation in collision frequency. For a reentry plasma sheath, the electron density can vary from zero at the boundaries to \(10^{13} \) electrons/cm\(^3\) and higher in the boundary layer. The collision frequency, however, will usually vary only by a factor of 100. In a hollow cathode glow discharge, the electron density can vary by a factor of \(10^{11} \) across the plasma with only a small variation in the collision frequency distribution (reference 2).

The conductivity and permittivity of a plasma can be written in terms of the plasma frequency, signal frequency, and collision frequency as, respectively,

\[
\sigma(y) = -j \frac{\varepsilon_p^2(y) \varepsilon_0}{(\omega - j\nu_c)}
\]

\[
\varepsilon^*(y) = \varepsilon_0 - j \frac{\sigma(y)}{\omega}
\]

Equations (4) and (5) can be separated into real and imaginary parts to give

\[
\sigma(y) = \frac{\varepsilon_0 \varepsilon_p \omega^2(y)}{\omega^2 + \nu^2} - j \frac{\varepsilon_0 \omega^2(y)}{\omega^2 + \nu^2}
\]

Equations (4a)
and

$$
\varepsilon^*(y) = \varepsilon_0 \left[1 - \frac{\omega_p^2(y)}{\omega^2 + \nu_c^2} \right] - j \frac{\varepsilon_0 \nu_c \omega_p^2(y)}{\omega(\omega^2 + \nu_c^2)}
$$

(5a)
SECTION III

ELECTROMAGNETIC WAVES IN A PLASMA

Maxwell's equations for a time-harmonic electromagnetic wave of radian frequency ω in an isotropic plasma are given by

\begin{align}
\nabla \cdot \mathbf{E} &= 0 \\
\nabla \cdot \mathbf{H} &= 0 \\
\nabla \times \mathbf{E} &= -j \omega \mu_0 \mathbf{H} \\
\nabla \times \mathbf{H} &= (\sigma + j\omega\varepsilon_0)\mathbf{E}
\end{align}

The wave equation can be derived by taking the curl of Equation (8), inserting the result into Equation (9), and using Equation (6). The wave equation for the electric field in a plasma is

\begin{equation}
\nabla^2 \mathbf{E} + \omega^2 \mu_0 \varepsilon_0 \left[\frac{\varepsilon}{\varepsilon_0} - \frac{j}{\omega \varepsilon_0} \right] \mathbf{E} = 0
\end{equation}

Equation (10) can be written as

\begin{equation}
\nabla^2 \mathbf{E} + k_0^2 \frac{\varepsilon\varepsilon_0}{\varepsilon_0} \mathbf{E} = 0
\end{equation}

where

\begin{align}
k_0 &= \omega / c \\
c &= \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \\
\frac{\varepsilon\varepsilon_0}{\varepsilon_0} &= \left[1 - \frac{j}{\omega \varepsilon_0} \right]
\end{align}

However, the index of refraction of a plasma medium is equal to the square root of its dielectric constant (reference 7). Therefore, Equation (11) becomes

\begin{equation}
\nabla^2 \mathbf{E} + k_0^2 n^2(y) \mathbf{E} = 0
\end{equation}
where

\[n(y) = \sqrt{\frac{\epsilon_r(y)}{\epsilon_0}} \]

index of refraction

Assume that an electromagnetic wave impinges upon an inhomogeneous plasma slab as shown in figure 1. Only the TE mode, for which the electric field is perpendicular to the plane of incidence, will be considered. The angle \(\theta_T \) at which the transmitted wave exits the plasma and the angle \(\theta_R \) of the reflected wave will be the same as the angle \(\theta_I \) of the incident wave. However, the exit point will not be in line with the incident signal since refraction occurs in the plasma (reference 7).

