AD NUMBER
AD485401

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; Jul 1966. Other requests shall be referred to Office of Naval Research, Arlington, VA 22217.

AUTHORITY
Office of Naval Research notice dtd 27 Jul 1971

THIS PAGE IS UNCLASSIFIED
VERTICAL MOTION OF HIGH ALTITUDE BALLOONS

TECHNICAL REPORT IV

report to

OFFICE OF NAVAL RESEARCH
VERTICAL MOTION OF HIGH ALTITUDE BALLOONS

Technical Report IV

Report to

OFFICE OF NAVAL RESEARCH
PHYSICS BRANCH
CONTRACT NO. Nonr 3164(00)

By

A. E. Germeles

July 1966

C-62944

Arthur D. Little, Inc.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>I. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>I_. FORMULATION OF THE THEORY OF BALLOON DYNAMICS</td>
<td>2</td>
</tr>
<tr>
<td>A. INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>B. THE EQUATION OF VERTICAL MOTION</td>
<td>2</td>
</tr>
<tr>
<td>C. ENERGY EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>D. THE EQUATION OF EXPANSION OF THE BALLOON GAS</td>
<td>6</td>
</tr>
<tr>
<td>E. VALVING, EXHAUSTING AND BALLASTING</td>
<td>6</td>
</tr>
<tr>
<td>F. SPECIFICATION OF THE ATMOSPHERE</td>
<td>7</td>
</tr>
<tr>
<td>G. HEAT TRANSFER BY CONVECTION</td>
<td>9</td>
</tr>
<tr>
<td>1. Air-Side Forced Convection</td>
<td>9</td>
</tr>
<tr>
<td>2. Free Convection</td>
<td>10</td>
</tr>
<tr>
<td>3. The Thermal Parameters of Air and Helium</td>
<td>11</td>
</tr>
<tr>
<td>H. HEAT TRANSFER BY RADIATION</td>
<td>12</td>
</tr>
<tr>
<td>1. Emission of Radiation by the Balloon Fabric</td>
<td>12</td>
</tr>
<tr>
<td>2. Infrared Radiation From the Earth</td>
<td>14</td>
</tr>
<tr>
<td>3. Absorption of Infrared Radiation by the Balloon Fabric</td>
<td>14</td>
</tr>
<tr>
<td>4. Solar Radiation</td>
<td>15</td>
</tr>
<tr>
<td>5. Absorption of Solar Radiation by the Balloon Fabric</td>
<td>17</td>
</tr>
<tr>
<td>I. SUMMARY OF EQUATIONS. REQUIREMENTS FOR UNIQUE SOLUTION</td>
<td>19</td>
</tr>
</tbody>
</table>

Arthur D. Little, Inc.
TABLE OF CONTENTS (Continued)

III. THE COMPUTER PROGRAM
 A. INTRODUCTION ... 22
 B. INPUT DATA .. 22
 C. A BRIEF DESCRIPTION OF THE PROGRAM 27
 1. The MAIN Routine ... 27
 2. Subroutine RNGKTA ... 29
 3. Subroutine YPRIME ... 29
 4. Subroutine RHOT .. 30
 5. Subroutine PLOT .. 30
 D. ACCURACY OF INTEGRATION .. 31
 E. OUTPUTS .. 33
 F. OTHER OPERATING INSTRUCTIONS 37

IV. CORRELATION OF COMPUTED AND ACTUAL FLIGHTS 40
 A. A BRIEF DISCUSSION OF THE APPROXIMATIONS IN THE MODEL AND OF THE UNCERTAINTIES IN THE INPUT DATA ... 40
 B. FLIGHT CORRELATION .. 42
 1. Stargazer Manned Flight ... 43
 2. Thermistor Flight .. 43
 3. Stratoscope S4-2 Flight .. 43

REFERENCES .. 57

LIST OF SYMBOLS .. 58

FORTRAN LISTING OF PROGRAM ... 67

DISTRIBUTION LIST .. 84
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calculation of Solar Radiation for Azimuth Angles Greater Than 90°</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Input Data Printed in Output for Stratoscope Flight S4-2</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Sample of Printed Output</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Plotted Output for Stratoscope Flight S4-2</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Input Data for Stargazer Manned Flight</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Plotted Output for Stargazer Manned Flight</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Input Data for Thermistor Flight</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Plotted Output for Thermistor Flight</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Temperature Correlation of Thermistor Flight</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>Plotted Output for Stratoscope Flight S4-2 With Reduced (by 10%) Infrared Radiation During Night</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>General Flow Chart</td>
<td>66</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Variation of Solar Radiation (Relative to Radiation Outside Atmosphere) With Optical Air Mass</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Content and Order of Input Cards for One Flight</td>
<td>24</td>
</tr>
</tbody>
</table>
I. SUMMARY

