<table>
<thead>
<tr>
<th>AD NUMBER</th>
<th>AD488791</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMITATION CHANGES</td>
<td></td>
</tr>
<tr>
<td>TO: Approved for public release; distribution is unlimited.</td>
<td></td>
</tr>
<tr>
<td>FROM: Distribution authorized to DoD only; Administrative/Operational Use; JUN 1966. Other requests shall be referred to Army Aviation Test Activity, Edwards AFB, CA.</td>
<td></td>
</tr>
<tr>
<td>AUTHORITY</td>
<td>AVSCOM ltr 12 Nov 1973</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
ENGINEERING FLIGHT TEST OF UH-1B HELICOPTER EQUIPPED WITH XM-16 ARMAMENT SUBSYSTEM
AND
ENGINEERING FLIGHT TEST OF UH-1B HELICOPTER EQUIPPED WITH XM-21 ARMAMENT SUBSYSTEM

FINAL REPORT

BY

GEORGE M. YAMAKAWA
PROJECT ENGINEER

JOHN K. FOSTER
MAJOR, US ARMY, TC
PROJECT PILOT

JUNE 1966

U. S. ARMY AVIATION TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA
DDC Availability Notice

U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through Commanding General, Hq, U.S. Army Materiel Command (USAMC), ATTN: AMCM-IRFO-T, Project Manager, Washington, D.C.

Reproduction Limitations

Reproduction of this document in whole or in part is prohibited except with permission obtained through Commanding General, Hq, USAMC, ATTN: AMCM-IRFO-T, Project Manager, Washington, D.C. DDC is authorized to produce the document for United States Government purposes.

Disposition Instructions

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents issued and approved by the Department of the Army.

Trade Names

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.

This document may be further distributed by any holder only with specific prior approval obtained through Commanding General, Hq, USAMC, ATTN: AMCM-IRFO-T, Project Manager, Washington, D.C.
ENGINEERING FLIGHT TEST OF
UH-1B HELICOPTER EQUIPPED WITH
XM-16 ARMAMENT SUBSYSTEM

AND

ENGINEERING FLIGHT TEST OF
UH-1B HELICOPTER EQUIPPED WITH
XM-21 ARMAMENT SUBSYSTEM

TEST REPORT

BY

GEORGE M. YAMAKAWA
PROJECT ENGINEER

JOHN K. FOSTER
MAJOR, US ARMY, TC
PROJECT PILOT

JUNE 1966

U. S. ARMY AVIATION TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA
This document may be further distributed by any holder only with specific prior approval obtained through Commanding General, Hq, USAMC, ATTN: AMCPM-IRFO-T, Project Manager, Washington, D. C.
TABLE OF CONTENTS

ABSTRACT	vii
FOREWORD	viii
SECTION 1. GENERAL	1
1.1 Objectives	1
1.2 Responsibilities	1
1.3 Description	1
1.4 Background	4
1.5 Findings	6
1.6 Conclusions	10
1.7 Recommendations	10
SECTION 2. DETAILS OF TEST	11
2.0 Introduction	11
2.1 Performance	11
2.1.1 Level Flight	11
2.1.2 Airspeed Calibration	15
2.1.3 Autorotational Descents	15
2.2 Stability and Control	16
2.2.1 Static Longitudinal Stability	16
2.2.2 Static Directional Stability	17
2.2.3 Sideways and Rearward Flight	17
2.2.4 Dynamic Stability	18
2.2.5 Controllability	19
2.3 Vibration	21
2.4 Firings	23
2.4.1 Machine-Gun Firings	23
2.4.2 Rocket Firings	25
2.5 Boost-Off Flight	26
SECTION 3. APPENDICES	27
I. Test Data	27
II. Data Analysis Method	109
III. Test Instrumentation	113
IV. General Aircraft Information	115
V. Symbols and Abbreviations	121
VI. References	123
SECTION 4. DISTRIBUTION LIST	125
Photo 1 - UH-1B Equipped with XM-21 Armament Subsystem

Photo 2 - UH-1B Equipped with XM-16 Armament Subsystem
ABSTRACT

Engineering flight tests of the UH-1B helicopter equipped with the XM-16 and XM-21 armament subsystems were conducted by the U. S. Army Aviation Test Activity (USAAVNTA). The overall objective was to determine the effect of the installation of the subsystems on the UH-1B. Specific objectives were to determine the existence of any safety-of-flight conditions by evaluation of quantitative stability and control and vibration data and to determine any performance losses.

The USAAVNTA was responsible for preparing test plan, executing test, and submitting final report. Tests were conducted at sites in Fort Irwin, Bakersfield, and Edwards Air Force Base, California. UH-1B/XM-16 tests were conducted from 19 July through 11 August 1965 and consisted of 39 flights totalling 35.8 productive flight hours, including 13 flights for 7.3 productive hours of weapon firing tests. UH-1B/XM-21 tests were conducted from 24 August through 2 September 1965 and consisted of 14 flights totalling 13.75 productive flight hours, including 3 flights for 2.5 productive hours of weapon firing tests.

Performance data showed that both armament subsystems caused an appreciable drag increase. The XM-16 caused a greater reduction in specific range than the XM-21. Compared with performance of clean UH-1B at 8000 pounds gross weight, 5000 feet altitude, and 324 rotor rpm, the installation of the XM-16 and XM-21 resulted in specific range reductions of 15 percent and 12 percent respectively.

Compared with clean UH-1B data (Report FTC-TDR-62-13), stability and control data showed no appreciable changes in flying characteristics of the UH-1B equipped with either armament subsystem.

Firing tests showed that both armament subsystem could be fired safely within the flight envelope established by the contractor.

Vibration characteristics were satisfactory under all conditions tested except for the lateral 4 cycles-per-revolution vibration with the XM-21 armament subsystem installed. The vibration level at all forward airspeeds slightly exceeded the 0.15-g limitation of MIL-H-8501A.

Hydraulic boost-off tests in hover, takeoff, climb, level flight, and landing were investigated. Qualitative pilot comments describing the helicopter's flying qualities with the boost off with either armament subsystem indicated that collective forces were high and could not be maintained for an extended period. The only practical method of landing was to execute a run-on landing. Attempting to transition to a hover resulted in over control and incipient loss of control due to high cyclic forces.

The performance data generated in this evaluation should be incorporated in the Operator's Manual.
FOREWORD

1. AUTHORITY

1.1 XM-16/UH-1B Helicopter Armament Subsystem

1.2 XM-21/UH-1B Helicopter Armament Subsystem

2. REFERENCES

 A list of references is contained in Section 3, Appendix VI.
SECTION 1 - GENERAL

1.1 OBJECTIVES

1.1.1 UH-1B Helicopter Equipped with XM-16 Armament Subsystem

The overall test objective was to determine the effect of the XM-16 armament subsystem on the basic UH-1B helicopter. The specific objectives of the test were to:

a. Determine the existence of any safety-of-flight conditions by the measurement and subsequent analysis of quantitative stability and control and vibration data.

b. Determine the performance losses resulting from the installation of the XM-16 armament subsystem.

c. Verify the flight envelope proposed by the airframe contractor to be used during armament firings.

1.1.2 UH-1B Helicopter Equipped with XM-21 Armament Subsystem

The test objectives for the UH-1B helicopter equipped with the XM-21 armament subsystem were the same as those in Paragraph 1.1.1.

1.2 RESPONSIBILITIES

The U. S. Army Aviation Test Activity (USAAVNTA) was responsible for preparation of test plan, execution of test and submission of final report.

1.3 DESCRIPTION OF MATERIEL

1.3.1 XM-16 ARMAMENT SUBSYSTEM

The XM-16 armament subsystem is composed of a combination of the M-6 subsystem and the Aero 6D (LAU-32A/A), 7-round, 2.75-inch Folding-7-in Aerial Rocket (FFAR) rocket pod. The M-6 subsystem consists of four 7.62-millimeter (mm) M-60C machine guns, two machine-gun mount assemblies, and the necessary controls and hardware. A gun mount is attached to the rack assembly of the external stores support assembly on each side of the UH-1B helicopter, and the guns are aimed by means of a sighting station at the copilot's position. The four machine guns have a total weight of 796 pounds and a maximum capacity of 6600 rounds. Total lateral deflection is 12 degrees inboard to 70 degrees outboard and the vertical deflection is 9 degrees upward to 66 degrees downward. When either set of guns is traversed to its inboard limit stop, the guns cease firing.
The control panel consists of the OFF-SAFE-ARMED switch and the gun selector switch. Both switches are three-position toggle type and must be pulled upward to be operated. The guns fire only when the OFF-SAFE-ARMED switch is in the ARMED position. The gun selector switch enables the operator to select his fire power: with the switch in the LOWER position, only the lower guns operate; in the ALL position, both upper and lower guns operate; and in the UPPER position, only the upper guns operate.

The sighting station is located at the copilot's position and provides the means of remotely aiming the guns. When the "dead-man" switch is depressed, control of the guns is transferred from the cyclic control stick firing switches to the controller trigger. In this condition the guns cannot be fired from the cyclic control stick. The movement of the controller in elevation and deflection causes the guns to follow the controller. When the "dead-man" switch is released, the guns are returned to the "stow" position and can then be fired by depressing the fire button on the pilot's cyclic control stick.
Two LAU-32A/A, 7-round, 2.75-inch FFAR rocket pods, one for each side of the helicopter, are suspended from the MA-4A bomb racks and are expendable. The launcher attitude is of fixed variable design and can be changed in elevation only from the ground. The 2.75-inch FFARs can be fired in ripples only and are ignited in pairs, one rocket simultaneously from each launcher. Up to 7 pairs of rockets may be selected. The number of pairs of rockets may be preset before firing and the subsystem is capable of firing 7 pairs of rockets forward from a fixed position of the launcher in 1.167 seconds. The rockets are fired from the same cyclic control stick firing switches that are used by the pilot or copilot to fire the M-6 machine guns. The trigger switches are located on each cyclic control stick. The rockets are aimed by pointing the aircraft and using either the M-6 machine guns as spotter rounds or the MK VIII sight mounted in the pilot's position. The two rocket pods can be jettisoned simultaneously by either electrical or mechanical means.

The machine guns and rockets cannot be fired simultaneously. When the ROCKET-GUN selector switch is placed in ROCKET, the copilot may use the controller on the sighting station to aim and fire the guns. The instant the pilot depresses the trigger on the cyclic control stick, the guns automatically stop firing and the rockets are ignited.

1.3.2 XM-21 ARMAMENT SUBSYSTEM

The XM-21 armament subsystem consists of a combination of 7.62-millimeter twin, high-rate-of-fire XM-20 machine guns and twin 2.75-inch rocket launchers (LAU-32A/A). The gun mount assemblies, which are installed one on each side of the helicopter, were originally designed to support two M-60C machine guns. Each mount of the test aircraft was modified to install a single, recoil mounted, automatic machine gun.

The XM-20 is an electrically driven, 6-barrel, Gatling-type, high-rate-of-fire machine gun. The two guns weigh 100 pounds. The weapon is capable of providing fire coverage up to 10 degrees in elevation, 90 degrees in depression, 12 degrees inboard, and 70 degrees outboard at rates of 2000 to 4000 rounds per minute. As with the M-6 subsystem the guns cease firing when either weapon traverses to its inboard limit. The slew rates are 40 degrees/second in elevation and depression and 75 degrees/second in deflection.

The sighting station, which is located at the copilot's position, is identical to the M-6 subsystem sighting station; and the operational functions are also the same. When the "dead-man" switch is depressed, the gun turrets follow the action of the controller on the sighting station and the guns can be fired only by the copilot. With the release of the "dead-man" switch, the guns return to the
"stow" position, and both the pilot and copilot can fire the guns from the cyclic control sticks. The pilot is capable of firing the guns only in the "stow" position and directs the fire by aiming the helicopter.

Each of the XM-20 weapons is fed through a flexible ammunition chute supported at the forward side of the pylon. The rounds are fed from the right side, and the spent cases are ejected rearward and to the left. The links are ejected rearward and to the right by means of a rotary-type delinking feeder. The ammunition storage box configuration in the aircraft remains the same as that of the M-6 subsystem. Two forward rows of boxes supply the left-hand gun and two aft rows supply the right-hand gun. There is a total of 3000 rounds for each gun which are linked together to produce a single continuous belt through the cartridge drive crossover. The cartridge drive crossover enables each gun to be fed from the two rows of storage boxes at the dual rate of 2000 and 4000 rounds per minute. There is a burst limit time delay of approximately 3 seconds in the firing system.

The control panel is very similar to that of the M-6 subsystem except for the gun selector switch. The operator has the choice of firing either the left-hand gun only, right-hand gun only, or both guns.

The rocket launcher is the same LAU-32A/A, 7-round, 2.75-inch FFAR rocket pod as that of the XM-16 armament subsystem. The capabilities and firing sequences are also identical. Rocket firing is primary with the ROCKET-GUN switch in the ROCKET position. The number of rocket pairs to be fired per burst is selected on the ROCKET PAIR SELECTOR switch. Depressing a cyclic control stick trigger causes the preselected number of rocket pairs to fire. The circuitry is reset to the original condition whenever the trigger is released during a rocket burst so that the full selected number of rocket pairs will be fired at the next burst. Should the copilot be firing machine guns with the sighting station, depressing the pilot's cyclic control stick trigger stops the machine-gun fire and causes the rocket pairs to be fired. The pilot directs the rocket fire by maneuvering the aircraft and acquires the target through his reflex sight.

A detailed description of the UH-1B helicopter, S/N 60-3589, and an additional detailed description of the XM-16 and XM-21 armament subsystems are contained in Appendix IV.

1.4 BACKGROUND

1.4.1 QUALITATIVE MATERIEL REQUIREMENT

Combat Development Objectives Guide (CDOG) Paragraph 537a(2)
states the following: "Armed Helicopter Weapons Systems. A series of armament systems capable of rapid mounting and demounting from Army observation and utility helicopters. The armament systems may consist of weapons and ammunition from current weapons systems of advanced design together with synchronized sighting, mounting, and firing devices providing for elevation, depression, and traverse where required. Specific armament systems required include light weapons, point target weapons, and area weapons. The systems will be employed in support of the full spectrum of ground combat operations from selected observation and utility helicopters in flight, at a hover, or on the ground. Weapons systems for observation helicopters and those utility helicopters used in the troop transport and utility role shall be light and simple to avoid degrading required helicopter agility. Selected utility helicopters will be armed for the primary mission as weapons helicopters and will mount a single-type weapon system. The systems will provide for full utilization of new weapons."

1.4.2 UH-1B HELICOPTER EQUIPPED WITH XM-16 ARMAMENT SUBSYSTEM

The effectiveness of the UH-1B helicopter equipped with either the M-3 (2.75-inch FEAR) or the M-6 (7.62-millimeter M-60C machine gun) armament subsystem has been demonstrated. In many tactical situations, however, the combined use of the machine guns and the rockets would have significantly increased the degree of mission success. The need to incorporate both weapons was recognized and as a result the combination of the two armament subsystems was fabricated in August 1963.

1.4.3 UH-1B HELICOPTER EQUIPPED WITH XM-21 ARMAMENT SUBSYSTEM

UH-1B helicopters are required to act as armed escort for troop landing operations or for screening operations. In addition, they make reconnaissance of enemy territory and should be capable of protecting themselves if fired upon. Current aircraft are equipped with the M-6 armament subsystem. This subsystem is not wholly satisfactory because accuracy in tracking and first-round hit requires improvements; reliability is low; and rate of fire is too low, in certain operations, to exploit fully the maneuver-ability of helicopters. An improved subsystem is required that will provide increased effectiveness in the destruction and neutralization of hostile elements. Employment of the subsystems should require a minimum restriction on the maneuverability of the aircraft. The heavy components of the subsystem (weapons and/or ammunition) must be designed for quick and easy removal from the aircraft.
1.4.4 GENERAL

The Weaponization Project Manager, Hq, U. S. Army Materiel Command (USAMC) assigned the engineering-service test of the UH-1B helicopter equipped with the XM-16 and XM-21 armament subsystems to Hq, U. S. Army Test and Evaluation Command (USATECOM). USATECOM, in test directive, 17 October 1963, as amended 31 March 1964, requested USAAVNTA to conduct an engineering flight test of the UH-1B helicopter equipped with the XM-16 armament subsystem. In Test Directive, 5 January 1965, USATECOM requested USAAVNTA to conduct an engineering flight test of the UH-1B equipped with the XM-21 armament subsystem.

The engineering flight tests were conducted at test sites in Fort Irwin, Bakersfield, and Edwards Air Force Base, California. The UH-1B/XM-16 tests were conducted during the period 19 July 1965 through 11 August 1965. Thirty-nine flights totalling 35.8 productive flight hours were required to accomplish this program.

The UH-1B/XM-21 tests were conducted during the period 24 August 1965 through 2 September 1965. Fourteen flights totalling 13.75 productive flight hours were required to accomplish this program.

A separate report of the UH-1B/XM-16 jettison tests outlined in Test Plan (Section 3, Appendix VI, Reference e) was submitted on 5 May 1965 (Reference n). An interim report on the UH-1B/XM-16 engineering flight test results was submitted on 13 September 1965 (Reference o).