![Figure 1. Geometry of Wave-Plasma Interaction](image)

The wave equation can now be written as

\[
\frac{\partial^2 E_x(y,z)}{\partial y \partial z} + \frac{\partial^2 E_x(y,z)}{\partial z^2} + k^2 n^2(y) E_x(y,z) = 0 \quad (13)
\]

The Maxwell equations relating the curl of \(\vec{E} \) with \(\vec{H} \), Equation (8), are

\[
j\omega \mu_0 H_z = \frac{\partial E_x}{\partial y} \quad (14)
\]

and

\[
j\omega \mu_0 H_y = -\frac{\partial E_x}{\partial z} \quad (15)
\]
A solution to Equation (13) by the method of separation of variables (see Appendix I) is

\[E_x(y,z) = F_x(y)e^{jk_0z\sin\theta} \]

(16)

where \(F_x(y) \) satisfies the equation

\[\frac{d^2F_x(y)}{dy^2} + k_0^2 \left[n^2(y) - \sin^2\theta \right] F_x(y) = 0 \]

(17)

The effective dielectric constant can be rearranged by first dividing Equation (4a) by \(\omega \epsilon_0 \)

\[\frac{\sigma}{\omega \epsilon_0} = \frac{\nu c}{\omega} \left[\frac{\omega_p(y)}{\omega} \right]^2 - j \frac{\left[\frac{\omega_p(y)}{\omega} \right]^2}{1 + \left[\frac{\nu c}{\omega} \right]^2} \]

(18)

The index of refraction \(n(y) \) can now be written as

\[n^2(y) = \frac{\epsilon^*(y)}{\epsilon_0} = 1 - \frac{\left[\frac{\omega_p(y)}{\omega} \right]^2}{1 + \left[\frac{\nu c}{\omega} \right]^2} + j \frac{\left[\frac{\omega_p(y)}{\omega} \right]^2}{1 + \left[\frac{\nu c}{\omega} \right]^2} \]

(19)

Let

\[u(y) = \left[\frac{\omega_p(y)}{\omega} \right]^2 \]

and

\[a = \frac{1}{1 - j \frac{\nu c}{\omega}} = \frac{1}{1 + \left[\frac{\nu c}{\omega} \right]^2} + j \frac{\left[\frac{\nu c}{\omega} \right]^2}{1 + \left[\frac{\nu c}{\omega} \right]^2} \]

then

\[n^2(y) = 1 - au(y) \]

(20)
Equation (17) can now be written as

\[
\frac{d^2 x(y)}{dy^2} + k_0^2 \left[\cos^2 \theta - su(y) \right] x(y) = 0
\]

(21)

The parabolic electron distribution shown in figure 2 can be represented by the equation

\[
u(y) = u_m - \frac{u_m}{y_0^2} (y-y_0)^2
\]

(22)

where

\[
u_m = \left[\frac{\omega_{\text{max}}}{\omega} \right]^2
\]

Figure 2. Parabolic Electron Density Distribution

Now, let

\[\Lambda = k_0^2 (\cos^2 \theta - a u_m)\]
and

\[
B = -k^2 \frac{aU_m}{y_o^2}
\]

and

\[
\eta = y - y_o
\]

Equation (21) becomes

\[
\frac{d^2 F_x(y)}{dy^2} + (A + Bn^2)F_x(y) = 0
\]
(23)
SECTION IV

SOLUTION TO THE WAVE EQUATION

The task of this section is to solve Equation (23), which can be solved by using a power series technique or by transforming the equation into one having a known solution. In this study, Equation (23) will be transformed into another equation which has a known solution and an inverse transformation will be used to obtain the desired solution. Using the transformation

\[\delta = jn^2 / \sqrt{b} \]

Equation (23) can be written as (see Appendix II)

\[\delta^2 \frac{d^2 v(\delta)}{d\delta^2} + (1/2 - \delta) \frac{dv(\delta)}{d\delta} - \frac{(\sqrt{b} + jA)}{4 \sqrt{b}} v(\delta) = 0 \] \hspace{1cm} (24)

Letting

\[h = \frac{\sqrt{b} + jA}{2 \sqrt{b}} \]

then Equation (24) becomes

\[\delta^2 \frac{d^2 v(\delta)}{d\delta^2} + (1/2 - \delta) \frac{dv(\delta)}{d\delta} - \frac{h}{2} v(\delta) = 0 \] \hspace{1cm} (25)

Equation (25) is a confluent hypergeometric differential equation (reference 5) of the form

\[x^2 y'' + (c - x) - ay = 0 \] \hspace{1cm} (26)

The general solution to Equation (25) is

\[v(\delta) = K_1 v_1(\delta) + K_2 v_2(\delta) \] \hspace{1cm} (27)
where
\[v_1(\delta) = \text{$_1F_1$}(a; c; x) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n x^n}{(c)_n n!} \]

and
\[v_2(\delta) = \delta^{1/2} \text{$_1F_1$}(\frac{a}{2} + \frac{1}{2}; \frac{3}{2}; \delta) \]

The symbol $\text{$_1F_1$}$ is the hypergeometric function and is defined as
\[\text{$_1F_1$}(a; c; x) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n x^n}{(c)_n n!} \]

The terminology $(a)_n$ and $(c)_n$ are factorial functions defined as
\[(A)_0 = 1 \quad \text{for } A \neq 0 \]
\[(A)_n = A(A+1)(A+2) \ldots (A+n-1) \quad \text{for } A \geq 1 \]
\[(A)_0 = 0 \quad \text{for } A = 0 \]

where A is any number.