A preliminary analysis of the vertical motion of high altitude balloons was presented to the Office of Naval Research on February 27, 1961. That report (Reference 1) was Technical Report I of a series of reports which have been sponsored by ONR contract Nonr-3164(00).

In December 1963, Technical Report II (Reference 2) was published. This report extended the analysis of Reference 1 and presented a computer program which describes balloon motion. Technical Report III which was concerned with the rotational motion of high altitude balloons was also published in December 1963.

Since Technical Report II was published, more information has become available for correlation purposes: the Stratoscope series has continued; the Fort Churchill summer programs have produced flight data for extreme altitudes; and a flight was made by ADL with the help of NCAR which measured helium gas temperatures. During this period the analysis and the computer program have been extended and improved. They are presented in this report, Technical Report IV.

The mathematical formulation of the model is presented in Section II.

In Section III, the computer program is described in great detail. Since this version of the program is more accurate than that presented in Technical Report II, all program users are hereby requested to obtain this newer version. With the permission of ONR, the program is available to any interested party in the subject of high altitude balloon performance.

Finally, in Section IV, the correlation of some computed and actual flights is presented. The correlation is very good. The results from the above mentioned ADL-NCAR flight have increased the confidence in the validity and accuracy of the computer model.
II. FORMULATION OF THE THEORY OF BALLOON DYNAMICS

A. INTRODUCTION

Balloons move upwards because of the force of buoyancy, a simple and well understood force. The upward accelerating force (free lift) is equal to the weight of the displaced air minus the weight of gas (gross lift), minus the total weight of the balloon fabric, payload, ballast, etc. So it is a simple matter to write the dynamic equation of vertical motion of a balloon, even though the aerodynamic effects (induced mass and drag) of the surrounding air introduce some complications.

The gross lift, however, is a function of not only the atmospheric conditions, which change as the balloon moves, but also the temperature of the gas, which depends on the net heat received by the balloon. Due to their large surface, balloons are very sensitive to heat transfer, especially to thermal radiation. Thus, a balloon acts somewhat like an engine, converting heat to mechanical energy, and its equation of motion must be coupled to appropriate energy equations. Writing the appropriate energy equations, which will account for all important effects, is not a simple matter.

There is an energy equation for the helium gas. The gas exchanges heat with the fabric through free convection and does work against the atmosphere when it expands. The expansion of the gas increases the lift and, thus, influences the motion of the balloon. This equation of energy becomes more complicated when gas is valved out or exhausted.

There is, also, an equation of energy for the fabric. In addition to exchanging heat with the gas through free convection, the fabric exchanges heat with the air through free and forced convection. Also, the fabric emits thermal radiation and receives thermal radiation from the sun, the earth, and the atmosphere. Because of the importance of these effects, the various radiation fields as well as the radiative parameters of the fabric must be specified accurately.

These and all other important physical processes entering balloon dynamics are described in detail in the following sections and are formulated in a complete system of equations. A few words about the system of units used on the mathematical formulation of the problem are in order here. Length is in feet (ft), time in seconds (sec), mass in pounds (lb), temperature in degrees Rankine (°R), and force in pounds. All other quantities are expressed in terms of these five units. For instance, work and energy, including heat, are in foot-pounds (ft lb). In any case, the units of every quantity are given in the List of Symbols.

B. THE EQUATION OF VERTICAL MOTION

Let \(w_C, w_P, \) and \(w_B \) be the weights in lbs of the payload, balloon fabric and balloon gas, respectively. The total mass (in slugs) of the balloon system as it moves through the atmosphere is:

\[
\frac{2}{2etbur 7J3LittlIinc.}
\]
\[\frac{1}{g} (w_G + w_F + w_B + C_B \rho_A V_B) \]

the last term being the apparent additional mass of the system due to
the surrounding air. \(V_B \) is the volume of the balloon in \(\text{ft}^3 \), \(\rho_A \) is the
density of air in \(\text{lbs/ft}^3 \), and \(g = 32.2 \text{ ft/sec}^2 \). \(C_B \) is a constant whose
value depends on the shape of the balloon. For a spherical balloon, \(C_B \)
is equal to 0.5.