USATECOM authorized USAAVNTA, on 21 August 1965, to incorporate the results of the engineering flight tests of the UH-1B equipped with the XM-16 and XM-21 armament subsystems in one final report.

1.5 FINDINGS

1.5.1 PERFORMANCE

1.5.1.1 Level Flight

The results of the level flight performance tests indicated that the UH-1B helicopter equipped with either the XM-16 or XM-21 armament subsystem required more power at the same airspeed than a clean helicopter (Reference s).

At 8000 pounds gross weight, 5000 feet altitude and 324 rotor rpm, the installation of the XM-16 armament subsystem resulted in a specific range reduction of 15 percent. The installation of
the XM-21 armament subsystem at the same conditions resulted in a 12-percent reduction in specific range.

The minimum power required for level flight at a given coefficient of thrust (Ct) showed an average increase of approximately 7 percent for the UH-1B equipped with either armament subsystem.

1.5.1.2 Autorotation

The minimum rate of descent in autorotation of the UH-1B equipped with the XM-16 armament subsystem at gross weights between 6300 pounds and 7800 pounds was 1850 feet per minute (fpm) at 54 knots calibrated airspeed (KCAS). A minimum rate of descent of 1660 fpm was reported for the clean UH-1B at the same conditions (Reference s). The UH-1B equipped with the XM-16 and XM-21 exhibited the same characteristics in autorotation.

1.5.2 STABILITY AND CONTROL

1.5.2.1 Static Longitudinal Stability

The static longitudinal stability of the UH-1B helicopter with either weapon subsystem installed was satisfactory under all conditions tested. A comparison of stability with the weapon subsystems installed on the UH-1B showed that no appreciable difference existed under similar test conditions. As noted in earlier UH-1B evaluation (Reference r), instability occurred below 40 KCAS. This reversal was not objectionable. No appreciable difference was observed in the static longitudinal stability characteristics of the UH-1B with only one pod or with two pods, either full or empty.

1.5.2.2 Static Directional Stability

The static directional stability of the armed UH-1B in all configurations was satisfactory under all test conditions. Lateral control positions indicated less positive dihedral effect than in the clean UH-1B helicopter but this was not considered objectionable (Reference r). The variation in pedal position required for steady sideslips showed no significant change from test results of the previous evaluation (Reference r).

1.5.2.3 Sideward and Rearward Flight

Flying characteristics of the armed UH-1B in sideward and rearward flight were satisfactory and essentially unchanged from those of a clean UH-1B. Sufficient control was available to
fly to the 30 knots true airspeed (KTAS) required by Paragraph 3.2.10 of MIL-H-8501A (Reference p) in both sideward and rearward flight.

1.5.2.4 Dynamic Stability

Comparison of the dynamic stability test results of the armed UH-1B and the clean UH-1B showed no difference in the dynamic stability characteristics of the two aircraft. The 1-inch control pulse disturbances were well damped about all three axes and were acceptable.

1.5.2.5 Controllability

The controllability of the armed UH-1B was satisfactory about all three axes. The maximum control sensitivity of the longitudinal, lateral and pedal responses were 10, 24 and 28 degrees/second^2/inch respectively at calibrated airspeeds of 48 through 95 knots in level flight. The longitudinal and lateral control responses at the identical conditions were 5 and 11 degrees/second/inch respectively. The directional control response was a maximum of 24 degrees/second/inch at 48 knots. A slight difference in controllability existed between the armed UH-1B and the clean UH-1B but this difference was not apparent to the pilot.

1.5.3 VIBRATION

1.5.3.1 Non-Firing

The vibration levels of the UH-1B equipped with the XM-16 armament subsystem were satisfactory. The vibration levels with the XM-21 armament subsystem installed, however, were magnified. At a frequency of 4/rev (21.6 cycles/second), the lateral acceleration exceeded 0.15g, the limit specified in Paragraph 3.7.1(b) of MIL-H-8501A (Reference p). This level was recorded from 43.5 KCAS to the airspeed limit (100 KCAS).

1.5.3.2 Firing

The vibration levels of the armed helicopter with the guns firing were within the limits of Paragraph 3.7.1(b) of MIL-H-8501A. The highest vibration level (0.15g) was recorded in the lateral plane of motion at a 4/rev (21.6 cycles/second) frequency.
1.5.4 FIRINGS

1.5.4.1 Machine-Gun Firings

The firing of the XM-16 (M-60C) and XM-21 (XM-20) machine guns had no significant effects on the handling qualities of the helicopter. The XM-20 machine guns created a reaction force opposite to the line of fire. When the controls were held fixed, the helicopter responded in the direction of the resulting moment; but, as the guns ceased firing, returned to the initial trim position.

1.5.4.2 Rocket Firings

The firing of the 2.75-inch Folding-Fin Aerial Rockets (FFAR's) was satisfactory under all conditions tested. With the controls of the UH-1B held fixed, a nose-down attitude change of 4.5 degrees was experienced when a full complement of rockets (7 pairs) was fired. The pitching rate was approximately 4.8 degrees/second and was not considered hazardous. A pilot would normally unconsciously correct for this resultant pitch-down tendency.

1.5.5 BOOST-OFF

The results of these tests indicated that with the boost off it was possible to maintain level flight with either weapon subsystem installed on the UH-1B helicopter. The collective-pitch control had a tendency to creep down at a rate of .5 inches/second (1 second after the hydraulic boost was turned off). Collective forces measured were 76 pounds in sustained level flight with zero sideslip, and 90 pounds in a climb. Because of these forces extended flight with the boost off would be impossible. The only practical method of landing with boost off was to execute a run-on type of landing because of the high control forces and the incipient loss of control that resulted when attempting to transition to a hover.
1.6 Conclusions

The handling qualities of the UH-1B helicopter with either the XM-16 armament subsystem or XM-21 armament subsystem installed were essentially the same as those of a clean UH-1B.

A significant level flight performance penalty was experienced with either subsystem installed. The minimum rate of descent during autorotational descents with either subsystem installed was increased by approximately 200 fpm.

Results from the firing of both machine guns and rockets showed that there were no safety-of-flight limitations within the envelope specified by the airframe contractor.

1.7 Recommendations

The performance data generated during this evaluation should be incorporated in the Operator's Manual (Reference q).
SECTION 2 - DETAILS OF TESTS

2.0 INTRODUCTION

The engineering tests of the UH-1B equipped with the XM-16 armament subsystem were completed on 11 August 1965. The XM-21 armament subsystem was immediately installed and tested. The requirements of Paragraph 2.3.1 of the test plan (Reference g), Machine-Gun Firings of the UH-1B/XM-21, were executed as outlined. Portions of the other tests were omitted because of experience gained during the UH-1B/XM-16 tests. No problem areas were encountered during the XM-16 evaluation and because of the aerodynamic similarity of the XM-16 and the XM-21 only spot-checks of the various flight conditions were required for the XM-21 subsystem evaluation.

The performance portion of the test was limited to level-flight speed-power and autorotation tests. The most adverse flight conditions were concentrated on in the stability and control portion of the test. These limitations were imposed by the short calendar time allotted for this project.

Performance tests were conducted in a stabilized condition in non-turbulent air. All stability and control, boost-off, and weapons firing tests were conducted in non-turbulent atmospheric conditions so that test data would not be influenced by uncontrolled disturbances.

The test UH-1B helicopter, Serial Number 60-3589, crashed and burned on 2 September 1965.

Stability and control data was evaluated on the basis of requirements of Military Specification MIL-H-8501A (Reference p).

The results of the Jettison Tests of the UH-1B/XM-16 armament subsystem outlined in Test Plan (Reference e) were reported on 5 May 1965 in Reference n.

2.1 PERFORMANCE

2.1.1 LEVEL FLIGHT

2.1.1.1 Objective

Tests were conducted to determine airspeed, fuel flow, and power required relationships to define the level flight performance for any combination of gross weight, altitude and rotor rpm.
2.1.1.2 Method

Tests were conducted at various combinations of altitude, gross weight, and rotor speed in the armed (XM-16 or XM-21) configuration. Each speed power was flown at a constant value of gross weight divided by density (W/p). This involved increasing altitude on successive data points as fuel was consumed. Data was recorded in stabilized flight at various airspeeds throughout the allowable speed range at approximately 10-knot increments to define adequately the particular power required curve. In addition to basic power parameters, fuel-flow data was recorded.

2.1.1.3 Results

Test results are presented graphically in Figures 4 through 15, Section 3, Appendix I. Non-dimensional summary plots are presented in Figures 1 through 3.

2.1.1.4 Analysis

The effect on power required due to the addition of the XM-16 or the XM-21 armament subsystem is illustrated in Figure A.
Compared with the performance of a clean XM-1B at the conditions of Figure A, at the airspeed for normal rated power, the installation of the armament subsystems resulted in a 13-knot airspeed loss for the XM-21 and a 16.5-knot airspeed loss for the XM-16.

The performance penalty in terms of range performance is illustrated in Figure B.

FIGURE B

LEVEL FLIGHT RANGE SUMMARY

DENSITY ALT. = 5000 FT. ROTOR RPM = 324

AVG. C.G. STA. = 130.9 IN. (MID)

- CLEAN (FTC-TDR-62-21)
- XM-21
- XM-16

GROSS WEIGHT ~ POUNDS

Compared with the performance of a clean UH-IB at the conditions of Figure B, at 8500 pounds, the installation of the XM-16 resulted in a 15-percent decrease in specific range at optimum cruise airspeed. Compared with performance of a clean UH-IB, the optimum cruise airspeeds with the XM-16 or the XM-21 installed, varied from a decrease of 15 knots at light gross weights to zero knots at higher gross weights when optimum cruise was at the placard airspeed limit.

The UH-IB with the XM-16 installation showed a greater reduction in specific range than with the XM-21 installation. This difference can be explained by the greater drag surface of the XM-16. This greater drag surface resulted in an increased negative fuselage trim angle of attack for the XM-16 which in turn resulted in increased power required and, therefore, a greater reduction in specific range. The difference in trim angles of attack for the XM-16 and XM-21 is shown in Figure C.

FIGURE C

<table>
<thead>
<tr>
<th>AVG. Ct</th>
<th>AVG. C.G.</th>
<th>ARMAMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4966</td>
<td>130.3</td>
<td>XM-21</td>
</tr>
<tr>
<td>3973</td>
<td>130.7</td>
<td>XM-16</td>
</tr>
</tbody>
</table>

![Graph showing trim angles of attack for XM-16 and XM-21](image)
2.1.2 AIRSPEED CALIBRATION

2.1.2.1 Objective

The objective of these tests was to determine the airspeed position error for both the standard and test airspeed systems.

2.1.2.2 Method

The calibrated trailing bomb method was used to determine the airspeed calibration of the standard and test airspeed systems. The aircraft with the XM-16 installed was flown at various airspeeds in stabilized level flight at an average gross weight of 6980 pounds.

2.1.2.3 Results

Test results are presented graphically in Figures 19 and 20, Appendix I.

2.1.2.4 Analysis

The position error of the test airspeed system was nonlinear. This position error varied from +3.0 knots indicated airspeed (KIAS) to +4.5 KIAS. The position error of the standard airspeed system was identical to that of the airspeed system of a standard UH-1B (Reference q). This indicates that the installation of either the XM-16 or XM-21 had no effect on the ship airspeed system position error.

2.1.3 AUTOROTATIONAL DESCENTS

2.1.3.1 Objective

The objective of these tests was to determine the minimum rate of descent and the airspeed for minimum rate of descent during stabilized autorotations.

2.1.3.2 Method

Autorotational descents were conducted at various airspeeds throughout the allowable speed range. During the descents, time and altitude were recorded to determine the rate of descent. Stabilized descents at various airspeeds between 40 and 88 KCAS were flown to determine the airspeed for minimum rate of descent.

2.1.3.3 Results

Test results are presented graphically in Figure 21, Appendix I.
2.1.3.4 Analysis

The tests to determine the minimum rate of descent and the airspeed for minimum rate of descent were conducted with only the XM-16 installed on the UH-1B helicopter. Since other tests revealed the close similarity of the XM-16 and XM-21 armament subsystems in their effect on flight characteristics, autorotational descents with the XM-21 armament kit were not accomplished. The minimum rate of descent in autorotation of the armed UH-1B at average gross weights of 7000 pounds and average density altitudes of 7500 feet was 1850 feet per minute (fpm) compared with 1660 fpm for the unarmed UH-1B.

2.2 STABILITY AND CONTROL

2.2.1 STATIC LONGITUDINAL STABILITY

2.2.1.1 Objective

The objective of these tests was to determine the static longitudinal speed stability as the airspeed was varied from trim during level flight, autorotation, and partial power descents.

2.2.1.2 Method

Static longitudinal stability tests with either the XM-16 or XM-21 installed were conducted in two ways. The first method consisted of recording the control positions required for various stabilized airspeeds during level flight. These tests were conducted in conjunction with the level flight tests (Paragraph 2.1.1).

The second method of evaluating the static longitudinal stability consisted of fixing the collective stick at the various trim conditions specified in Paragraph 3.2.10 of MIL-H-8501A (Reference p). Once the helicopter was trimmed at a recommended airspeed, the collective stick was fixed, the airspeed was changed by the movement of the longitudinal cyclic stick and altitude was allowed to vary.

2.2.1.3 Results

Test results are presented graphically in Figures 22 through 36, Appendix I.

2.2.1.4 Analysis

Static longitudinal stability was positive for all airspeeds above 40 knots at all conditions tested. No significant difference
between the apparent degree of stability of the clean UH-1B (Reference r) and the armed UH-1B was indicated by comparison of the slope of the control position versus airspeed curves.

2.2.2 STATIC DIRECTIONAL STABILITY

2.2.2.1 Objective

The objective of these tests was to evaluate the lateral-directional flying qualities, effective dihedral, and directional stability for representative flight conditions.

2.2.2.2 Method

Static lateral-directional stability was investigated by obtaining the longitudinal, lateral and directional control positions necessary to maintain various steady sideslip angles at several different airspeeds and altitudes. The flight conditions tested were level flight, autorotation, and climb. The center-of-gravity (C.G.) locations were either forward or mid. Static directional stability was determined from the relationship between pedal position and angle of sideslip. Effective dihedral was determined from the relationship between lateral control and sideslip angle.

2.2.2.3 Results

Test results are presented graphically in Figures 37 through 46, Appendix I.

2.2.2.4 Analysis

The armed UH-1B helicopter exhibited strong positive static directional stability under all conditions tested. The dihedral effect was slightly weaker compared with the clean UH-1B evaluation (Reference r). Negative dihedral occurred at high-speed level flight and was more noticeable at a forward C.G. than at a mid C.G. Although not in accordance with MIL-H-8501A, (Reference p), this was not objectionable to the pilot. The angle of roll showed no change in attitude with increasing left sideslip; this was not a characteristic of a clean UH-1B. This condition was not objectionable to the pilot.

2.2.3 SIDeward AND REARward FLIGHT

2.2.3.1 Objective

The objective of these tests was to determine if sufficient
control was available to hover in winds of up to 30 knots.

2.2.3.2 Method

The hovering characteristics of the armed UH-1B helicopter in crosswind and tailwind were simulated by recording control positions in sideward and rearward flight. The helicopter was stabilized at the various rirspeeds by using a calibrated pacer ground vehicle.

2.2.3.3 Results

Test results are presented graphically in Figures 47 and 48, Appendix I.

2.2.3.4 Analysis

Sideward and rearward flights were satisfactory with the XM-16 installed. A slight difference, however, was noticed with the nonsymmetrical armament configuration. With one pod removed, the control positions shifted to counter the unbalanced weight loading but the flying qualities were still satisfactory. No problems were encountered in sideward flight through the speed range from zero to 33.5 knots true airspeed (KTAS) in both directions. During rearward flight at 23 KTAS, a longitudinal cyclic stick control margin of 0.9 inches of aft cyclic travel remained.

2.2.4 DYNAMIC STABILITY

2.2.4.1 Objective

The objective of these tests was to determine the capability of the armed UH-1B to return to trim following a disturbance.

2.2.4.2 Method

The armed UH-1B dynamic stability characteristics were determined from analysis of the time histories of the helicopter motions resulting from pulse-type control inputs. The longitudinal, lateral, and directional axes were subjected to 1-inch control inputs and the helicopter's responses were recorded. The tests were conducted in level flight at an average density altitude of 4990 feet, a mid C.G. (Station 130.9), a rotor rpm of 324, and an average gross weight of 6980 pounds. A control fixture was used to insure precise inputs.
2.2.4.3 Results

Time histories are presented in Figures 49 through 54, Appendix I.

2.2.4.4 Analysis

The UH-1B equipped with either the XM-16 or XM-21 showed no apparent difference in dynamic stability characteristics from those of a clean UH-1B. Following forward and aft longitudinal pulses, the aircraft was essentially deadbeat in pitch. A residual lateral-directional oscillation persisted after the initial disturbance damped out. Following directional or lateral pulse inputs the aircraft established a well damped "dutch roll" mode of motion which damped out in 4 to 5 cycles.

2.2.5 CONTROLLABILITY

2.2.5.1 Objective

The objective of these tests was to determine the changes in controllability of the UH-1B as a result of the installation of the armament subsystem.