By substituting Equation (27) into Equation (16) and letting
\[g^2 = \frac{1}{\sqrt{\delta}} \]

the general solution of Equation (23) is
\[F_x(y) = e^{-g^2 \frac{n^2}{2}} \left[K_1 F_{x1}(n) + K_2 F_{x2}(n) \right] \]

The hypergeometric functions $F_{x1}(n)$ and $F_{x2}(n)$ and its derivatives can now be written as
\[F_{x1}(n) = 1 + \sum_{n=1}^{\infty} \frac{(\frac{h}{2})_{n} (\delta n)^{2n}}{n! n!} \]
Substituting Equation (30) into Equation (16), the electric field in the plasma is given by

\[E_x(y,z) = e^{-\frac{\beta^2 n^2}{2}} \left[K_1 F_{x1}(\eta) + K_2 F_{x2}(\eta) \right] e^{jk_0 zs\sin\theta} \]

(35)

The magnetic fields can be obtained from Equations (14) and (15)

\[H_z = -\frac{e^{\beta^2 n^2}}{j\omega_o} \left\{ \beta^2 n \left[K_1 F_{x1}(\eta) + K_2 F_{x2}(\eta) \right] \\
- \left[K_1 F_{x1}'(\eta) + K_2 F_{x2}'(\eta) \right] \right\} e^{-jk_0 zs\sin\theta} \]

(36)

\[H_y = -\frac{k_0 zs\sin\theta}{\omega_o} \frac{\beta^2 n^2}{2} \left[K_1 F_{x1}(\eta) + K_2 F_{x2}(\eta) \right] e^{-jk_0 zs\sin\theta} \]

(37)
SECTION V
TRANSMISSION AND REFLECTION COEFFICIENTS

For a plane wave impinging on a plasma slab as in figure 1, the electric and magnetic field can be described by the following equations (reference 7):

For

\[y < 0 \]

\[
E_x(y,z) = E_1 e^{-jk_o(y \cos \theta - z \sin \theta)} + E_R e^{jk_o(y \cos \theta + z \sin \theta)}
\] (38)

\[
H_z(y,z) = \frac{k \cos \theta}{\omega \mu_o} \left\{ -j k_o(y \cos \theta - z \sin \theta) + E_R e^{jk_o(y \cos \theta + z \sin \theta)} \right\}
\] (39)

For

\[y \geq 2y_o \]

\[
E_x(y,z) = E_o e^{-jk_o(y \cos \theta - z \sin \theta)}
\] (40)

\[
H_z(y,z) = \frac{k \cos \theta}{\omega \mu_o} E_o e^{jk_o(y \cos \theta - z \sin \theta)}
\] (41)

The boundary conditions at \(y = 0 \) can be applied by equating Equation (38) to Equation (35) and Equation (36) to Equation (39), and noting that at \(y = 0 \), \(n = y_o \). This will give

\[
E_1 + E_R = e^{-\frac{\beta^2y^2}{2}} \left[K_1F_{x1}(y_o) + K_2F_{x2}(y_o) \right]
\] (42)
The hypergeometric functions $F_{x1}(n)$ and $F_{x2}(n)$ of Equations (31) and (34) are even functions of n. $F_{x1}'(n)$ and $F_{x2}'(n)$ of Equations (32) and (33) are odd functions of n. Therefore,

$$F_{x1}(-y_0) = F_{x1}(y_0)$$

$$F_{x1}'(-y_0) = -F_{x1}'(y_0)$$

$$F_{x2}(-y_0) = -F_{x2}(y_0)$$

$$F_{x2}'(-y_0) = F_{x2}(y_0)$$

Equations (42) and (43) can now be written as

$$E_I + E_R = \frac{e^{\frac{\beta^2 y_o^2}{2}}}{j k_0 \cos \theta} \chi \left[K_1 F_{x1}(y_0) - K_2 F_{x2}(y_0) \right]$$

(44)

$$-E_I + E_R = \frac{e^{\frac{\beta^2 y_o^2}{2}}}{j k_0 \cos \theta} \chi \left[K_1 F_{x1}(y_0) - K_2 F_{x2}(y_0) \right]$$

(45)
The boundary conditions at \(y = 2y_o \) can be applied by equating Equation (35) to Equation (40) and Equation (36) to Equation (41), and noting that \(\eta = y_o \).