Let \(z \) denote the altitude of the balloon in \(\text{ft} \) and \(y \) its velocity
in \(\text{ft/sec} \). Then:

\[y = z \quad (1) \]

and the equation of motion of the balloon system is:

\[(w_G + w_F + w_B + C_B \rho_A V_B) \frac{\dot{y}}{g} = FL - \frac{1}{2g} C_D \rho_A A |y|y \quad (2) \]

where a dot denotes differentiation with respect to time, and the free
lift \(FL \) is given by:

\[FL = \rho_A V_B - w_B - w_G - w_F \quad (3) \]

The second term of the right hand side of Equation 2 is the drag
exerted on the balloon by the surrounding air. \(C_D \) is the drag coefficient
and \(A \) is the effective area of the balloon (in \(\text{ft}^2 \)) in the direction of
motion. For a spherical balloon, \(C_D \) is equal to about 0.45 for Reynolds
numbers in the range of 500 to \(2 \times 10^5 \).

In balloon terminology, the first two terms of the right hand side
of Equation 3 are known as gross lift. Using the equation of state, the
gross lift can be expressed in terms of quantities which are well known
in ballooning. The equation of state (perfect gas law) for both air and
gas is:

\[p = \frac{R}{M} \rho T \quad (4) \]

where \(p \) is the pressure (in \(\text{lb/ft}^2 \)), \(\rho \) is the density in \(\text{lb/ft}^3 \), \(T \) is
the temperature in \(^\circ \text{R} \), \(M \) is the molecular weight and \(R \) is the universal
gas constant in \(\text{ft lb/lb mol}^\circ \text{R} \). The gross lift, \(GL \), can now be expressed
in the following form:
\[
GL = w_B \left[-1 + \frac{M_A P_A(T_A + \theta)}{M_B T_A(P_A + \pi)} \right]
\]

where the subscripts A and B pertain to air and gas, respectively. The quantity \(\theta = T_B - T_A \) is known as the gas superheat (actually, it is a supertemperature), while \(\pi = p_B - p_A \) is known as the gas superpressure. Since the percent superheat and superpressure are usually small quantities, Equation 5 can be reduced to the following approximate relation:

\[
GL \approx w_B \left[\frac{M_A}{M_B} - 1 + \frac{M_A}{M_B} \left(\frac{\theta}{T_A} - \frac{\pi}{P_A} \right) \right] \quad (5a)
\]

For balloons with no superpressure, Equation 5 reduces to:

\[
GL = w_B \left(\frac{M_A}{M_B} - 1 + \frac{M_A}{M_B} \frac{\theta}{T_A} \right) \quad (5b)
\]

When \(\theta \) is negative, the force \(w_B \frac{M_A}{M_B} \frac{\theta}{T_A} \) is negative and, in balloon terminology, it is referred to as thermodynamic drag.

C. ENERGY EQUATIONS

For a closed system, the time rate of change of its internal energy, \(U \), must be equal to the rate of supply of energy (in heat or other form), \(\dot{Q} \), minus the rate of work done by the system, \(\dot{W} \). In other words:

\[
\dot{U} = \dot{Q} - \dot{W} \quad (6)
\]

The units in this equation are ft lb/sec. This law of conservation of energy will be applied to the balloon gas system and to the balloon fabric system.

For the balloon gas system:

\[
\dot{U} = \frac{d}{dt} C_v w_B T_B = C_v w_B T_B + C_v T_B \dot{w}_B \quad (7)
\]

where \(C_v \) and \(T_B \) are the specific heat at constant volume in ft lb/lb °R and the temperature in °R of the gas, respectively. Notice that loss of gas by exhausting or valving is included in the above equation.