2.2.5.2 Method

The controllability of the UH-1B with the XM-16 installed was determined by analyzing the helicopter's response to step-type control inputs about all three axes. A control fixture was used to insure constant inputs. The data was analyzed in terms of the maximum angular accelerations and rates and the time to reach the corresponding maximum values. The tests were conducted under the same flight conditions listed for the dynamic stability tests (Paragraph 2.2.4.2).

2.2.5.3 Results

Test results are presented graphically in Figures 55 through 63, Appendix I.

2.2.5.4 Analysis

The control sensitivity and response were determined through analysis of the angular accelerations and the angular rates respectively. Differences were found in comparison of the control sensitivity and response of the armed and unarmed UH-1B helicopters. The following table presents a comparison of the controllability of the armed and unarmed helicopters:
CONTROL SENSITIVITY

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Axis</th>
<th>Sensitivity deg/sec²/in</th>
<th>Time to Peak sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>Pitch Fwd</td>
<td>10.5</td>
<td>Aft 10.5</td>
</tr>
<tr>
<td>Clean</td>
<td>Roll Lt</td>
<td>23.8</td>
<td>Rt 30.0</td>
</tr>
<tr>
<td>Clean</td>
<td>Yaw Lt</td>
<td>24.0</td>
<td>Rt 29.9</td>
</tr>
<tr>
<td>Armed</td>
<td>Pitch Fwd</td>
<td>8.4</td>
<td>Aft 10.0</td>
</tr>
<tr>
<td>Armed</td>
<td>Roll Lt</td>
<td>20.1</td>
<td>Rt 25.3</td>
</tr>
<tr>
<td>Armed</td>
<td>Yaw Lt</td>
<td>22.3</td>
<td>Rt 28.2</td>
</tr>
</tbody>
</table>

CONTROL RESPONSE

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Axis</th>
<th>Response deg/sec/in</th>
<th>Time to Peak sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>Pitch Fwd</td>
<td>9.9</td>
<td>Aft 9.9</td>
</tr>
<tr>
<td>Clean</td>
<td>Roll Lt</td>
<td>10.2</td>
<td>Rt 15.0</td>
</tr>
<tr>
<td>Clean</td>
<td>Yaw Lt</td>
<td>9.9</td>
<td>Rt 13.2</td>
</tr>
<tr>
<td>Armed</td>
<td>Pitch Fwd</td>
<td>6.5</td>
<td>Aft 4.9</td>
</tr>
<tr>
<td>Armed</td>
<td>Roll Lt</td>
<td>7.0</td>
<td>Rt 11.4</td>
</tr>
<tr>
<td>Armed</td>
<td>Yaw Lt</td>
<td>10.5</td>
<td>Rt 17.1</td>
</tr>
</tbody>
</table>

NOTE: Comparisons were made in level flight at 800 KIAS at a gross weight of 7000 pounds.

The controllability changes indicated were not significant enough to be perceptible to the pilot.
The installation of the XM-16 or XM-21 on the UH-1B caused a lower than normal vertical C.G. and increased the moment of inertia about all axes. Controllability increased at a lower C.G. and decreased with a larger moment of inertia. This would explain the differences between the controllability of the clean UH-1B and the armed UH-1B.

2.3 VIBRATION

2.3.1 OBJECTIVE

The objectives of these tests were to determine the vibrations induced by the installation of the armament subsystems and to determine the vibrations due to the firing of the guns.

2.3.2 METHOD

Vibration tests were recorded during the entire flying portion of the program. The helicopter was equipped with two velocity-type accelerometers at the passenger station to record lateral and vertical vibrations. At the initial phase of the flying program, the test UH-1B helicopter was flown in the clean configuration and its vibration characteristics were established. The vibration characteristics of subsequent flights in the armed configuration were compared with those of the clean helicopter.

2.3.3 RESULTS

Test results are presented graphically in Figures 64 through 66, Appendix I.

2.3.4 ANALYSIS

The armed (XM-16 or XM-21) UH-1B showed satisfactory vibration characteristics during the firing of both subsystems and during the non-firing of the XM-16 subsystem. During the non-firing of the XM-21, however, the lateral vibration acceleration
exceeded the allowable level defined in Paragraph 3.7.1 of MIL-H-8501A (Reference p). The following table gives a comparison of the vibrations:

VIBRATION TEST CONDITIONS

UH-1B/XM-16

<table>
<thead>
<tr>
<th>Vibration Frequency</th>
<th>CAS</th>
<th>Lateral Acceleration</th>
<th>Vertical Acceleration</th>
<th>Frequency</th>
<th>C.G.</th>
<th>Flight Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.A.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/rev</td>
<td>97.0</td>
<td>.0225</td>
<td>.0209</td>
<td>5.3</td>
<td>131.2</td>
<td>Non-Firing</td>
</tr>
<tr>
<td></td>
<td>99.0</td>
<td>.02925</td>
<td>.0273</td>
<td>5.4</td>
<td>128.3</td>
<td>Firing</td>
</tr>
<tr>
<td>2/rev</td>
<td>97.0</td>
<td>.077</td>
<td>.072</td>
<td>10.6</td>
<td>131.2</td>
<td>Non-Firing</td>
</tr>
<tr>
<td></td>
<td>99.0</td>
<td>.077</td>
<td>.072</td>
<td>10.8</td>
<td>128.3</td>
<td>Firing</td>
</tr>
<tr>
<td>4/rev</td>
<td>97.0</td>
<td>.000</td>
<td>.000</td>
<td>21.2</td>
<td>131.2</td>
<td>Non-Firing</td>
</tr>
<tr>
<td></td>
<td>99.0</td>
<td>.000</td>
<td>.000</td>
<td>21.6</td>
<td>128.3</td>
<td>Firing</td>
</tr>
</tbody>
</table>

*S.A. = Single Amplitude

VIBRATION TEST CONDITIONS

UH-1B/XM-21

<table>
<thead>
<tr>
<th>Vibration Frequency</th>
<th>CAS</th>
<th>Lateral Acceleration</th>
<th>Vertical Acceleration</th>
<th>Frequency</th>
<th>C.G.</th>
<th>Flight Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.A.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/rev</td>
<td>101.</td>
<td>.0552</td>
<td>.059</td>
<td>5.4</td>
<td>130.7</td>
<td>Non-Firing</td>
</tr>
<tr>
<td></td>
<td>100.</td>
<td>.0515</td>
<td>.03315</td>
<td>5.4</td>
<td>126.1</td>
<td>Firing</td>
</tr>
<tr>
<td>2/rev</td>
<td>101.</td>
<td>.135</td>
<td>.078</td>
<td>10.8</td>
<td>130.7</td>
<td>Non-Firing</td>
</tr>
<tr>
<td></td>
<td>100.</td>
<td>.09</td>
<td>.072</td>
<td>10.8</td>
<td>126.1</td>
<td>Firing</td>
</tr>
<tr>
<td>4/rev</td>
<td>101.</td>
<td>.250</td>
<td>.170</td>
<td>21.6</td>
<td>130.7</td>
<td>Non-Firing</td>
</tr>
<tr>
<td></td>
<td>100.</td>
<td>.145</td>
<td>.07</td>
<td>21.6</td>
<td>126.1</td>
<td>Firing</td>
</tr>
</tbody>
</table>
VIBRATION TEST CONDITIONS
CLEAN UH-1B

<table>
<thead>
<tr>
<th>Vibration Frequency S.A.*</th>
<th>CAS kt</th>
<th>Lateral Acceleration g</th>
<th>Vertical Acceleration g</th>
<th>Frequency</th>
<th>C.G.</th>
<th>Flight Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/rev</td>
<td>96.5</td>
<td>.0154</td>
<td>.0171</td>
<td>5.3</td>
<td>129.8</td>
<td>Non-Firing</td>
</tr>
<tr>
<td>2/rev</td>
<td>96.5</td>
<td>.063</td>
<td>.096</td>
<td>10.6</td>
<td>129.8</td>
<td>Non-Firing</td>
</tr>
<tr>
<td>4/rev</td>
<td>96.5</td>
<td>.000</td>
<td>.000</td>
<td>21.2</td>
<td>129.8</td>
<td>Non-Firing</td>
</tr>
</tbody>
</table>

2.4 FIRINGS

2.4.1 MACHINE-GUN FIRINGS

2.4.1.1 Objective

The objective of these tests was to evaluate the effects on stability and control of the UH-1B during the gun firings at various flight conditions and to insure that there was no compromise of safety of flight throughout the flight envelope.

2.4.1.2 Method

The firing of the machine guns of the XM-16 and XM-21 armament subsystems was conducted at zero KCAS, 48 KCAS, 67 KCAS, and 95 KCAS. Hover firings were conducted at approximately 50 feet above the ground, and level flight firings were conducted at 500
feet above the ground. Tests for both weapons were conducted in the machine-gun firing positions listed in the following table:

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Depression</th>
<th>Traverse Rt</th>
<th>Traverse Lt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Zero</td>
<td>Zero</td>
<td>Extreme</td>
<td>----</td>
</tr>
<tr>
<td>Zero</td>
<td>Zero</td>
<td>----</td>
<td>Extreme</td>
</tr>
<tr>
<td>Maximum</td>
<td>----</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Maximum</td>
<td>----</td>
<td>Extreme</td>
<td>----</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum</td>
<td>Extreme</td>
<td>----</td>
</tr>
</tbody>
</table>

NOTE: 1. * indicates "stow" position.

XM-16 XM-21
Upward: 9° 10°
Downward: 66° 90°
Inboard: 12° 12°
Outboard: 70° 70°

3. Guns will cease fire when their inboard limit is reached.

2.4.1.3 Results
Time histories of machine-gun firings are presented in Figures 67 through 72, Appendix I.

2.4.1.4 Analysis
Firing the M-60C machine guns of the XM-16 subsystem did not adversely affect the stability and control of the helicopter at any of the conditions tested. Firing the XM-20 machine guns of the XM-21 produced a reactionary force opposite to the direction of
fire. The helicopter's reaction can be clearly seen in Figures 67 through 72, Appendix I. The helicopter returned to the original trim position after the guns ceased firing. This condition was not objectionable to the pilot.

2.4.2 ROCKET FIRINGS

2.4.2.1 Objective

The objective of these tests was to insure that there were no adverse flight characteristics introduced during the firing of the rockets.

2.4.2.2 Method

The firing of the 2.75-inch FFAR was conducted at 7300 pounds gross weight, 324 rotor rpm, and forward C.G. The rockets were fired at the conditions listed in the following table:

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>Airspeed KCAS</th>
<th>Altitude Above Ground ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hover</td>
<td>0</td>
<td>IGE*</td>
</tr>
<tr>
<td>Hover (Left Pod Empty)</td>
<td>0</td>
<td>IGE</td>
</tr>
<tr>
<td>Level Flight</td>
<td>48, 84, 99</td>
<td>500</td>
</tr>
<tr>
<td>Level Flight (10° Rt Sideslip)</td>
<td>85</td>
<td>700</td>
</tr>
<tr>
<td>Level Flight (10° Lt Sideslip)</td>
<td>85</td>
<td>650</td>
</tr>
<tr>
<td>Level Flight (Lt Pod Empty)</td>
<td>85</td>
<td>600</td>
</tr>
<tr>
<td>Climb (400 fpm)</td>
<td>61</td>
<td>700</td>
</tr>
<tr>
<td>Descent (400 fpm)</td>
<td>57</td>
<td>1300</td>
</tr>
<tr>
<td>Autorotation</td>
<td>90</td>
<td>900</td>
</tr>
<tr>
<td>Maneuvering (Rt Pull-up)</td>
<td>95</td>
<td>700</td>
</tr>
<tr>
<td>Maneuvering (Lt Pull-up)</td>
<td>95</td>
<td>700</td>
</tr>
</tbody>
</table>

* IGE denotes in ground effect
For each of the conditions listed, except the one-pod-empty condition, 7 pairs of rockets were fired; for the one-pod-empty condition, 7 single rockets were fired.

2.4.2.3 Results

Time histories are presented in Figures 73 through 79, Appendix I.

2.4.2.4 Analysis

The rocket firing tests were characterized by a nose-down pitching motion of the helicopter under all conditions tested. The pitch angle change was approximately 4.5 degrees with a maximum angular rate of 4.8 degrees/second. The rate was so slight that the pilot would automatically correct the pitching motion without thinking about it. This pitching motion could be attributed to a moment about the pitch axis resulting from the rocket blast. The sudden loss of weight of the rockets would also add to this motion. The rocket pods were located at an aft C.G. (Station 136.0), and the firing of 14 rockets (252 pounds) in 1.167 seconds would move the C.G. forward.

2.5 BOOST-OFF FLIGHT

2.5.1 OBJECTIVE

The objective of these tests was to determine if flight was feasible with the weapon systems installed and the hydraulic control boost inoperative.

2.5.2 METHOD

Power-boosted or power-operated control failure was simulated by switching off the hydraulic boost system on the armed UH-1B helicopter. The forces necessary to maintain control of the helicopter were measured by strain gages for the longitudinal and lateral forces and a hand-held force indicator for the collective force. Tests were conducted in hover, climb, level flight and landing. Paragraph 3.5.8 of MIL-H-8501A (Reference p) was used as a basis for evaluating the results.

2.5.3 RESULTS

Time histories are presented in Figures 80 and 81, Appendix I.
2.5.4 ANALYSIS

The longitudinal, lateral, and pedal control forces were satisfactory under all conditions tested. The collective position force exceeded the maximum limit (25 pounds) stated in Paragraph 3.5.8, MIL-H-8501A (Reference p). The collective force measured 90 pounds in a climb and could not be maintained for an extended period. A run-on landing was the only practical method of landing. Incipient loss of control resulted from over-controlling when transitioning to a hover because of the high cyclic forces.

SECTION 3 Appendices

Appendix I

Test Data
FIGURE NO. 1
LEVEL FLIGHT PERFORMANCE
UH-1B USA S/N GO-3589
AVG C.G. = STA. 130.9 (MID)
ARMAMENT CONFIGURATION
PODS FULLY LOADED

SYM ROTOR SPEED ARMAMENT
~RPM~
0 324 XM-21
□ 324 XM-16
□ 318 XM-16
Δ 314 XM-16

--- DENOTES XM-21
--- DENOTES XM-16

NOTE:
Points are from faired curves on figures 4 through 15

\[C_p \times 10^6 = \frac{5HP \times 550}{\frac{1}{4} \rho C^2 \pi R^2} \times 10^5 \]

\[C_T \times 10^4 = \frac{W}{\frac{1}{4} \rho (\Omega R)^2} \times 10^4 \]
FIGURE NO. 2
LEVEL FLIGHT PERFORMANCE
UH-1B USA S/N 60 - 3589
AVG. C.G. = STA 130.9 (Mid)
ARMAMENT CONFIGURATION
PODS FULLY LOADED

<table>
<thead>
<tr>
<th>SYM ROTOR SPEED RPM</th>
<th>ARMAMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XM-21</td>
</tr>
<tr>
<td>□</td>
<td>XM-16</td>
</tr>
<tr>
<td>△</td>
<td>XM-16</td>
</tr>
<tr>
<td>▲</td>
<td>XM-21</td>
</tr>
</tbody>
</table>

-- -- DENOTES XM-21
-- -- DENOTES XM-16

NOTE:
POINTS ARE FROM FAIRED CURVES ON FIGURES 4 THROUGH 15

\[C_P \times 10^5 = \frac{5HP \times 550}{\pi A (AR)^{1.5}} \times 10^5 \]

\[C_T \times 10^4 = \frac{W}{\rho A (AR)^{1.5}} \times 10^4 \]
Figure No. 3

Level Flight Performance

UH-1B USA S/N 60-3589

Avg C.G. = STA 130.9 (Mid)

Armament Configuration

Pods Fully Loaded

<table>
<thead>
<tr>
<th>Sym</th>
<th>Rotor Speed</th>
<th>Armament</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>324</td>
<td>XM - 21</td>
</tr>
<tr>
<td>□</td>
<td>324</td>
<td>XM - 16</td>
</tr>
<tr>
<td>□</td>
<td>318</td>
<td>XM - 16</td>
</tr>
<tr>
<td>△</td>
<td>314</td>
<td>XM - 16</td>
</tr>
</tbody>
</table>

Notes:

Points are from faired curves on Figures 4 through 15

\[C_T \times 10^4 = \frac{W}{\pi A(\omega R)^3} \times 10^4 \]
Figure No. 4
LEVEL FLIGHT PERFORMANCE
UH-1B USA S/N 60-5589
ARMAMENT CONFIGURATION
GROSS WEIGHT 6590 LB.
ALTITUDE 5280 FT.
ROTOR RPM 318
CT .003973
CG STATION 130.0 IN. (MID)
XM-16 KIT
T53-L-9A S/N 06202
U.S. STANDARD DAY

NOTE: FUEL FLOW DATA
UNAVAILABLE FOR MISSING
NAMPP DATA POINTS.