This will give

\[
\begin{align*}
E_T e^{-2jk_o \cos \theta} &= e \frac{\beta^2 y_o^2}{2} \left[K_1 F_{x1}(y_o) + K_2 F_{x2}(y_o) \right] \\
&- \frac{\beta^2 y_o}{2} \left\{ K_1 F_{x1}(y_o) + K_2 F_{x2}(y_o) \right\} - \left[K_1 F'_{x1}(y_o) + K_2 F'_{x2}(y_o) \right]
\end{align*}
\]

(46)

Subtracting Equations (46) and (47) gives

\[
\begin{align*}
K_1 \left\{ F_{x1}(y_o) \left(1 - \frac{\beta^2 y_o}{jk_o \cos \theta} \right) + \frac{F'_{x1}(y_o)}{jk_o \cos \theta} \right\} \\
+ K_2 \left\{ F_{x2}(y_o) \left(1 - \frac{\beta^2 y_o}{jk_o \cos \theta} \right) + \frac{F'_{x2}(y_o)}{jk_o \cos \theta} \right\} = 0
\end{align*}
\]

(48)

The ratio \(K_2/K_1 \) can be written as

\[
\begin{align*}
\frac{K_2}{K_1} &= \frac{F_{x1}(y_o) \left(1 - \frac{\beta^2 y_o}{jk_o \cos \theta} \right) + \frac{F'_{x1}(y_o)}{jk_o \cos \theta}}{F_{x2}(y_o) \left(\frac{\beta^2 y_o}{jk_o \cos \theta} - 1 \right) - \frac{F'_{x2}(y_o)}{jk_o \cos \theta}}
\end{align*}
\]

(49)
Solving for E_I and E_R from Equations (42) and (43) gives

$$E_I = e^{-\frac{\beta^2 y_o^2}{2}} \left\{ K_1 \left[F_{x1}(y_o) \left(1 - \frac{\beta^2 y_o}{j k_o \cos \theta} \right) - \frac{F_{x1}(y_o)}{j k_o \cos \theta} \right] - K_2 \left[F_{x2}(y_o) \left(1 - \frac{\beta^2 y_o}{j k_o \cos \theta} \right) + \frac{F_{x2}(y_o)}{j k_o \cos \theta} \right] \right\}$$

$$E_R = e^{-\frac{\beta^2 y_o^2}{2}} \left\{ K_1 \left[F_{x1}(y_o) \left(1 + \frac{\beta^2 y_o}{j k_o \cos \theta} \right) - \frac{F_{x1}(y_o)}{j k_o \cos \theta} \right] - K_2 \left[F_{x2}(y_o) \left(1 + \frac{\beta^2 y_o}{j k_o \cos \theta} \right) - \frac{F_{x2}(y_o)}{j k_o \cos \theta} \right] \right\}$$

Adding Equations (50) and (51) to Equation (48) gives

$$E_I = K_1 \left[F_{x1}(y_o) \left(1 - \frac{\beta^2 y_o}{j k_o \cos \theta} \right) + \frac{F_{x1}(y_o)}{j k_o \cos \theta} \right]$$

$$E_R = K_1 \left[F_{x1}(y_o) - \frac{K_2}{K_1} F_{x2}(y_o) \frac{\beta^2 y_o}{j k_o \cos \theta} + \frac{K_2 F_{x2}(y_o)}{K_1 j k_o \cos \theta} \right]$$

Solving for E_T in Equations (46) and (47) gives

$$E_T = e^{j k_o \cos \theta} \left\{ K_1 \left[F_{x1}(y_o) \left(1 + \frac{\beta^2 y_o}{j k_o \cos \theta} \right) - \frac{F_{x1}(y_o)}{j k_o \cos \theta} \right] \right\}$$
Adding Equation (54) to Equation (48) gives

$$E_T = e^{j2k_o \cos \theta} K_1 \left[F_{x1}(y_o) + \frac{K_2}{K_1} F_{x2}(y_o) \right] e^{-\frac{\beta^2 y_o^2}{2}}$$

(55)

The power reflection and transmission coefficients are defined by, respectively,

$$T = \left| \frac{E_T}{E_I} \right|^2 \text{ and } R = \left| \frac{E_R}{E_I} \right|^2$$

Dividing Equations (54) and (53) by Equation (52), the power transmission and reflection coefficients are given by, respectively,

$$T = \left| \frac{F_{x1}(y_o) + \frac{K_2}{K_1} F_{x2}(y_o)}{\left(1 - \frac{\beta^2 y_o^2}{j k_o \cos \theta} \right) F_{x1}(y_o) + \frac{1}{j k_o \cos \theta} F_{x1}'(y_o)} \right|^2$$

(56)

$$R = \left| \frac{F_{x1}(y_o) - \frac{\beta^2 y_o}{j k_o \cos \theta} \frac{K_2}{K_1} \left[F_{x2}(y_o) + \frac{1}{j k_o \cos \theta} F_{x2}'(y_o) \right]}{\left(1 - \frac{\beta^2 y_o^2}{j k_o \cos \theta} \right) F_{x1}(y_o) + \frac{1}{j k_o \cos \theta} F_{x1}'(y_o)} \right|^2$$

(57)
SECTION VI
RESULTS AND CONCLUSIONS

The power transmission and reflection coefficients were programmed for a CDC-6600 Digital Computer. The approximation of a parabolic electron density distribution for a rectangular glow discharge tube was checked and the results are shown in figure 3. The experimental points were obtained by personnel at McDonnell Aircraft Corporation (reference 4). The transmission and reflection coefficients were also calculated using a numerical technique, after the electron density distribution was obtained from Langmuir probe measurements. As can be seen in figure 3, the parabolic electron density approximation agrees very closely with the experimental results and the results obtained by the numerical method.

The power transmission and reflection coefficients are plotted as a function of signal frequency, collision frequency, slab thickness, and angle of incidence in figures 4 through 11. Some general conclusions of the electromagnetic transmission properties of a parabolic plasma slab are

a. The plasma becomes more transparent to electromagnetic signals as the signal frequency, in radian, increase above the peak plasma frequency (figure 4);

b. For a plasma with collision frequencies lower than the peak plasma frequency, the reflection coefficient changes abruptly when the signal frequency in radian equals the peak plasma frequency (figure 5). Therefore, the peak electron density of a parabolic plasma, with \(\frac{\nu}{w(y_0)} < 2 \), can be determined from reflectometer measurements;

c. When the collision frequency is much higher than the peak plasma frequency (greater than 10), the transmission coefficient is independent of the signal frequency (figure 6);

d. For a given plasma thickness, the transmission coefficient is greater for higher signal frequency (figure 10);

e. The plasma becomes more opaque to the electromagnetic signal as the angle of signal incidence in radians (figure 11);
f. The transmission and reflection coefficients for the parabolic electron density case behave in a manner similar to the homogeneous plasma case, when the electron density, collision frequency, signal frequency, thickness and angle of incidences are varied. However, the reflection coefficient of a homogeneous plasma is somewhat higher because of the sharp changes in the boundaries.
Figure 3. Transmission and Reflection Coefficients for Glow Discharge Tube
Figure 5. Reflection Coefficient versus $\frac{\omega}{\omega_{p_{\text{max}}}}$

$\omega_{p_{\text{max}}} = 5 \times 10^{10}$
$d = 2.54 \text{ cm}$
$\theta = 0^\circ$
Figure 7. Reflection Coefficient versus $v/\omega_{\text{p max}}$
Figure 9. Reflection Coefficient versus ν/ω
Figure 10. Transmission Coefficient versus d/λ

$\nu_p = 5 \times 10^{10}$

$\nu_c = 1 \times 10^{11}$

$\theta = 0^\circ$

$f = 30 \times 10^9$

$f = 20 \times 10^9$

$f = 15 \times 10^9$

$f = 10 \times 10^9$

$f = 5 \times 10^9$

$f = 1 \times 10^9$
Figure 11. Transmission and Reflection Coefficients versus Angle of Incidence
APPLIED PHYSICS LABORATORY