MAXIMUM POWER AVAILABLE: 940 SHP

TRUE AIRSPEED - KNOTS
Figure No. 5

Level Flight Performance

UH-1B USA S/N 60-3589

Armament Configuration

- **Gross Weight**: 7010 lb.
- **Altitude**: 5320 ft.
- **Rotor RPM**: 318
- **CT**: 004235
- **CG Station**: 131.2 in. (MID)

TS3-L-9A S/N 06202

US Standard Day

- **V_{NE}**: Maximum NAMPP
- **V_{WNE}**: Derived from Figure 18

NOTE:

Fuel flow data unavailable for missing NAMPP data points

Engine Output Shaft Horsepower

- **Maximum Power Available**: 940 SHP

True Airspeed ~ Knots
Figure No. 6
Level Flight Performance
UH-1B USA S/N 60-3689

Armament Configuration
Gross Weight 7000 lb.
Altitude 7300 ft.
Rotor RPM 324
Ct 004350
CG Station 131.2 in. (mid)

KMD-16 Kit
T53-L-9A S/N 06202
US Standard Day

Note:
Fuel flow data unavailable for missing NAMPP data points

Specific Range
Nautical Miles/1000 lb. Fuel

Engine Output Shaft Horsepower

Recommended Cruise at VNE

Maximum Power Available = 900 shp

True Airspeed - Knots
Figure No. 7
Level Flight Performance
Uh-1B USA S/N 60-3589
Armament Configuration
Gross Weight 7160.0LB.
Altitude 4700FT.
Rotor RPM 314
CG Station 130.7 in. (MID)
XMI-G Kit
TS3-L-9A S/N 06202
US Standard Day

Specific Range Nautical Miles per Gallon

Engine Output Shaft Horsepower

Maximum Power Available 955 SHP

Recommended Cruise

99 Max NAMPP

VNE

Derived From Figure 16

True Airspeed - Knots
FIGURE NO. B
LEVEL FLIGHT PERFORMANCE
UH-1B USA S/N 60-3589
ARMAMENT CONFIGURATION
GROSS WEIGHT 6860 LB
ALTITUDE 9750 FT.
ROTOR RPM 323
CT 0.04608
CG STATION 130.6 IN (MID)
XM-16 KIT
T53-L-9A S/N 06202
US STANDARD DAY

MAXIMUM POWER AVAILABLE = 848 SHP

TRUE AIRSPEED ~ KNOTS
Figure No. 9
Level Flight Performance
UH-1B USA S/N 60-3589
Armament Configuration
Gross Weight 7760 lb.
Altitude 7750 ft.
Rotor RPM 324
Ct 0.00488
CG Station 130.7 in. (mid)

XM-16 Kit
TS3-L-9A S/N 06202
US Standard Day

99 Max NAMPP

Derived from Figure 16

Recommended Cruise

Maximum power available: 890 SHP

True Airspeed ~ Knots

36
Figure No. 10
Level Flight Performance
UH-1B USA S/N GO-3589
Armament Configuration
Gross Weight 6720 LB
Altitude 14530 FT.
Rotor RPM 324-
Ct .005228
CG Station 130.5 IN. (MID)
XM-16 Kit
T53-L-9A S/N 06202
US Standard Day

Specific Range Naut Mil. / Lb. Fuel

900
800
700
600
500
400
300
0 20 40 60 80 100 120
True Airspeed ~ Knots

Engine Output Shaft Horsepower

Maximum Power Available = 745 SHP

Recommended Cruise

V_{NE}

Derived from Figure 16
Figure No. 11
Level Flight Performance
UH-1B USA S/N 60-3589
Armament Configuration
Gross weight 6980 lbs
Altitude 14400 ft
Rotor RPM 324
Ct 0.005495
CG Station 130.6 in. (MID)
XM-16 Kit
TSB-L-9A S/N 06202
US Standard Day

Specific Range
Naut. M./lb. Fuel

Engine Output Shaft Horse Power

Maximum Power Available 740 SHP

True Airspeed Knots
Figure No. 12
Level Flight Performance
UH-1B USA S/N 60-3589
Armament Configuration
Gross Weight 6610 lb
Altitude 4970 ft.
RPM 324
Ct 00.3806
CG Station 130.6 in. (MID)
XM-21 Kit
TS3-L-9A S/N 06202
US Standard Day

Maximum power available: 946 SHP
Figure No. 13

Level Flight Performance

UH-1B USA S/N 60-3589

Armament Configuration

- Gross Weight: 7050 LB
- Altitude: 5000 FT
- Rotor RPM: 324
- C.T: 004066
- CG Station: 130.4 IN. (MID)

XM-21 Kit

T53-L-9A S/N 06202

US Standard Day

Recommended Cruise

Maximum Power Available = 948 SHP
FIGURE No. 14
LEVEL FLIGHT PERFORMANCE
UH-1B USA S/N 60-3589
ARMAMENT CONFIGURATION
GROSS WEIGHT 7340LB.
ALTITUDE 6960 FT
ROTOR RPM 324.
CT .004440
CG STATION 130.8 IN. (MID)
KM-21 KIT
T53-L-9A S/N 06202
US STANDARD DAY

99 MAX. NAMPP
VNE

DERIVED FROM
FIGURE 16

MAXIMUM POWER AVAILABLE = 905 SHP

RECOMMENDED CRUISE

CLEAN UH-1B (FTC-TDR-62-21)

SPECIFIC RANGE
NAUT. MILE/LB FUEL

ENGINE OUTPUT SHAFT HORSEPOWER

TRUE AIRSPEED - KNOTS

41
Figure No. 15

Level Flight Performance
UH-1B USA S/N 60-3589

Armament Configuration
Gross Weight 8380 lb.
Altitude 5400 ft.
Rotor RPM 324
Ct .004906
CG Station 130.8 in. (MID)

XM-21 Kit
TS3-L-RA S/N 06202
U.S. Standard Day

Maximum Power Available: 939 SHP

True Airspeed ~ Knots

Specific Range
N/A
m./lb. Fuel

Engine Output Shaft Horsepower

Maximum Power Available: 939 SHP

Recommended Cruise Alt

Derived from Figure 16
Figure No. 16
Engine Characteristics
UH-1B USA S/N 6-0-3589
TS3-L-9A S/N 06202

2. Based on compressor inlet air pressure (FTC-TR - 62-21).
3. SHP obtained from engine differential torque pressure and engine calibration.
Figure No. 17
Engine Characteristics
T53-L-9A S/N 06202
Based on Engine Test Stand Calibration

Slope = 228.57 in.-lb/psia

\[\Delta P_{\text{torque}} \sim \text{P.S.I.} \]
Figure No. 18
Angle of Attack with Armament Installation
UH-1B USAF G-3589
Level Flight

Sym Avg C_t Avg C.G. Armament Configuration
O 0.0466 130.3 in (h) XM-21 Both Pods Full
□ 0.03973 130.7 in (h) XM-16 Both Pods Full

Calibrated Airspeed ~ Knots

Sym Avg C_t Avg C.G. Armament Configuration
O 0.04408 130.9 in (h) XM-21 Both Pods Full
□ 0.04880 130.9 in (h) XM-16 Both Pods Full

Calibrated Airspeed ~ Knots
Figure No. 19
Airspeed Calibration
UH-1B USA 5/N60-3589
Trailing Bomb Method
Ship System
Gross Weight 6980 lb
CG Station 131.2 in.
Rotor RPM 324

Correction to be added in knots

Indicated Airspeed ~ Knots

Calibrated Airspeed ~ Knots

Ship Static Port
Figure No. 20
Airspeed Calibration
UH-1B USA S/N 60-3589
Trailing Bomb Method
Boom System
Gross Weight 6980 lb.
CG Station 131.2 in.
Rotor RPM 324

Indicated Airspeed ~ Knots
Calibrated Airspeed ~ Knots
Correction to be Added ~ Knots
87 in.
Figure No. 27

Autorotational Descent
UH-1B USA 9/NGO-3589
Rotor Speed = 324
Armed Configuration
XM-16

SYM H₀ GW CG
○ 6600 7500 125.0
△ 7500 6760 131.0
□ 6380 7150 125.3
◊ 7820 6720 130.5

![Diagram showing autorotational descent](image-url)
Figure No. 20

Control Positions in Level Flight

UH-1B USA S/N 60-3599

Armament Configuration

\[H_d = 5290 \text{ ft} \]
\[\text{AVG W.G. G590 lb} \]
\[\text{RPM} = 324 \]
\[\text{AVG CG 130.2 in.} \]
\[C_{T\text{avg}} = 0.00573 \]

Lateral Stick Position

IN. FROM NEUTRAL

LEFT

RIGHT

2.0

0

2.0

Lateral Stick Travel

6.5 inches from neutral

Pedal Position

IN. FROM NEUTRAL

LEFT

RIGHT

2.0

0

2.0

Pedal Data (XM-1G) Not Available

Collective Position

IN. FROM FULL DOWN

UP

2.0

6.0

12.0

Collective Travel

12.2 inches from full down

Longitudinal Stick Position

IN. FROM NEUTRAL

AFT

4.0

2.0

0

6.0

Longitudinal Stick Travel

6.5 inches from neutral

Calibrated Airspeed - Knots

0

20

40

60

80

100

120
FIGURE No. 23
CONTROL POSITIONS IN LEVEL FLIGHT
UH-1B USA 51NG0-3589
ARMAMENT CONFIGURATION

H0 4700FT
RPM 314
CTAVG 004355
AVG G.W. 7160LB.
AVG CG 130.7IN.
XM-16 KIT

LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

PEDAL DATA (XM-16) NOT AVAILABLE

COLLECTIVE TRAVEL 12.2 INCHES FROM FULL DOWN

LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

CALIBRATED AIRSPEED KNOTS
Figure No. 24
Control Positions in Level Flight
UH-1B USA S/N 50-3589
Armament Configuration

- H: 9750 ft.
- RPM: 323
- G.W.: 6870 lb.
- AVG CG: 130.6 in.
- CₜAVG: 0.04408
- XM-16 Kit

Lateral Stick Travel 6.5 inches from Neutral

Pedal Data (XM-16) Not Available

Collective Travel 12.2 inches from Full Down

Longitudinal Stick Travel 6.5 inches from Neutral

Calibrated Airspeed ~ Knots
Figure No. 25
Control Positions in Level Flight
UH-1B USA SIN 60-3589
Armament Configuration

H.D. 7740 FT. AVG. G.W. 7735 LB.
RPM 324 AVG. CG 130.8 IN.
C.T.AVG 0.04080 XM-16 KIT

Lateral Stick Travel 6.5 Inches From Neutral

Pedal Data (XM-16) Not Available

Collective Travel 12.2 Inches From Full Down

Longitudinal Stick Travel 6.5 Inches From Neutral

Calibrated Airspeed ~ Knots
Figure No. 26
CONTROL POSITIONS IN LEVEL FLIGHT
UH-18 USA S/N 60-3587
ARMAMENT CONFIGURATION
BOTH PODS FULLY LOADED

HD 4970 FT. RPM 324
AVG. G.W. 6600 LB AVG. C.G. 130.6 IN.
CT AVG. 003866 XM-21 KIT

LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

PEDAL TRAVEL 3.5 INCHES FROM NEUTRAL

COLLECTIVE TRAVEL 12.2 INCHES FROM FULL DOWN

LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

CALIBRATED AIRSPEED ~ KNOTS

53
Figure No. 27
Control Positions in Level Flight
UH-1B USA S/N 60-3589
Armament Configuration
Both Pods Fully Loaded

H_0 \ 5000 \text{ ft.}
RPM \ 324
C_{T\text{avg.}} \ 0.04066

AVG. G. W. \ 7040 \text{ lb}
AVG. C.G. \ 130.5 \text{ in.}
XM-21 Kit

Lateral Stick Travel 6.50 inches from Neutral
Pedal Travel 3.50 inches from Neutral
Collective Travel 12.2 inches from Full Down
Longitudinal Stick Travel 6.5 inches from Neutral

Calibrated Airspeed ~ Knots
Figure No. 28
Control Positions in Level Flight
UH-1B USA S/N 60-3589
Armament Configuration
Both Poles Fully Loaded

- **H**: 6960 ft.
- **RPM**: 324
- **ε**: AVG 0.04490
- **AVG G. W.**: 7320 lb.
- **AVG C.G.**: 130.7 in.
- **XM-21 KIT**

Lateral Stick Travel
- 6.5 inches from neutral

Pedal Travel
- 3.5 inches from neutral

Collective Stick Travel
- 12.2 inches from full down

Longitudinal Stick Travel
- 6.5 inches from neutral

Calibrated Airspeed ~ Knots

55
Figure No. 29
CONTROL POSITIONS IN LEVEL FLIGHT
UH-1B USA S/N 60-3589
ARMAMENT CONFIGURATION
BOTH PODS FULLY LOADED

HD 5480 FT. AVG G.W. 8380 LB
RPM 324 AVG C.G. 131 0 IN.
CT AVG -004908 XM-21 KIT

LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

PEDAL TRAVEL 3.5 INCHES FROM NEUTRAL

COLLECTIVE TRAVEL 12.2 INCHES FROM FULL DOWN

LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

CALIBRATED AIRSPEED ~ KNOTS
Figure No. 30
Static Longitudinal Speed Stability
UH-1B USA S/N 60-3589
Armament Configuration
Level Flight

<table>
<thead>
<tr>
<th>Sym</th>
<th>Trim CAS</th>
<th>Avg H</th>
<th>Avg W</th>
<th>Avg CG</th>
<th>RPM</th>
<th>Armament Config.</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>380</td>
<td>4820</td>
<td>7230</td>
<td>1272</td>
<td>324</td>
<td>XM-21 BOTH PODS FULL</td>
</tr>
<tr>
<td>□</td>
<td>520</td>
<td>4760</td>
<td>7635</td>
<td>1257</td>
<td>323</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>◊</td>
<td>480</td>
<td>5160</td>
<td>7580</td>
<td>1253</td>
<td>324</td>
<td>XM-16 BOTH PODS EMPTY</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

Lateral Stick Travel: 6.5 inches from neutral
Pedal Travel: 3.5 inches from neutral
Collective Travel: 12.2 inches from full down
Longitudinal Stick Travel: 6.5 inches from neutral

Calibrated Airspeed: Knots
Figure No. 31

Static Longitudinal Speed Stability

UH-1B USA S/N 60-3589

Armament Configuration

Level Flight

<table>
<thead>
<tr>
<th>Sym</th>
<th>Trim Cas</th>
<th>Avg H</th>
<th>Avg Qm</th>
<th>Avg CG</th>
<th>RPM</th>
<th>Armament Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B50</td>
<td>5150</td>
<td>7155</td>
<td>1270</td>
<td>324</td>
<td>XM-21 Both Pods Full</td>
</tr>
<tr>
<td>0</td>
<td>B40</td>
<td>5250</td>
<td>7550</td>
<td>1257</td>
<td>323</td>
<td>XM-16 Both Pods Full</td>
</tr>
<tr>
<td>0</td>
<td>B60</td>
<td>5650</td>
<td>7525</td>
<td>125.2</td>
<td>324</td>
<td>XM-16 Both Pods Empty</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

Lateral Stick Travel: 6.5 inches from neutral.

Pedal travel: 3.5 inches from neutral. Pedal data (XM-16) not available.

Collective travel: 12.2 inches from full down.

Longitudinal Stick travel: 6.5 inches from neutral.

Calibrated Airspeed ~ Knots
Figure No. 32

Static Longitudinal Speed Stability

UH-1B USA 5/160-3589

Armament Configuration

Level Flight

<table>
<thead>
<tr>
<th>Sym</th>
<th>Trim cms</th>
<th>Avg Hq</th>
<th>Avg Wt</th>
<th>Avg CG</th>
<th>KPM</th>
<th>Armament Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0</td>
<td>2.30</td>
<td>7060</td>
<td>126.8</td>
<td>324</td>
<td>XM-21 Both pods full</td>
</tr>
<tr>
<td>1</td>
<td>96.0</td>
<td>4.80</td>
<td>7330</td>
<td>126.6</td>
<td>322</td>
<td>XM-16 Both pods full</td>
</tr>
<tr>
<td>2</td>
<td>96.0</td>
<td>6.020</td>
<td>7465</td>
<td>125.2</td>
<td>324</td>
<td>XM-16 Both pods empty</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

- **Lateral Stick Travel**: 6.5 inches from neutral

- **Pedal Data (XM-1G)** not available

- **Pedal Travel**: 3.5 inches from neutral

- **Collective Travel**: 12.2 inches from full down

- **Longitudinal Stick Travel**: 6.5 inches from neutral

Calibrated Airspeed ~ Knots
Figure No. J3

Static Longitudinal Speed Stability

UH-1B USA 5/N 60-3589

Armament Configuration

AutoRotation

Sym Trim Cas Avg H0 Avg Gw Avg CG RPM Armament Config

<table>
<thead>
<tr>
<th></th>
<th>54.0</th>
<th>5500</th>
<th>8410</th>
<th>1264</th>
<th>324</th>
<th>XM-21</th>
<th>BOTH PODS FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>56.0</td>
<td>5950</td>
<td>7620</td>
<td>1304</td>
<td>318</td>
<td>XM-16</td>
<td>BOTH PODS FULL</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

Lateral Stick Travel 6.5 inches from neutral

Pedal travel 3.5 inches from neutral

Pedal Data (XM-16) not available

Collective travel 12.2 inches from full down

Longitudinal stick travel 6.5 inches from neutral

Calibrated Airspeed (knots)

60
Figure No. 34
Static Longitudinal Speed Stability
UH-1B USA S/N 60-3589
Armament Configuration

Autorotation

<table>
<thead>
<tr>
<th>SYM</th>
<th>Trim Gas</th>
<th>AVG. H.</th>
<th>AVG. W.</th>
<th>AVG. CG</th>
<th>RPM</th>
<th>Armament Config.</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>83.0</td>
<td>5070</td>
<td>8560</td>
<td>126.5</td>
<td>323</td>
<td>XM-21 Both Pods Full</td>
</tr>
<tr>
<td>Q</td>
<td>86.0</td>
<td>5700</td>
<td>7630</td>
<td>131.2</td>
<td>322</td>
<td>XM-21 Both Pods Full</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition

Lateral Stick Travel 6.5 inches from neutral

Pedal Travel 3.5 inches from neutral

Collective Travel 12.2 inches from full down

Longitudinal Stick Travel 6.5 inches from neutral

Calibrated Airspeed
Figure No. 35
Static Longitudinal Speed Stability
UH-1B USA 3/MGO-3589
Armament Configuration
Partial Power Descent (100 ft/min)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>38.0</td>
<td>44.0</td>
<td>76.85</td>
<td>128.2</td>
<td>324</td>
<td>XM-16 RT. Pod Only</td>
</tr>
<tr>
<td>O</td>
<td>37.0</td>
<td>55.0</td>
<td>76.75</td>
<td>125.5</td>
<td>324</td>
<td>XM-16 Both Pods Empty</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition:

- XM-16 (Both Pods Empty)
- XM-16 (RT. Pod Only)

Lateral Stick Travel 6.5 Inches from Neutral

Pedal Data Not Available

Collective Travel 12.2 Inches from Full Down

Longitudinal Stick Travel 6.5 Inches from Neutral

Calibrated Airspeed ~ Knots

62
Figure No. 36

Static Longitudinal Speed Stability

UM-1B USA 51/60-3589

Armament Configuration

Partial Power Descent (400 ft/min.)