APPENDIX I
SOLUTION TO THE WAVE EQUATION USING SEPARATION OF VARIABLES

The wave equation is

\[
\frac{\partial^2 E_y(y,z)}{\partial y^2} + \frac{\partial^2 E_y(y,z)}{\partial z^2} + k^2 \delta^2(y) E_x(y,z) = 0
\]

(I-1)

Let

\[E_x(y,z) = F(y) G(z) \]

(I-2)

Substituting into Equation (I-1) and dividing by \(E_x(y,z) \) gives

\[
\frac{1}{F_x(y)} \frac{\partial^2 F_x(y)}{\partial y^2} + \frac{1}{G_x(z)} \frac{\partial^2 G_x(z)}{\partial z^2} + k^2 \delta^2(y) = 0
\]

(I-3)

Rearranging Equation (I-3)

\[
\frac{1}{F_x(y)} \frac{\partial^2 F_x(y)}{\partial y^2} + k^2 \delta^2(y) = -\frac{1}{G_x(z)} \frac{\partial^2 G_x(z)}{\partial z^2}
\]

(I-4)

Let

\[
\frac{1}{G_x(z)} \frac{d^2 G_x(z)}{dz^2} = -k^2 z = \text{a constant}
\]

(I-5)

We get two independent differential equations

\[
\frac{1}{F_x(y)} \frac{d^2 F_x(y)}{dy^2} + k^2 = 0
\]

(I-6)

\[
\frac{1}{F_x(y)} \frac{d^2 F_x(y)}{dy^2} + k^2_0 \delta^2(y) - k^2 z = 0
\]

(I-7)
The solution to Equation (1-6) is

\[G_x(z) = \pm e^{\pm jk_0 z} \]

(1-8)

From the geometry shown in figure 1, \(k_z = -k_0 \sin \theta \).

If the condition is made that the wave propagates in the negative \(z \)-direction, the positive sign of the exponent can be dropped (reference 7). The solution to Equation (1-7) can now be written as

\[G_x(z) = K e^{j k_0 z \sin \theta} \]

(1-9)

Substituting the solution for \(G_x(z) \) of Equation (1-9) into Equation (1-2) will give

\[E_x(y, z) = F_x(y) e^{j k_0 z \sin \theta} \]

(1-10)
Equation (23) is

\[\frac{d^2 F_x(y)}{dy^2} + [A + Bn^2] F_x(y) = 0 \] (II-1)

Let

\[F_x(y) = e^{-\delta/2} v(\delta) \]

and

\[\delta = jn^2 \sqrt{3} \]

Using the chain rule for differentiation

\[\frac{dF_x}{dy} = \frac{dF_x}{d\delta} \frac{d\delta}{dy} \] (II-2)

\[\frac{dF_x}{d\delta} = e^{-\delta/2} \left[\frac{dv(\delta)}{d\delta} - \frac{1}{2} v(\delta) \right] \] (II-3)

\[\frac{d\delta}{dy} = -j^{1/2} 2^{1/2} 3^{1/4} \] (II-4)

\[\frac{dF_x}{dy} = -2^{1/4} j^{1/2} 3^{1/2} e^{-\delta/2} \left[\delta^{1/2} \frac{dv(\delta)}{d\delta} - \frac{\delta^{1/2}}{2} v(\delta) \right] \] (II-5)
Once more applying the chain rule

\[
\frac{d^2 F}{dy^2} = \frac{d}{d\delta} \left(\frac{dF_x}{dy} \right) \frac{d\delta}{dy}
\]

(II-6)

\[
\frac{d}{d\delta} \left(\frac{dF_x}{dy} \right) = -2^{1/2} \left[\delta^{1/2} \frac{d^2 v(\delta)}{d\delta^2} + \left(\frac{1}{2} \delta^{-1/2} - \delta^{1/2} \right) \frac{dv(\delta)}{d\delta}
+ \frac{1}{4} \left(\delta^{1/2} - \delta^{-1/2} \right) v(\delta) \right] e^{-\delta/2}
\]

(II-7)

\[
\frac{d^2 F}{dy^2} = 2^{1/2} \left[\delta \frac{d^2 v(\delta)}{d\delta^2} + \left(\frac{1}{2} - \delta \right) \frac{dv(\delta)}{d\delta} + \frac{1}{4} (\delta - 1) v(\delta) \right] e^{-\delta/2}
\]

(II-8)

Substituting Equation (II-8) and the expression for \(F_x \) into Equation (23) and noting that \(\delta n^2 = -jvB \delta \), gives

\[
\frac{\delta d^2 v(\delta)}{d\delta^2} + \left(\frac{1}{2} - \delta \right) \frac{dv(\delta)}{d\delta} - \left(\frac{\sqrt{B} + jA}{4\sqrt{B}} \right) v(\delta) = 0
\]

(II-9)

Now, let

\[
h = \frac{\sqrt{B} + jA}{2\sqrt{B}}
\]

and Equation (II-9) becomes

\[
\frac{\delta d^2 v(\delta)}{d\delta^2} + \left(\frac{1}{2} - \delta \right) \frac{dv(\delta)}{d\delta} - \frac{h}{2} v(\delta) = 0
\]

(II-10)
REFERENCES

AFWL-TR-66-70

DISTRIBUTION

No. cy

MAJOR AIR COMMANDS

1 AUL, Maxwell AFB, Ala 36112

AFSC ORGANIZATIONS

1 AFSC Scientific and Technical Liaison Office, Research and Technology Division, AFUPO, Los Angeles, Calif 90045
1 AF Avionics Laboratory, Wright-Patterson AFB, Ohio 45433
1 RTD (RTS), Bolling AFB, Wash, DC 20332
1 AF Msl Dev Cen (RRRT), Holloman AFB, NM 88330
1 RADC (EMLAL-1), Griffiss AFB, NY 13442

KIRTLAND AFB ORGANIZATIONS

1 AFSCW (SWEH), Kirtland AFB, NM 87117
1 AFWL, Kirtland AFB, NM 87117
1 (WLIL)
1 (WLDE, Lt Au)

OTHER AIR FORCE AGENCIES

1 Director, USAF Project RAND, via: Air Force Liaison Office, The RAND Corporation, 1700 Main Street, Santa Monica, Calif 90406
1 HQ OAR (RROS), 1400 Wilson Blvd, Arlington, Va 22209
1 AFSOR (SRGL), 1400 Wilson Blvd, Arlington, Va 22209
1 AFCLL, L. C. Hanscom Fld, Bedford, Mass 01731

ARMY ACTIVITIES

1 Chief of Research and Development, Department of the Army (CRD/P, Scientific and Technical Information Division), Wash, DC 20310
1 US Army Materiel Command, Harry Diamond Laboratories (ORDTL 06.33, Technical Library), Wash, DC 20438
1 Director, Army Research Office, 3045 Columbia Pike, Arlington, Va 22204

NAVY ACTIVITIES

1 Chief of Naval Research, Department of the Navy, Wash, DC 20390
1 Commanding Officer, Naval Research Laboratory, Wash, LC 20390
1 Office of Naval Research, Wash, DC 20360

OTHER DOD ACTIVITIES

1 Director, ARPA, Department of Defense, The Pentagon, Wash, DC 20301
20 DDC (TIAAS), Cameron Station, Alexandria, Va 22314

AEC ACTIVITIES

1 Sandia Corporation (Tech Library), P. O. Box 969, Livermore, Calif 94551

34
DISTRIBUTION (cont'd)

<table>
<thead>
<tr>
<th>No.</th>
<th>cys</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Langley Research Center (NASA), ATTN: Associate Director, Langley Station, Hampton, Va 23365</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director, National Bureau of Standards, Central Radio Propagation Laboratory, Boulder, Colo 80302</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Aerospace Corporation, P. O. Box 95085, Los Angeles, Calif 90045</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Aerospace Corporation, Ballistic Missile Division, San Bernardino, Calif 92410</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Official Record Copy (Lt Au, WLDE)</td>
</tr>
</tbody>
</table>
The power transmission and reflection coefficients are derived for electromagnetic waves propagating through a plasma slab having a parabolic electron distribution. The analysis considers transverse electromagnetic waves (TE Mode) impinging on a plasma slab at arbitrary angles of incidence. The solutions are in terms of complex hypergeometric functions and their derivatives. Numerical results for the transmission and reflection coefficients are plotted as functions of peak plasma frequency, peak collision frequency, signal frequency, slab thickness, and angle of incidence. The results of this study can be applied to transmission of electromagnetic energy through laboratory plasmas that are bounded by walls. Numerical results are in agreement with experimental results for a rectangular glow discharge plasma.
Parabolic electron distribution
Electromagnetic propagation at angles of incidence
Electromagnetic propagation through a plasma slab