<table>
<thead>
<tr>
<th>Trim Cal</th>
<th>Avg H</th>
<th>Avg G.M.</th>
<th>Avg C.G.</th>
<th>RPM</th>
<th>Armament Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>-480</td>
<td>5540</td>
<td>7415</td>
<td>126.1</td>
<td>324</td>
<td>XM-21 BOTH PODS FULL</td>
</tr>
<tr>
<td>-370</td>
<td>5850</td>
<td>7735</td>
<td>131.0</td>
<td>324</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

Lateral Stick Travel

- XM-21 (BOTH PODS FULL)
- XM-16 (BOTH PODS FULL)

Pedal Travel

- 3.5 inches from neutral
- Pedal data (XM-16) NOT AVAILABLE

Collective Travel

- XM-21 (BOTH PODS FULL)
- XM-16 (BOTH PODS FULL)

Longitudinal Stick Travel

- 6.5 inches from neutral

Calibrated Airspeed - Knots

0 20 40 60 80 100 120
Figure No 37
Static Directional Stability
UH-1B USA S/N 60-3589
Armament Configuration
Climb

<table>
<thead>
<tr>
<th>SYM</th>
<th>Trim Cas</th>
<th>Avg. H</th>
<th>Avg. Gw</th>
<th>Avg. Cg</th>
<th>RPM Armament Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>61.0</td>
<td>7420</td>
<td>6995</td>
<td>124.8</td>
<td>322 XM-21 Both pods full</td>
</tr>
<tr>
<td>○</td>
<td>61.0</td>
<td>6610</td>
<td>7315</td>
<td>125.4</td>
<td>322 XM-16 Both pods full</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

Lateral Stick Travel: 6.5 inches from neutral

Pedal Travel: 3.5 inches from neutral

Longitudinal Stick Travel: 6 inches from neutral

Indicated angle of sideslip: -10° to 30°
Figure No. 38
STATIC DIRECTIONAL STABILITY
UH-1B USA S/N 60-3589
ARMAMENT CONFIGURATION
CLIMB

<table>
<thead>
<tr>
<th>SYM TRIM CAS</th>
<th>AVG H</th>
<th>AVG G.W.</th>
<th>AVG CG</th>
<th>RPM</th>
<th>ARMAMENT CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61.0</td>
<td>7420</td>
<td>6995</td>
<td>126.8</td>
<td>322 XM-21 BOTH PODS FULL</td>
</tr>
<tr>
<td>□</td>
<td>61.0</td>
<td>6610</td>
<td>7315</td>
<td>125.6</td>
<td>322 XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

SHADOWED SYMBOLS DENOTE TRIM CONDITION
Figure No. 40

Static Directional Stability

UH-1B USA S/N 60-3589

Armament Configuration

Level Flight

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>87.0</td>
<td>4000</td>
<td>6320</td>
<td>125.5</td>
<td>323</td>
<td>XM-21 Both Pods Full</td>
</tr>
<tr>
<td>□</td>
<td>86.0</td>
<td>5340</td>
<td>7230</td>
<td>125.4</td>
<td>323</td>
<td>XM-1G Both Pods Full</td>
</tr>
<tr>
<td>□</td>
<td>84.0</td>
<td>5270</td>
<td>7385</td>
<td>130.4</td>
<td>323</td>
<td>XM-1G Both Pods Full</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition
Figure No. 41

Static Directional Stability

UH-1B USA S/N GO-5589

Armament Configuration

Level Flight

<table>
<thead>
<tr>
<th>Sym</th>
<th>Trim CAS</th>
<th>Avg H₀</th>
<th>Avg G.W.</th>
<th>Avg CG</th>
<th>RPM</th>
<th>Armament Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>103.0</td>
<td>5000</td>
<td>6920</td>
<td>126.5</td>
<td>322</td>
<td>XM-21 Both Pods Full</td>
</tr>
<tr>
<td>D</td>
<td>96.0</td>
<td>5030</td>
<td>7160</td>
<td>125.2</td>
<td>323</td>
<td>XM-14 Both Pods Full</td>
</tr>
<tr>
<td>D'</td>
<td>93.0</td>
<td>5660</td>
<td>7305</td>
<td>130.3</td>
<td>323</td>
<td>XM-14 Both Pods Full</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

- **Lateral Stick Travel**: 6.5 inches from Neutral
- **Pedal Data**: XM-14 not available. Pedal travel 3.5 inches from Neutral
- **Longitudinal Stick Travel**: 6.5 inches from Neutral

Indicated Angle of Sideslip ~ Degrees
Figure No. 42

Static Directional Stability

UH-1B USA 5/N90-3889

Armament Configuration

Level Flight

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>103.0</td>
<td>5500</td>
<td>6920</td>
<td>126.5</td>
<td>322 XM-21 BOTH PODS FULL</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>96.0</td>
<td>5030</td>
<td>7160</td>
<td>125.2</td>
<td>323 XM-16 BOTH PODS FULL</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>93.0</td>
<td>5660</td>
<td>7305</td>
<td>130.3</td>
<td>323 XM-16 BOTH PODS FULL</td>
<td></td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.
FIGURE No. 43
STATIC Directional Stability
UH-1B USA S/N 60-3589
ARMAMENT CONFIGURATION
LEVEL FLIGHT

<table>
<thead>
<tr>
<th>SYM</th>
<th>TRIM CAS</th>
<th>AVG H</th>
<th>AVG GW</th>
<th>AVG CG</th>
<th>RPM</th>
<th>ARMAMENT CONFIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39.0</td>
<td>4990</td>
<td>7160</td>
<td>127.0</td>
<td>324</td>
<td>XM-2I BOTH PODS FULL</td>
</tr>
<tr>
<td>48.0</td>
<td>5050</td>
<td>7310</td>
<td>125.5</td>
<td>323</td>
<td></td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>47.6</td>
<td>5320</td>
<td>7480</td>
<td>130.5</td>
<td>323</td>
<td></td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.

LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

PEDAL TRAVEL 3.5 INCHES FROM NEUTRAL PEDAL DATA (XM-16) NOT AVAILABLE.

LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL
Figure No. 44
Static Directional Stability
UH-1B USA S/N 60-3589
Armament Configuration
Level Flight

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39.0</td>
<td>4890</td>
<td>7160</td>
<td>12.7</td>
<td>9324 XM-21 BOTH POS FULL</td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>5030</td>
<td>7310</td>
<td>125.5</td>
<td>323 XM-16 BOTH POS FULL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.0</td>
<td>5320</td>
<td>7480</td>
<td>130.5</td>
<td>323 XM-16 BOTH POS FULL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition.
FIGURE No. 45
STATIC DIRECTIONAL STABILITY
UH-1B USA SINGO-3509
ARMAMENT CONFIGURATION
AUTO ROTATION

<table>
<thead>
<tr>
<th>SYM</th>
<th>TRIM CAS</th>
<th>AVG. H.</th>
<th>AVG. W.</th>
<th>AVG. CG.</th>
<th>RPM</th>
<th>ARMAMENT CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55.0</td>
<td>6100</td>
<td>6945</td>
<td>126.7</td>
<td>306</td>
<td>XM-21 BOTH PODS FULL</td>
</tr>
<tr>
<td>0</td>
<td>55.0</td>
<td>6190</td>
<td>7265</td>
<td>125.5</td>
<td>324</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

SHADeD SYMBOlS DENote TRIM CONDITION

LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

PEDAL TRAVEL 3.5 INCHES FROM NEUTRAL. PEDAL DATA (XM-16) NOT AVAILABLE.

LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

INDICATED ANGLE OF SIDESLIP ~ DEGREES
Figure No. 46
Static Directional Stability
UH-1B USA S/N 60-3589
Armament Configuration
Autorotation

<table>
<thead>
<tr>
<th>SYM</th>
<th>TRIM CAS AVG. H_d</th>
<th>AVG. G.W. AVG. CG RPM ARMAMENT CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>55.0</td>
<td>6100</td>
</tr>
<tr>
<td></td>
<td>69.45</td>
<td>126.7</td>
</tr>
<tr>
<td></td>
<td>30G XM-21 Both pods full</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>55.0</td>
<td>6190</td>
</tr>
<tr>
<td></td>
<td>7265</td>
<td>125.5</td>
</tr>
<tr>
<td></td>
<td>324 XM-16 Both pods full</td>
<td></td>
</tr>
</tbody>
</table>

Shaded symbols denote trim condition
FIGURE NO. 47

CONTROL POSITION IN SIDeward FLIGHT

UH-1B USAF 5/460-3589

ARMAMENT CONFIGURATION

IN GROUND EFFECT

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG. H_o</th>
<th>AVG. GW.</th>
<th>AVG CG</th>
<th>RPM</th>
<th>ARMAMENT CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3740</td>
<td>724E</td>
<td>125.6</td>
<td>324</td>
<td>XM-16 BOTH PODS FULLY LOADED</td>
</tr>
</tbody>
</table>
| D | 3520 | 6895 | 125.2 | 324 | XM-16 RT. POD FULLY LOADED /
| | | | | | LEFT POD REMOVED |

LATERAL STICK POSI TION INCHES FROM NEUTRAL

- BOTH PODS FULLY LOADED
- RIGHT POD FULLY LOADED / LEFT POD REMOVED
- LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL REMOVED

PEDAL POSITION INCHES FROM NEUTRAL

PEDAL DATA NOT AVAILABLE

COLLECTIVE STICK POSITION INCHES FROM FULL DOWN

- RIGHT POD FULLY LOADED / LEFT POD REMOVED
- COLLECTIVE TRAVEL 12.2 INCHES FROM FULL DOWN

LONGITUDINAL STICK POSITION INCHES FROM NEUTRAL

- BOTH PODS FULLY LOADED
- LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL
Figure No. 48
CONTROL POSITION IN REARWARD FLIGHT
UH-1B USA S/N 60-3589
ARMAMENT CONFIGURATION

IN GROUND EFFECT

<table>
<thead>
<tr>
<th>ARMAMENT CONFIG.</th>
<th>BOTH PODS FULLY LOADED</th>
<th>RT. POD FULLY LOADED</th>
<th>LEFT POD REMOVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N 60-3589</td>
<td>3740</td>
<td>1246</td>
<td>125.6</td>
</tr>
<tr>
<td></td>
<td>6895</td>
<td>125.2</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XM-16</td>
<td></td>
</tr>
</tbody>
</table>

LATERAL STICK POSITION INCHES FROM NEUTRAL

- BOTH PODS FULLY LOADED
- RIGHT POD FULLY LOADED
- LEFT POD REMOVED

LATERAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

PEDAL DATA NOT AVAILABLE

COLLECTIVE STICK POSITION INCHES FROM FULL DOWN

- BOTH PODS FULLY LOADED
- RIGHT POD FULLY LOADED
- LEFT POD REMOVED

COLLECTIVE TRAVEL 12.2 INCHES FROM FULL DOWN

LONGITUDINAL STICK POSITION INCHES FROM NEUTRAL

- BOTH PODS FULLY LOADED
- RIGHT POD FULLY LOADED
- LEFT POD REMOVED

LONGITUDINAL STICK TRAVEL 6.5 INCHES FROM NEUTRAL

TRUE AIRSPEED KNOTS

75
FIGURE NO. 49
AFT LONGITUDINAL PULSE
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 PODS FULLY LOADED
FULL LONGITUDINAL TRAVEL: 13.0 INCHES

AVERAGE GROSS WT
LONGITUDINAL C.G. L
FLIGHT CONDITIONS:
TRIM CAS: 95.5 KTS,
DENSITY ALTITUDE:
ROTOR SPEED: 321 RPS

AVERAGE GROSS WT
LONGITUDINAL C.G. L
FLIGHT CONDITIONS:
TRIM CAS: 95.5 KTS,
DENSITY ALTITUDE:
ROTOR SPEED: 324 RPS
AVERAGE GROSS WEIGHT: 7180 LBS.
LONGITUDINAL C.G. LOCATION: 131.2 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 95.5 KTS.
DENSITY ALTITUDE: 5120 FEET
ROTOR SPEED: 324 RPM

ROLL
PITCH
YAW ANGULAR ACCELERATION INOPERATIVE
ROLL

TIME ~ SECONDS
FIGURE NO. 50
AFT LONGITUDINAL PULSE
UH-1B, U.S.A., S/N60-3589
ARMAMENT: XM-21 PODS FULLY LOADED
FULL LONGITUDINAL TRAVEL: 13.0 INCHES

AVERAGE GROSS
LONGITUDINAL C.G.
FLIGHT CONDITION
TRIM C.A.S. 843 K.
DENSITY ALTITUDE
ROTOR SPEED: 32

TIME ~ SECONDS
AVERAGE GROSS WEIGHT: 6680 LBS
LONGITUDINAL C.G. LOCATION: 130.6 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 84.3 KTS.
DENSITY ALTITUDE: 4850 FEET
ROTOR SPEED: 324 RPM

<table>
<thead>
<tr>
<th>TIME ~ SECONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

ROLL	PITCH	YAW	ANGULAR ACCELERATION INOPERATIVE
ROLL | PITCH | YAW |
--- | --- | ---
FIGURE NO. 51
LEFT LATERAL PULSE
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 PODS FULLY LOADED
FULL LATERAL TRAVEL: 13.0 INCHES

AVERAGE GROSS
LONGITUDINAL C.G.
FLIGHT CONDITION
TRIM C.A.S.: 98.5 K
DENSITY ALTITUDE
ROTOR SPEED: 32
AVERAGE GROSS WEIGHT: 7180 LBS
LONGITUDINAL C.G. LOCATION: 131.2 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 955 KTS.
DENSITY ALTITUDE: 5120 FEET
ROTOR SPEED: 324 RPM
FIGURE NO. 52
RIGHT LATERAL PULSE
UH-IB, U.S.A., S/N 60-3589
ARMAMENT: XM-21 PODS FULLY LOADED
FULL LATERAL TRAVEL: 13.0 INCHES
AVERAGE GROSS LONGITUDINAL C.G.
FLIGHT CONDITION: TURB/CAS: 85 K
DENSITY ALTITUDE: 3,400 FT
ROTOR SPEED: 640 RPM

LATITUDE STICK POSITION
~ IN. FROM NEUTRAL

ANGLE OF PITCH, ROLL, AND YAW
~ DEGREES

RATE OF PITCH, ROLL, AND YAW
~ DEGREES/SEC.

PITCH AND ROLL ANGULAR ACCELERATION
~ DEGREES/SEC. 2

LATITUDE

<table>
<thead>
<tr>
<th>TIME ~ SECONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>-----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LT</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PITCH UP</th>
<th>ROLL</th>
<th>YAW</th>
<th>PITCH DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PITCH UP</th>
<th>ROLL</th>
<th>YAW</th>
<th>PITCH DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
AVERAGE GROSS WEIGHT: 6680 LBS.
LONGITUDINAL C.G. LOCATION: 130.6 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 85.4 KTS.
DENSITY ALTITUDE: 4920 FEET
ROTOR SPEED: 324 RPM
FIGURE NO. 53
RIGHT PEDAL PULSE
UH-1B, U.S.A., S/N 60-3589
ARMAMENT XM-16 PODS FULLY LOADED
FULL PEDAL TRAVEL: 70 INCHES

AVERAGE GROSS LONGITUDINAL FLIGHT CONDITION
TRIM CAS 95 DENSITY ALTITUDE
ROTOR SPEED

PEDAL POSITION - IN. FROM TRIM

ANGLE OF PITCH, ROLL, AND YAW - DEGREES

RATE OF PITCH, ROLL, AND YAW - DEGREES/SEC.

PITCH AND ROLL ANGULAR ACCELERATION - DEGREES/SEC.2

0 1 2 3 4 5 6 7 TIME - SECONDS
AVERAGE GROSS WEIGHT: 7,800 LBS.
LONGITUDINAL C.G. LOCATION: 131.2 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM CAS: 955 KTS
DENSITY ALTITUDE: 5,120 FEET
ROTOR SPEED: 324 RPM
FIGURE NO. 54
RIGHT PEDAL PULSE
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-21 PODS FULLY LOADED
FULL PEDAL TRAVEL: 7.0 INCHES

ROTOR SPEED: 325
AVERAGE GROSS
LONGITUDINAL C.G.
FLIGHT CONDITIONS
TRIM C.A.S.: 86.3 K
DENSITY ALTITUDE
ROTOR SPEED: 323.7 R.P.M.
AVERAGE GROSS WEIGHT: 7080 LBS.
LONGITUDINAL C.G. LOCATION: 130.9 IN
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 86.3 KTS.
DENSITY ALTITUDE: 4930 FEET
Figure No. 55

Summary of Control Sensitivity

UH-1B USA S/N60-3589

<table>
<thead>
<tr>
<th>ARMAMENT CONFIGURATION</th>
<th>SYM</th>
<th>CAS</th>
<th>AVG. W</th>
<th>AVG. CG</th>
<th>AVG. H</th>
<th>RPM</th>
<th>ARMAMENT CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>98</td>
<td>7080</td>
<td>131.2</td>
<td>5140</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>68</td>
<td>6915</td>
<td>130.9</td>
<td>5490</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td></td>
<td>△</td>
<td>95</td>
<td>6745</td>
<td>130.5</td>
<td>5590</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

Level Flight

Note: Plain symbols denote right or aft.

Shaded symbols denote left or forward.

Control Sensitivity ~ Deg/sec/N

Lateral Stick Control Longitudinal Stick Control

Pedal Control

Calibrated Airspeed ~ Knots

82
Figure No. 56
Summary of Control Response
UH-1B USA S/N 60-3589

Armament Configuration

<table>
<thead>
<tr>
<th>Sym</th>
<th>CAS</th>
<th>Avg.G.M.</th>
<th>Avg.CG</th>
<th>Avg.H.</th>
<th>RPM</th>
<th>Armament Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48</td>
<td>7020</td>
<td>135.2</td>
<td>5140</td>
<td>325</td>
<td>XM-16 Both Pods Full</td>
</tr>
<tr>
<td>□</td>
<td>48</td>
<td>6918</td>
<td>130.9</td>
<td>5490</td>
<td>325</td>
<td>XM-16 Both Pods Full</td>
</tr>
<tr>
<td>△</td>
<td>45</td>
<td>6745</td>
<td>130.5</td>
<td>5590</td>
<td>325</td>
<td>XM-16 Both Pods Full</td>
</tr>
</tbody>
</table>

Level Flight

Note: Plain symbols denote right or aft.
Shaded symbols denote left or forward.

Control Response ~ deg./sec./in.
Lateral Stick Control

Control Response ~ deg./sec./in.
Longitudinal Stick Control

Pedal Control

Calibrated Airspeed ~ Knots
Figure No 57

Longitudinal Controllability
UH-1B USA S/N 60-5589

<table>
<thead>
<tr>
<th>SYM</th>
<th>CAS</th>
<th>AVG W</th>
<th>AVG CG</th>
<th>AVG H₀</th>
<th>RPM</th>
<th>ARMAMENT CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48</td>
<td>7080</td>
<td>131.2</td>
<td>5140</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>□</td>
<td>68</td>
<td>6915</td>
<td>130.9</td>
<td>5490</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>△</td>
<td>95</td>
<td>6745</td>
<td>130.5</td>
<td>5990</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

NOTE:
- **Maximum Angular Acceleration** reached in 0.5 seconds
- **Maximum Angular Velocity** reached in 1.5 seconds

Longitudinal Control Sensitivity

Longitudinal Control Response

Longitudinal Control Displacement from Trim ~ Inches
Figure No. 58
LATERAL CONTROLLABILITY
UH-1B USA 516560-5599
ARMAMENT CONFIGURATION

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CAS</th>
<th>AVG. GW</th>
<th>AVG. CG</th>
<th>AVG. H</th>
<th>RPM</th>
<th>ARMAMENT</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48</td>
<td>7080</td>
<td>131.2</td>
<td>5140</td>
<td>325</td>
<td>XM-16</td>
<td>BOTH PODS FULL</td>
</tr>
<tr>
<td>□</td>
<td>68</td>
<td>6915</td>
<td>130.9</td>
<td>5490</td>
<td>325</td>
<td>XM-16</td>
<td>BOTH PODS FULL</td>
</tr>
<tr>
<td>△</td>
<td>45</td>
<td>6745</td>
<td>130.5</td>
<td>5590</td>
<td>325</td>
<td>XM-16</td>
<td>BOTH PODS FULL</td>
</tr>
</tbody>
</table>

LATERAL CONTROL SENSITIVITY

MAXIMUM ANGULAR ACCELERATION IN ROLL ~ DEG./SEC./SEC.

NOTE:
MAXIMUM ANGULAR ACCELERATION REACHED IN 0.4 SECONDS

LATERAL CONTROL RESPONSE

MAXIMUM RATE OF ROLL ~ DEG./SEC.

NOTE:
MAXIMUM ANGULAR VELOCITY REACHED IN 1.2 SECONDS

LATERAL CONTROL DISPLACEMENT FROM TRIM ~ INCHES
Figure No. 59
Directional Controllability
UH-1B USA SINGO-3589

Armament Configuration

<table>
<thead>
<tr>
<th>SYM</th>
<th>CAS</th>
<th>AVG.GN.</th>
<th>AVG.CG</th>
<th>AVG.H9</th>
<th>RPM</th>
<th>Armament Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48</td>
<td>7080</td>
<td>1312</td>
<td>5140</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>□</td>
<td>68</td>
<td>6915</td>
<td>1309</td>
<td>5990</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>△</td>
<td>95</td>
<td>6745</td>
<td>1305</td>
<td>5590</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

Note:
Maximum angular velocity reached in 0.9 seconds.

Directional Control Response
Figure No. 60
Directional Controllability
UH-1B USA S/N 3569
Armament Configuration

<table>
<thead>
<tr>
<th>Sym</th>
<th>CAS</th>
<th>AVG G.W.</th>
<th>AVG CG</th>
<th>AVG H.D</th>
<th>RPM</th>
<th>Armament Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48</td>
<td>7080</td>
<td>131.2</td>
<td>5140</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>□</td>
<td>68</td>
<td>6415</td>
<td>139.9</td>
<td>5490</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
<tr>
<td>△</td>
<td>95</td>
<td>6745</td>
<td>150.5</td>
<td>5240</td>
<td>325</td>
<td>XM-16 BOTH PODS FULL</td>
</tr>
</tbody>
</table>

Directional Control Sensitivity

Note:
Maximum Angular Acceleration reached in 0.6 sec.

Max. Angular Acceleration

All Airspeeds

Directional Control Displacement
From Trim ~ Inches

87
FIGURE NO. 61
FWD. LONGITUDINAL STEP
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16

AVG. G.W. LONG. C.G. COND. TRIM C.A.S. H0 R.P.M.
7125 LBS 151.1 IN. LEVEL FLT. 47.5 KTS. 6170 FT. 324

PITCH AND ROLL ANGULAR ACCELERATION
~ DEGREES/SEC.

RATE OF PITCH, ROLL, AND YAW ANGULAR ACCELERATION
~ DEGREES/SEC.

ANGLE OF PITCH, ROLL, AND YAW
~ DEGREES

LONG. STICK POSITION ~ IN. FROM NEUTRAL

FULL LONGITUDINAL TRAVEL: 13.0 INCHES

TIME ~ SECONDS

AVG. G.W. LONG. C.G. COND. TRIM C.A.S. H0 R.P.M.
7125 LBS 151.1 IN. LEVEL FLT. 47.5 KTS. 6170 FT. 324
LEFT LATERAL STEP

UH-1B, USA. S/N 60-3589

ARMAMENT: XM-16

AVG. G.W. 7125 LBS.

LONG C.G. COND. 131.1 IN. LEVEL FLT. 47.5 KTS

TRIM C.A.S. 170FT. 32°F

R.P.M.

FIGURE NO. 62

FULL LATERAL TRAVEL: 13.0 INCHES

TIME ~ SECONDS

LAT. STICK

POSITION

IN FROM NEUTRAL

ANGLE OF PITCH, ROLL, AND YAW

DEGREES

RATE OF PITCH, ROLL, AND YAW

DEGREES/SEC.

PITCH AND ROLL

ANGULAR ACCELERATION

DEGREES/SEC.²

YAW ANGULAR ACCELERATION INOPERATIVE

PITCH

ROLL

YAW

FULL LATERAL TRAVEL: 13.0 INCHES

TIME ~ SECONDS
FIGURE NO. 63
LEFT PEDAL STEP
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16
AVG. G.W. LONG C.G. COND. TRIM CAS. H. R.P.M.
7125 LBS. 131 IN. LEVEL FLT. 47.5 KTS. 5170 FT 324

PITCH AND ROLL ANGULAR ACCELERATION IN DEGREE/S/SEC.

RATE OF PITCH, ROLL, AND YAW DEGREE/SEC.

ANGLE OF PITCH, ROLL, AND YAW DEGREES

PEDAL POSITION IN FROM TRIM IN INCHES

FULL PEDAL TRAVEL: 7.0 INCHES

TIME ~ SECONDS
Figure No. 64

Vibration Characteristics

UH-1B USAF/N60-3589

<table>
<thead>
<tr>
<th>SYM</th>
<th>G.W.-LB</th>
<th>H. V.</th>
<th>RPM</th>
<th>Frequency</th>
<th>C.G. Armament</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>7320</td>
<td>6600</td>
<td>324</td>
<td>5.4</td>
<td>130.7 XM-21 (Non-Firing)</td>
</tr>
<tr>
<td>2</td>
<td>7210</td>
<td>5740</td>
<td>324</td>
<td>5.4</td>
<td>124.1 XM-21 (Firing)</td>
</tr>
<tr>
<td>3</td>
<td>7245</td>
<td>5240</td>
<td>318</td>
<td>5.3</td>
<td>131.2 XM-16 (Non-Firing)</td>
</tr>
<tr>
<td>5</td>
<td>7050</td>
<td>6100</td>
<td>324</td>
<td>5.3</td>
<td>128.3 XM-16 (Firing)</td>
</tr>
<tr>
<td>A</td>
<td>7290</td>
<td>4930</td>
<td>318</td>
<td>5.3</td>
<td>129.8 Clean</td>
</tr>
<tr>
<td>D</td>
<td>7040</td>
<td>5000</td>
<td>324</td>
<td>5.4</td>
<td>130.5 XM-21 (Non-Firing)</td>
</tr>
</tbody>
</table>

XM-21 Armament

- Vertical F.S. = 115 inches Right B.L. = 11.5 inches
- Lateral F.S. = 114 inches Right B.L. = 8.5 inches

XM-16 Armament

- Vertical F.S. = 115 inches Right B.L. = 11.5 inches
- Lateral F.S. = 114 inches Right B.L. = 8.5 inches

Calibrated Airspeed ~ Knots
Vibration Characteristics

Figure No. 65

UH-1B USAF SN 60-3589

<table>
<thead>
<tr>
<th>Sym</th>
<th>G.W.</th>
<th>H_{0}</th>
<th>RPM</th>
<th>Frequency</th>
<th>C.G.</th>
<th>Armament</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>7520</td>
<td>6600</td>
<td>324</td>
<td>10.8</td>
<td>136.4</td>
<td>XM-21 (Non-Firing)</td>
</tr>
<tr>
<td>○</td>
<td>7210</td>
<td>5740</td>
<td>324</td>
<td>10.6</td>
<td>126.1</td>
<td>X-21 (Firing)</td>
</tr>
<tr>
<td>□</td>
<td>7245</td>
<td>5240</td>
<td>318</td>
<td>10.6</td>
<td>131.2</td>
<td>XM-16 (Non-Firing)</td>
</tr>
<tr>
<td>□</td>
<td>7050</td>
<td>6100</td>
<td>324</td>
<td>10.8</td>
<td>128.3</td>
<td>XM-16 (Firing)</td>
</tr>
<tr>
<td>△</td>
<td>7210</td>
<td>4930</td>
<td>318</td>
<td>10.6</td>
<td>124.8</td>
<td>(Clean)</td>
</tr>
<tr>
<td>△</td>
<td>7040</td>
<td>5000</td>
<td>324</td>
<td>10.8</td>
<td>130.5</td>
<td>XM-21 (Non-Firing)</td>
</tr>
</tbody>
</table>

XM-21 Armament

- **Vertical F.S.: 115 Inches** Right B.L.: 11.5 Inches
- **Lateral F.S.: 114 Inches** Right B.L.: 8.5 Inches

XM-16 Armament

- **Vertical F.S.: 115 Inches** Right B.L.: 11.5 Inches
- **Lateral F.S.: 114 Inches** Right B.L.: 8.5 Inches

Calibrated Airspeed ~ Knots

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
</table>
Figure No. 66
Vibration Characteristics
US Army S/N GO-3589

<table>
<thead>
<tr>
<th>Sym.</th>
<th>G.W. + Lb.</th>
<th>Hg. + Ft.</th>
<th>RPM</th>
<th>Frequency</th>
<th>C.G. Armament</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>7320</td>
<td>6600</td>
<td>324</td>
<td>216</td>
<td>1807 XM-21 (NON-FIRING)</td>
</tr>
<tr>
<td>O</td>
<td>7210</td>
<td>5740</td>
<td>324</td>
<td>216</td>
<td>1261 XM-21 (FIRING)</td>
</tr>
<tr>
<td>□</td>
<td>7245</td>
<td>5240</td>
<td>318</td>
<td>212</td>
<td>1312 XM-16 (NON-FIRING)</td>
</tr>
<tr>
<td>□</td>
<td>7050</td>
<td>6100</td>
<td>324</td>
<td>216</td>
<td>1283 XM-16 (FIRING)</td>
</tr>
<tr>
<td>△</td>
<td>7290</td>
<td>4930</td>
<td>318</td>
<td>212</td>
<td>1298 (CLEAN)</td>
</tr>
<tr>
<td>△</td>
<td>7040</td>
<td>5000</td>
<td>324</td>
<td>216</td>
<td>1305 XM-21 (NON-FIRING)</td>
</tr>
</tbody>
</table>

Vertical F.S. + 1/15 Inches Right B.L. = 11 1/2 Inches

Lateral F.S. + 1/4 Inches Right B.L. = 8 1/2 Inches

Calibrated Airspeed ~ Knots
FIGURE NO. 67
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 GUNS
CONFIGURATION: BOTH GUNS, ELEV. DOWN, TRAVERSE: ZERO

AVERAGE GROUND
LONGITUDINAL
FLIGHT CONDITIONS
DENSITY ALTITUDE
ROTOR SPEED

ANGLE OF PITCH, ROLL, AND YAW
ACCELERATION, DEGREES/SEC.²

RATE OF PITCH, ROLL, AND YAW
ACCELERATION, DEGREES/SEC.²

CONTROL POSITION
IN FROM NEUTRAL

LAT. LONG. STICKS AT
PEDAL AT

TIME — SEC. 0

FIRING
AVERAGE GROSS WEIGHT: 7120 LBS.
LONGITUDINAL C.G. LOCATION: 128.2 IN.
FLIGHT CONDITIONS: HOVER (I.C.E.)
DENSITY ALTITUDE: 5990 FEET
ROTOR SPEED: 324 RPM

\[\text{AVERSE: ZERO} \]

\[\text{ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE} \]

\[\text{PEDAL DATA (AXM.14) NOT AVAILABLE} \]

\[\text{TIME \sim SECONDS} \]
FIGURE NO. G8
TIME HISTORY OF WEAPONS FIRING
UH-IB, U.S.A., S/N 60-3589
ARMAMENT: XM-16 GUNS
CONFIGURATION: BOTH GUNS, ELEV: UP, TRAVERSE: ZERO

ANGLE OF PITCH, ROLL, AND YAW DEGREES

PITCH ANGULAR ACCELERATION DEGREES/SEC.

RATE OF PITCH, ROLL, AND YAW DEGREES/SEC.

CONTROL POSITION IN NEUTRAL

LAT. & LONG. STICKS FT.

PEDAL FT.

TIME - SECONDS

AVERAGE GROSS LONGITUDINAL C.G. FLIGHT CONDITION
DENSITY ALTITUDE
ROTOR SPEED: 3...
AVERAGE GROSS WEIGHT: 7120 LBS.
LONGITUDINAL C.G. LOCATION: 128.2 IN.
FLIGHT CONDITIONS: HOVER (I.G.E.)
DENSITY ALTITUDE: 5990 FEET
ROTOR SPEED: 324 RPM

YAW
ROLL
PITCH

* ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

* PEDAL DATA (KM-16) NOT AVAILABLE

TIME ~ SECONDS
4 5 6 7 8 9 10 11 12 95
FIGURE NO. 69
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-21 GUNS
CONFIGURATION: BOTH GUNS, ELEV. DOWN, TRAVERSE: ZERO

AVERAGE GROSS
LONGITUDINAL C.G.
FLIGHT CONDITION
DENSITY ALTITUDE
ROTOR SPEED 32
AVERAGE GROSS WEIGHT: 7280 LBS.
LONGITUDINAL C.G. LOCATION: 126.0 IN.
FLIGHT CONDITIONS: HOVER
DENSITY ALTITUDE: 5740 FEET
ROTOR SPEED: 324 RPM

TRAVERSE: ZERO

FIRING

ROLL
PITCH

* YAW ANGLE INOPERATIVE

* YAW ANGULAR ACCELERATION INOPERATIVE

ROLL
PITCH

LONG STICK

LAT. STICK
PEDAL

TIME ~ SECONDS
FIGURE NO. 70
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-21 GUNS
CONFIGURATION: BOTH GUNS, ELEV.: ZERO, TRAVERSE: RIGHT

AVERAGE GROSS LONGITUDINAL.
FLIGHT CONDITION.
DENSITY ALTITUDE
ROTOR SPEED: 3
AVERAGE GROSS WEIGHT: 7280 LBS.
LONGITUDINAL C.G LOCATION: 126.0 IN
FLIGHT CONDITIONS: HOVER
DEP-HTY ALTITUDE: 5740 FEET
ROTOR SPEED: 324 RPM

TRAVEL: RIGHT

- Firing

- Firing

YAW ANGLE INOPERATIVE

YAW ANGULAR ACCELERATION INOPERATIVE

LONG STICK

LAT. STICK

PEDAL

TIME ~ SECONDS
FIGURE NO.71
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-21 GUNS
CONFIGURATION: BOTH GUNS, ELEV. DWN., TRAVERSE ZERO

AVERAGE GROSS WE
LONGITUDINAL C.G.
FLIGHT CONDITIONS
TRIM C.A.S.: 94.5 KT
DENSITY ALTITUDE:
ROTOR SPEED: 324
AVERAGE GROSS WEIGHT 7210 LBS
LONGITUDINAL C.G LOCATION 125.8 IN
FLIGHT CONDITIONS LEVEL FLIGHT
TRIM CAS : 94.5 KTS.
DENSITY ALTITUDE: 5740 FEET
ROTOR SPEED: 324 RPM

TIME ~ SECONDS
FIGURE NO. 72

TIME HISTORY OF WEAPONS FIRING

UH-1S, U.S.A., S/N 60-3589
ARMAMENT: XM-21 GUNS
CONFIGURATION: BOTH GUNS, ELEV. ZERO, TRAVERSE: RIGHT

AVERAGE GRED
LONGITUDINAL FLIGHT COND.
TRIM CASES -
DENSITY ALT.
ROTOR SPEED

ANGLE OF PITCH,
RIDE AND ROLL
RONGH AND YAW

RATE OF PITCH,
ROLL AND YAW
ANGULAR ACCELERATION
DEGREES/SEC.

CONTROL
POSITION
FROM NEUTRAL

LONG STICKS

PROLATE & LONG STICKS

TIME ~ SEC.
AVERAGE GROSS WEIGHT: 7210 LBS.
LONGITUDINAL C.G. LOCATION: 125.8 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S. 94.5 KTS.
DENSITY ALTITUDE: 5740 FEET
ROTOR SPEED: 324 RPM

RAVERSE: RIGHT

- YAW ANGLE INOPERATIVE
- YAW ANGULAR ACCELERATION INOPERATIVE

ROLL
PITCH

PEDAL
LAT BYICK
LONG. STICK

TIME ~ SECONDS
FIGURE NO. 73
TIME HISTORY OF WEAPONS FIRING

UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 ROCKETS
CONFIGURATION: BOTH PODS, 14 ROCKETS

AVERAGE GROSS WE
LONGITUDINAL C.G.
FLIGHT CONDITIONS
DENSITY ALTITUDE:
ROTOR SPEED: 324
AVERAGE GROSS WEIGHT: 7380 LBS.
LONGITUDINAL C.G. LOCATION: 129.9 IN
FLIGHT CONDITIONS: HOVER (1 GE)
DENSITY ALTITUDE: 5990 FEET
ROTOR SPEED: 324 RPM

ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

AL DATA (XM-16) NOT AVAILABLE

TIME ~ SECONDS
FIGURE NO. 74

TIME HISTORY OF WEAPONS FIRING

UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 ROCKETS
CONFIGURATION: BOTH PODS, 14 ROCKETS

AVERAGE GROSS
LONGITUDINAL G.F.
FLIGHT CONDITION
TRIM C.A.S.: 610
DENSITY ALTITUDE
ROTOR SPEED: 32
AVERAGE GROSS WEIGHT: 7150 LBS.
LONGITUDINAL C.G. LOCATION: 128.3 IN.
FLIGHT CONDITIONS: CLIMB
TRIM C.A.S.: 610 KTS.
DENSITY ALTITUDE: 6290 FEET
ROTOR SPEED: 324 RPM

ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

PEDAL DATA (KM-14) NOT AVAILABLE

TIME ~ SECONDS
FIGURE NO.75
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT XM-16 ROCKETS
CONFIGURATION: BOTH PODS, 14 ROCKETS

AVERAGE GROSS
LONGITUDINAL C.G.
FLIGHT CONDITION
TRIM C.A.S.: 99.6
DENSITY ALTITUDE
ROTOR SPEED:

ANGLE OF PITCH, ROLL, AND YAW

PITCH ANGULAR ACCELERATION

RATE OF PITCH, ROLL, AND YAW

CONTROL POSITION IN FROM NEUTRAL

L.H. L.A.T. & LONG STICKS, FT.

PEDAL D.A.T.

TIME ~ SECONDS
AVERAGE GROSS WEIGHT: 7025 LBS.
LONGITUDINAL C.G. LOCATION: 128.1 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 99.0 KTS.
DENSITY ALTITUDE: 6100 FEET
ROTOR SPEED: 324 RPM

ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

PEDEL DATA (GM-22) NOT AVAILABLE

LAT STICK

LONG STICK

TIME ~ SECONDS
FIGURE NO. 76
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 ROCKETS
CONFIGURATION: BOTH PODS, 14 ROCKETS

AVERAGE GROSS WEIGHT
LONGITUDINAL C.G.
FLIGHT CONDITION
TRIM C.A.S.: 84.5
DENSITY ALTITUDE
ROTOR SPEED: 92
AVERAGE GROSS WEIGHT: 7350 LBS
LONGITUDINAL C.G. LOCATION: 128.5 IN
FLIGHT CONDITIONS: 10° RIGHT SIDESLIP
TRIM C.A.S.: 84.5 KTS.
DENSITY ALTITUDE: 5840 FEET
ROTOR SPEED: 324 RPM

ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

PEDAL DATA (XM-16) NOT AVAILABLE

TIME ~ SECONDS
FIGURE NO. 77
TIME HISTORY OF WEAPONS FIRING
UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-16 ROCKETS
CONFIGURATION: BOTH PODS, 14 ROCKETS

AVERAGE JROL:
LONGITUDINAL FLIGHT CONDIT
TRIM C.A.S.: 8°
DENSITY ALTIT
ROTOR SPEED

ANGLE OF PITCH,
ROLL, AND YAW

PITCH ANGULAR
ACCELERATION

RATE OF PITCH,
ROLL, AND YAW

CONTROL
POSITION

V IN. FROM NEUTRAL

1° LAT. & LONG. STICKS

FIRING

ROLL AND YAW AN

TIME ~ SECO

0 1 2 3 4 5 6
AVERAGE GROSS WEIGHT: 7385 LBS.
LONGITUDINAL C.G. LOCATION: 128.5 IN.
FLIGHT CONDITIONS: AUTOROTATION @ MAX. R/D
TRIM C.A.S.: 89.5 KTS.
DENSITY ALTITUDE: 6000 FEET
ROTOR SPEED: 324 RPM

ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

TIME ~ SECONDS
FIGURE NO. 7B
TIME HISTORY OF WEAPONS FIRING
UH-1E, U.S.A., S/N 60-3589
ARMAMENT: XM-21 ROCKETS
CONFIGURATION: RIGHT POD ONLY, 7 ROCKETS

AVERAGE GROSS WEIGHT
LONGITUDINAL C.G.
FLIGHT CONDITIONS
DENSITY ALTITUDE
ROTOR SPEED 324

ANGLE OF PITCH
ROLL AND YAW
DEGREES

PITCH ANGULAR
ACCELERATION
DEGREES/SEC.

RATE OF PITCH
ROLL AND YAW
DEGREES/SEC.

CONTROL POSITION
IN FROM NEUTRAL

SLOW, LONG STICKS:
IN & OUT

PEDESTAL:
IN & OUT

TIME: SECONDS

YAW ANGLE INOPERATIVE
ROLL AND YAW ANGULAR ACCELERATION

AVERAGE GROSS WEIGHT: 7570 LBS.
LONGITUDINAL C.G. LOCATION: 1263 IN.
FLIGHT CONDITIONS: HOVER
DENSITY ALTITUDE: 5740 FEET
ROTOR SPEED: 324 RPM

ROLL, PITCH

ROLL AND YAW ANGULAR ACCELERATION INOPERATIVE

LONG STICK
LAT. STICK
PEDAL

TIME ~ SECONDS
FIGURE NO. 79
TIME HISTORY OF WEAPONS FIRING
UH-1 B, USA, S/N 60-3589
ARMAMENT XM-21 ROCKETS
CONFIGURATION: BOTH PODS, 14 ROCKETS

AVERAGE GROSS LONGITUDINAL C.G.
FLIGHT CONDITION
TRIM CAS 94.5 K
DENSITY ALTITUDE
ROTOR SPEED: 32

TIME ~ SECOND
AVERAGE GROSS WEIGHT: 7290 LBS.
LONGITUDINAL C.G. LOCATION: 125.9 IN
FLIGHT CONDITIONS: MANEUVERING
TRIM C.A.S. 94.5 KTS.
DENSITY ALTITUDE: G240 FEET
ROTOR SPEED: 324 RPM

Firing

Roll

Pitch

Yaw

Roll

Pitch

Yaw Angular Acceleration Inoperative

Pedal

Long Stick

Lat. Stick

Time ~ Seconds
FIGURE NO. 80

TIME HISTORY OF BOOST-OFF FLIGHT

UH-1B, U.S.A., S/N 60-3589
ARMAMENT: XM-21 PODS FULLY LOADED

AVERAGE GROSS

LONGITUDINAL C.G.
FLIGHT CONDITIONS
TRIM CAS. 94.5 KTAS
DENSITY ALTITUDE
ROTOR SPEED: 324

FULL COLLECTIVE TRAVEL: 12 INCHES
COLLECTIVE FORCE NOT AVAILABLE

FULL PEDAL TRAVEL: 7.0 INCHES
PEDAL FORCE NOT AVAILABLE

FULL LONGITUDINAL TRAVEL: 130 INCHES

FULL LATERAL TRAVEL: 15.0 INCHES
AVERAGE GROSS WEIGHT: 7080 LBS.
LONGITUDINAL C.G. LOCATION: 130.9 IN.
FLIGHT CONDITIONS: LEVEL FLIGHT
TRIM C.A.S.: 94.5 KTS.
DENSITY ALTITUDE: 4340 FEET
ROTOR SPEED: 324 RPM

Diagram showing time and rotor speed data with labels for different time intervals.
FIGURE NO. 81
TIME HISTORY OF BOOST-OFF FLIGHT
UK - 18, USA, S/N 60-3589
ARMAMENT: XM-16 PODS FULLY LOADED

FULL COLLECTIVE TRAVEL: 12.2 INCHES
COLLECTIVE FORCE NOT AVAILABLE

FULL PEDAL TRAVEL: 7.6 INCHES
PEDESTAL DATA (XM-16) NOT AVAILABLE

FULL LONGITUDINAL TRAVEL: 13.0 INCHES

FULL LATERAL TRAVEL: 13.0 INCHES

TIME ~ SECONDS
AVERAGE GROSS WEIGHT 7015 LBS
LONGITUDINAL C.G. LOCATION 131.1 IN.
FLIGHT CONDITIONS TAKEOFF
DENSITY ALTITUDE 2520 FEET
ROTOR SPEED 324 RPM

\[P(x) = 1 \text{ if } x \geq 1 \text{ and } 0 \text{ otherwise} \]
APPENDIX II

DATA ANALYSIS METHOD

1.0 GENERAL

The equations and analysis method used to correct the performance of the helicopter to standard-day conditions are briefly described in this appendix.

The non-dimensional parameters used for data analysis are defined as follows:

\[C_p = \frac{550 \times \text{SHP}}{\rho A (NR)^3} \]

\[C_t = \frac{W}{\rho A (NR)^2} \]

\[\mu = \frac{1.689 \times V_t}{NR} \]

where:

SHP = engine output shaft horsepower
\(\rho \) = air density, slugs/ft\(^3\)
A = total swep rotor disc area, ft\(^2\)
\(\Omega \) = rotor angular velocity, radians/sec
\(R \) = rotor radius, ft
\(W \) = gross weight, lb
\(V_t \) = true velocity, kt

This non-dimensional method is useful only where compressibility effects are not significant. No significant compressibility effects were encountered during the test.
1.1 POWER DETERMINATION

The T53 gas turbine engine incorporates a hydro-mechanical torquemeter as an integral part of the reduction gearing on the compressor end of the engine. This torquemeter is essentially a piston which supplies pressure, in proportion to the output torque, on the contained hydraulic oil. To obtain a more accurate indication of torque, the pressure of oil vapor behind this piston is also measured and the difference between this pressure and the hydraulic oil pressure is found. The conversion from torquemeter pressure to torque in inch-pound was obtained from the test cell run of engine S/N LE-06202.

The equation from which output shaft horsepower was determined from inflight torquemeter and rotor rpm readings was derived as follows:

\[
\text{SHP} = \frac{2\pi}{12 \times 33,000} \times N_e \times T
\]

where:

- \(\text{SHP} \) = output shaft horsepower
- \(N_e \) = output shaft rotational speed - rpm
- \(T \) = output shaft torque, in-lb

The torquemeter calibration as obtained from engine calibration data indicated that torque could be determined as the following function of torque pressure:

\[
T = 228.6 \Delta P
\]

where: \(\Delta P \) = torque differential pressure - psi

Rotor speed was determined from output shaft rotational speed as follows:

\[
N_r = \frac{N_e}{20.37}
\]

where:

- \(N_r \) = rotor rotational speed - rpm
Combining the above expressions results in the following expression for determining output shaft horsepower:

\[
\text{SHP} = \frac{2\pi \times 228.6 \times 20.37 \times N_R \times \Delta P}{12 \times 33,000}
\]

During the test program, engine characteristics were defined by the curve of:

\[
\frac{\text{SHP}}{\delta_{t_2}^{\theta_{t_2}}} \text{ versus } \frac{w_e}{\delta_{t_2}^{\theta_{t_2}}}
\]

where:

\[\text{SHP} = \text{output shaft horsepower}\]
\[\delta_{t_2} = \text{ratio of compressor inlet total pressure to standard pressure at sea level}\]
\[\theta_{t_2} = \text{ratio of compressor inlet total temperature to standard temperature at sea level}\]

Compressor inlet pressure or temperature instrumentation was not installed in the test aircraft. Since no pressure loss was noted in FTC-TDR-62-21 (Reference 5), the test ambient pressure was taken as the test compressor inlet pressure. Also, since the compressor inlet temperature noted in FTC-TDR-62-21 was consistently 2 degrees centigrade (C) above ambient, the test compressor inlet temperature was taken as 2 degrees C above the test ambient temperature.

Level Flight and Specific Range:

Level flight speed-power correction was derived from the \(C_p\), \(C_w\), \(\mu\) method. Each speed power was flown at a pre-determined \(C_T\) holding rotor speed constant. To maintain \(W/\rho\) approximately constant, altitude was increased as fuel was consumed.

Test-day level flight power airspeed data was corrected to standard-day conditions by the following method: The test day speed-power point was defined by the dimensionless parameters, \(C_{p}\), \(C_{T}\), and \(\mu\). Correction of test-day power to standard-day conditions was made holding these coefficients constant on the standard day. It follows from this that the relationships below
are true between test-day and standard-day conditions:

$$C_{p_t} = C_{p_s}, \quad C_{T_t} = C_{T_s}, \quad \mu_t = \mu_s$$

From these relationships and definitions of the particular terms the following relationships hold:

$$W_t/\rho_t = W_s/\rho_s, \quad \rho_s = \rho_t \left(W_s/W_t \right)$$

This last relationship permits establishing the standard-day density, ρ_s, which is required for presenting the test-day data at a standard gross weight, W_s. W_s is the weight used in the computation of the target C_T for each individual level flight test.

From the definition of the power coefficient, C_p, the following relationships can be derived:

$$\text{SHP}_t/\rho_t = \text{SHP}_s/\rho_s$$

$$\text{SHP}_s = \text{SHP}_t \left(\rho_s/\rho_t \right)$$

This last relationship then defines the standard-day power required for flying at the same thrust, power and speed coefficient as on the test day but under standard-day conditions. Each level flight speed-power point was corrected in this fashion to standard-day conditions at the target gross weight.

Specific range calculations were performed using the level flight performance curves presented in Figures 1 through 3, Appendix I and the specification fuel flow characteristics at 5-percent conservative presented in Report No. 204-099-712 (Reference v).

$$\text{NAMPP} = \frac{V_T}{W_f}$$

where:

$$\text{NAMPP} = \text{nautical miles per pound of fuel}$$

$$V_T = \text{true airspeed in knots}$$

$$W_f = \text{fuel flow, pounds per hour}$$
APPENDIX III

TEST INSTRUMENTATION

1.0 Sensitive, calibrated instrumentation was installed and maintained in UH-1B, S/N 60-3589, by personnel of the Logistics Division of USAVNTA. The following parameters were recorded:

a. Pilot's Panel
 (1) Boom Airspeed
 (2) Rotor Tachometer
 (3) Angle of Sideslip
 (4) Rate of Climb
 (5) Boom Altitude

b. Engineer's Panel
 (1) Torquemeter (High and Low)
 (2) Free Air Temperature
 (3) Standard Airspeed
 (4) Standard Altitude
 (5) Fuel Flow (Stepper Motor System)
 (6) Fuel Totalizer

c. Oscillograph
 (1) Longitudinal Cyclic Control Position
 (2) Lateral Cyclic Control Position
 (3) Directional Control Position
 (4) Collective Control Position
 (5) Angular Pitch Acceleration
2.0 The aircraft was equipped with an airspeed boom incorporating a swiveling pitot-static source and vanes for angle of attack and sideslip.
APPENDIX IV

GENERAL AIRCRAFT INFORMATION

1.0 AIRCRAFT PRINCIPAL DIMENSIONS - MAXIMUM

a. **Length**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overall (main rotor fore and aft and tail rotor horizontal)</td>
<td>52.9 ft</td>
</tr>
<tr>
<td>2</td>
<td>Overall (main rotor fore and aft and tail rotor vertical) to end of tail skid</td>
<td>49.8 ft</td>
</tr>
<tr>
<td>3</td>
<td>Nose of cabin to tail skid</td>
<td>39.5 ft</td>
</tr>
<tr>
<td>4</td>
<td>Nose of cabin to tail rotor horizontal</td>
<td>42.9 ft</td>
</tr>
<tr>
<td>5</td>
<td>Skid gear</td>
<td>10.8 ft</td>
</tr>
</tbody>
</table>

b. **Width**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skid gear</td>
<td>8.4 ft</td>
</tr>
<tr>
<td>2</td>
<td>Synchronized elevator</td>
<td>9.3 ft</td>
</tr>
<tr>
<td>3</td>
<td>Stabilizer bar</td>
<td>9.0 ft</td>
</tr>
</tbody>
</table>

c. **Height (to static ground line)**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tip of main rotor forward blade to ground</td>
<td>8.4 ft</td>
</tr>
<tr>
<td>2</td>
<td>Tip of main rotor blade static position</td>
<td>13.2 ft</td>
</tr>
<tr>
<td>3</td>
<td>Tip of forward main rotor blade, tied down position</td>
<td>18.8 ft</td>
</tr>
<tr>
<td>4</td>
<td>Tip of tail rotor blade, vertical position</td>
<td>14.6 ft</td>
</tr>
<tr>
<td>5</td>
<td>Tail skid to ground</td>
<td>3.9 ft</td>
</tr>
<tr>
<td>6</td>
<td>Top of cabin</td>
<td>6.8 ft</td>
</tr>
<tr>
<td>7</td>
<td>Cabin base to ground</td>
<td>1.0 ft</td>
</tr>
</tbody>
</table>
d. Diameters
 (1) Main rotor 44.0 ft
 (2) Tail rotor 8.5 ft
 (3) Stabilizer bar 9.0 ft

e. Miscellaneous
 (1) Main rotor airfoil NACA 0012
 (2) Main rotor chord 21 in
 (3) Swept disc area 1520.5 ft²
 (4) Gear ratio (engine to main rotor) 20.37 to 1
 (5) Gear ratio (engine to tail rotor) 3.97 to 1
 (5) Solidity ratio .0506
 (7) Tail rotor airfoil NACA 0012
 (8) Tail rotor chord 0.7 ft

2.0 POWER PLANT

The test aircraft was powered by a T53-L-9A gas turbine engine, Serial Number LE-06202. The engine is comprised of an inlet and reduction gear section, an axial-centrifugal compressor, an angular vaporizing combustor, a gas producer turbine, a free power turbine, and an exhaust diffuser. The compressor consists of five axial stages and one centrifugal stage. The engine installation is rated to an output torque valve equivalent to 1100 horsepower at 6600 rpm for takeoff and 900 horsepower at 6400 to 6600 rpm for continuous operations.

3.0 OPERATING LIMITS WITH XM-16 AND XM-21 ARMAMENT SUBSYSTEMS INSTALLED

a. Operating instructions were obtained from Technical Manual TM 55-1520-211-10.

b. Maximum airspeed was 100 KCAS.

c. Engine speeds were 6400 - 6600 rpm.
d. Gross weight limits were 6000 pounds minimum and 8500 pounds maximum.

e. C.G. limits were Fuselage Station 125 maximum forward and Station 133 maximum aft.

f. Jettison limits of the LAU-32A/A rocket pods were symmetrical both left and right and were as follows:

<table>
<thead>
<tr>
<th>Airspeed - KCAS</th>
<th>Sideslip Angle - deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>10.0</td>
</tr>
<tr>
<td>70</td>
<td>6.5</td>
</tr>
<tr>
<td>80</td>
<td>5.0</td>
</tr>
<tr>
<td>90</td>
<td>4.0</td>
</tr>
<tr>
<td>100</td>
<td>3.5</td>
</tr>
</tbody>
</table>

4.0 ARMAMENT SUBSYSTEM

4.1 GENERAL

The UH-1B airframe can sustain a total load of 750 pounds on each side external stores mount. This occurs at Fuselage Station (F.S.) 136 inches, butt line (B.L.) 65 inches, water line (W.L.) 21 inches. The limit load factors that may be applied are: 4g down, 2g up, 1.5g lateral, and 4g forward. The MA-4A bomb rack has a maximum load capability of 10,000 pounds and can carry a load up to 1600 pounds on the UH-1B.

4.2 DESIGN CRITERIA

a. External Stores

<table>
<thead>
<tr>
<th>Item</th>
<th>XM-16</th>
<th>XM-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gun mount</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Machine guns</td>
<td>4 (M-60C)</td>
<td>2 (XM-20)</td>
</tr>
<tr>
<td>Ammunition chutes</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Rack assemblies</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
a. External Stores (Cont'd)

<table>
<thead>
<tr>
<th>Item</th>
<th>XM-16</th>
<th>XM-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rocket launchers (LAU-32A/A)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rocket (2.75-inch FFAR)</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Total Weight (pounds)</td>
<td>640.6</td>
<td>648.3</td>
</tr>
</tbody>
</table>

b. Internal Stores

<table>
<thead>
<tr>
<th>Item</th>
<th>XM-16</th>
<th>XM-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sighting station</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Control panel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Intervalometer</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ammunition boxes with covers</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ammunition box rack</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rounds of linked ammunition</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Total weight (pounds)</td>
<td>460.6</td>
<td>525.9</td>
</tr>
</tbody>
</table>

c. Machine Guns

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>XM-16</th>
<th>XM-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>21.0 lb</td>
<td>50.0 lb</td>
</tr>
<tr>
<td>Length</td>
<td>43.5 in</td>
<td>31.5 in</td>
</tr>
<tr>
<td>Rate</td>
<td>550 rd per min</td>
<td>2000 to 4000 rd/min</td>
</tr>
<tr>
<td>Maximum depression</td>
<td>66 deg</td>
<td>90 deg</td>
</tr>
<tr>
<td>Maximum elevation</td>
<td>+9 deg</td>
<td>+10 deg</td>
</tr>
<tr>
<td>Maximum traverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inboard</td>
<td>12 deg</td>
<td>12 deg</td>
</tr>
<tr>
<td>Outboard</td>
<td>70 deg</td>
<td>70 deg</td>
</tr>
</tbody>
</table>
d. LAU-32A/A Rocket Launcher

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>XM-16 and XM-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>9.8 in</td>
</tr>
<tr>
<td>Length-overall</td>
<td>49.9 in</td>
</tr>
<tr>
<td>Capacity (2.75-in FFAR)</td>
<td>7</td>
</tr>
<tr>
<td>Weight - empty</td>
<td>47.5 lb</td>
</tr>
<tr>
<td>Weight - loaded</td>
<td>170.0 lb</td>
</tr>
<tr>
<td>Suspension</td>
<td>14 in and centered</td>
</tr>
</tbody>
</table>

e. 2.75-inch FFAR (Rocket)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>XM-16 and XM-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>48.0 in</td>
</tr>
<tr>
<td>Diameter</td>
<td>7.0 in</td>
</tr>
<tr>
<td>Motor length</td>
<td>39.4 in</td>
</tr>
<tr>
<td>Weight</td>
<td>17.5 lb</td>
</tr>
<tr>
<td>Warhead length</td>
<td>8.5 in</td>
</tr>
<tr>
<td>Loaded C.G.</td>
<td>19.5 in from nose</td>
</tr>
<tr>
<td>First rocket pair fired</td>
<td>200 milliseconds after triggers energized</td>
</tr>
<tr>
<td>Ripple fired complement time</td>
<td>1.167 sec</td>
</tr>
</tbody>
</table>

5.0 WEIGHT AND BALANCE

The test aircraft was weighed and balanced in a closed hangar with the armament subsystems installed. A typical service loading for the two subsystems was as follows:

a. XM-16 Armament Subsystem Installed

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight-lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating weight</td>
<td>4787</td>
</tr>
<tr>
<td>Pilot and copilot @ 200 lb per man</td>
<td>400</td>
</tr>
<tr>
<td>155 gallons of fuel (fuel weight = 6.50 lb/gal)</td>
<td>1008</td>
</tr>
<tr>
<td>External and internal components installed including 6000 rounds of ammunition and 14 rockets</td>
<td>1101</td>
</tr>
<tr>
<td>Total Weight</td>
<td>7296 lb</td>
</tr>
</tbody>
</table>
b. XM-21 Armament Subsystem Installed

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight-lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating weight</td>
<td>4787</td>
</tr>
<tr>
<td>Pilot and copilot @ 200 lb per man</td>
<td>400</td>
</tr>
<tr>
<td>155 gallons of fuel (fuel weight = 6.50 lb/gal)</td>
<td>1008</td>
</tr>
<tr>
<td>External and internal components installed including 6000 rounds of ammunition and 14 rockets</td>
<td>1172</td>
</tr>
<tr>
<td>Total Weight</td>
<td>7367 lb</td>
</tr>
</tbody>
</table>
APPENDIX V

SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>Power coefficient</td>
<td>non-dimensional</td>
</tr>
<tr>
<td>C_T</td>
<td>Thrust coefficient</td>
<td>non-dimensional</td>
</tr>
<tr>
<td>μ</td>
<td>Rotor tip speed</td>
<td>non-dimensional</td>
</tr>
<tr>
<td>SHP/shp</td>
<td>Shaft horsepower</td>
<td>ft-lb/min</td>
</tr>
<tr>
<td>ρ</td>
<td>Air density</td>
<td>slugs/ft3</td>
</tr>
<tr>
<td>A</td>
<td>Rotor disc area</td>
<td>ft2</td>
</tr>
<tr>
<td>Ω</td>
<td>Angular velocity</td>
<td>radians/sec</td>
</tr>
<tr>
<td>R</td>
<td>Rotor radius</td>
<td>ft</td>
</tr>
<tr>
<td>W, GW</td>
<td>Gross weight</td>
<td>lb</td>
</tr>
<tr>
<td>V_t</td>
<td>True airspeed</td>
<td>kt</td>
</tr>
<tr>
<td>N_E</td>
<td>Output shaft rotational speed</td>
<td>rpm</td>
</tr>
<tr>
<td>T</td>
<td>Output shaft torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>ΔP</td>
<td>Torque differential pressure</td>
<td>psi</td>
</tr>
<tr>
<td>N_R</td>
<td>Rotor rotational speed</td>
<td>rpm</td>
</tr>
<tr>
<td>δ</td>
<td>Pressure ratio</td>
<td>--</td>
</tr>
<tr>
<td>θ</td>
<td>Temperature ratio</td>
<td>--</td>
</tr>
<tr>
<td>W_f</td>
<td>Fuel flow</td>
<td>lb/hr</td>
</tr>
<tr>
<td>KIAS</td>
<td>Knots indicated airspeed</td>
<td>kt</td>
</tr>
<tr>
<td>KCAS</td>
<td>Knots calibrated airspeed</td>
<td>kt</td>
</tr>
<tr>
<td>KTAS</td>
<td>Knots true airspeed</td>
<td>kt</td>
</tr>
<tr>
<td>NAMPP</td>
<td>Nautical air miles per pound of fuel</td>
<td>--</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td>Units</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>1/rev</td>
<td>Cycles per revolution</td>
<td>cycles/rev</td>
</tr>
<tr>
<td>C.G.</td>
<td>Center of gravity</td>
<td>in</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
<td>rpm</td>
</tr>
<tr>
<td>V<sub>NE</sub></td>
<td>Airspeed not to exceed</td>
<td>kt</td>
</tr>
<tr>
<td>S.A.</td>
<td>Single amplitude</td>
<td>g</td>
</tr>
<tr>
<td>freq</td>
<td>Frequency</td>
<td>cycles/sec</td>
</tr>
<tr>
<td>IGE</td>
<td>In ground effect</td>
<td>--</td>
</tr>
<tr>
<td>rd/min</td>
<td>Rounds per minute</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Standard-day conditions</td>
</tr>
<tr>
<td>t</td>
<td>Test conditions</td>
</tr>
</tbody>
</table>
APPENDIX VI

REFERENCES

h. Letter, AMSTE-BG, Hq, USATECOM, 8 January 1965, subject: "Aviation Test Activity Portion of Engineering Plan of Test of XM-16/UH-1B Helicopter Armament System USATECOM Project No. 4-4-1532-03."

i. Letter, CDCOA-E, U. S. Army Combat Development Command, 29 April 1965, subject: "Approval of Engineering Plan of Test XM-16/UH-1B Helicopter Armament System, USATECOM Project No. 4-4-1532-03, DA Project 1X141806D13304 (Aviation Test Activity Portion)."

j. Unclassified Message APG 13493, AMSTE-BG, Hq, USATECOM, 21 August 1965, subject: "Final Test Reports XM-16 and XM-21."

Engineering flight tests of the UH-1B helicopter equipped with the XM-16 and XM-21 armament subsystems were conducted by the U.S. Army Aviation Test Activity (USAAVNTA). The overall objective was to determine the effect of the installation of the subsystems on the UH-1B, including the existence of any safety-of-flight conditions and performance losses. Performance data showed that both armament subsystems caused an appreciable drag increase. The XM-16 caused a greater reduction in specific range than the XM-21. Compared with performance of clean UH-1B at 8000 pounds gross weight, 5000 feet altitude, and 324 rotor rpm, the installation of the XM-16 and XM-21 resulted in specific range reductions of 15 percent and 12 percent respectively. Compared with clean UH-1B data (Report FTC-TDR-62-13), stability and control data showed no appreciable changes in flying characteristics of the UH-1B equipped with either armament subsystem. Firing tests showed that both armament systems could be fired safely within the flight envelope established by the contractor. Vibration characteristics were satisfactory under all conditions tested except for the lateral 4 cycles-per-revolution vibration with the XM-21 armament subsystem installed. The vibration level at all forward airspeeds slightly exceeded the 0.15-g limitation of MIL-H-8501A. Hydraulic boost-off tests in hover, takeoff, climb, level flight, and landing were investigated. Qualitative pilot comments describing the helicopter's flying qualities with the boost off with either armament subsystem indicated that collective forces were high and could not be maintained for an extended period. The only practical method of landing was to execute a run-on landing. Attempting to transition to a hover resulted in over control and incipient loss of control due to high cyclic forces. The performance data generated in this evaluation should be incorporated in the Operator's Manual.
UNCLASSIFIED

Security Classification

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Flight Test</td>
<td>ROLE</td>
<td>HT</td>
<td>ROLE</td>
</tr>
<tr>
<td>UH-1B Equipped with XM-16 Armament Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UH-1B Equipped with XM-21 Armament Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability and Control Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety-of-Flight Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gun Firing Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocket Firing Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Linking is to be in accordance with appropriate security regulations.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHORS:** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

9. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

10. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

11. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

12. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

13. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through "

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through "

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

14. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

15. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

16. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

17. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

AFSC-HOLLOMAN AFB, NMEX

UNCLASSIFIED

Security Classification