The only exchange of heat of the gas is with the balloon fabric through free convection. Let \(q_6 \) denote the rate of this heat transfer in ft lb/sec from the gas to the fabric. In addition to this energy,
the gas system also loses energy at the rate of $C_v T_B \dot{w}_B$ whenever gas is expelled (\dot{w}_B is negative). Therefore:

$$\dot{Q} = -q_6 + C_v T_B \dot{w}_B \tag{8}$$

If the rate of increase of the balloon gas volume is V_B, then the rate of work done by the balloon gas on the atmosphere is pV_B, where p is the atmospheric pressure in psf. Also, the balloon gas does work on the atmosphere, whenever gas is expelled, at the rate of $-p\dot{w}_B/\rho_B$, where ρ_B is the density of the gas in lb/ft3. Therefore:

$$\dot{W} = pV_B - \frac{p}{\rho_B} \dot{w}_B \tag{9}$$

Now, assuming that the pressure in the balloon is equal to the atmospheric pressure and using the equation of state (Equation 4) for the balloon gas, Equation 9 can be written as:

$$\dot{W} = pV_B - \frac{R}{M_B} T_B \dot{w}_B \tag{9a}$$

Finally, substituting for U, Q and W from Equations 7, 8 and 9a in Equation 6, the following energy equation for the gas in the balloon is obtained:

$$C_v w_B T_B = -q_6 - pV_B + \frac{R}{M_B} T_B \dot{w}_B \tag{10}$$

For the balloon fabric system:

$$\dot{U} = \frac{d}{dt} \left(C_F w_F T_F \right) = C_F w_F T_F \tag{11}$$

where C_F and T_F are the specific heat in ft lb/lb °R and the temperature in °R of the fabric, respectively. \dot{w} is equal to zero and \dot{Q} is given by:

$$\dot{Q} = q_2 - q_3 + q_4 + q_5 + q_6 + q_7 \tag{12}$$

where all the q's are rates of heat transfer in ft lb/sec, accounting for the effects described below.

q_2: absorption of infrared radiation (from earth) by fabric.

q_3: emission of radiation by fabric.
The energy equation for the fabric is:

\[C_F W_F T_F - q_3 + q_4 + q_5 + q_6 + q_7 \] \hspace{1cm} (13)

Equations 10 and 13 are the two required energy equations. Expressions for the q's will be derived in Sections G and H.

D. THE EQUATION OF EXPANSION OF THE BALLOON GAS

From the equation of state (perfect gas law), the following expression for the rate of expansion of the balloon gas, \(\dot{V}_B \), is obtained:

\[\dot{V}_B = \frac{R}{pM_B} \left(\omega_B T_B + T_B \dot{V}_B \right) - \frac{V_B}{p} \hat{p} \] \hspace{1cm} (14)

It should be kept in mind that the pressure of the balloon gas is taken equal to the atmospheric pressure \(p \). However, \(p \) conforms to the hydrostatic equation:

\[\dot{p} = -\rho_A \dot{z} \] \hspace{1cm} (15)

Therefore, substituting for \(\dot{p} \), Equation 14 becomes

\[\dot{V}_B = \frac{R}{pM_B} \left(\omega_B T_B + T_B \dot{V}_B \right) + \frac{\rho_A}{p} V_B \dot{z} \] \hspace{1cm} (14a)

E. VALVING, EXHAUSTING AND BALLASTING

The pressure in inextensible balloons is not quite the same as the outside atmospheric pressure. There is a slight overpressure which causes the gas to flow out when the valve is open. As the balloon reaches its ceiling and becomes fully inflated, a similar small pressure difference across the appendix of the balloon causes automatic exhausting of gas. When this exhausting is sufficient, it can prevent the balloon from bursting and it causes stabilization of ceiling without high altitude bounce.
Let E and V be the rate of volumetric gas flow in ft3/sec due to exhausting and valving, respectively. Both quantities are negative for outflow of gas. Then the rate at which the weight of the balloon gas changes is given by:

$$\dot{\omega}_B = \rho_B (E + V) \quad (16)$$

Valving data are usually given as lift lost per unit time (lb/sec), L_V, which is a positive quantity. Since:

$$L_V = -(\rho_A - \rho_B) \dot{V} \quad (17)$$

Equation 16 becomes:

$$\dot{\omega}_B = \frac{\rho_B E - \rho_B}{\rho_A - \rho_B} L_V \quad (18)$$

The weight of the payload, ω_G, is changed by ballasting. If B is the ballasting rate in lb/sec, then:

$$\dot{\omega}_G = -B \quad (19)$$

F. SPECIFICATION OF THE ATMOSPHERE

For a complete specification of the atmosphere only one state variable is required since the other two state variables can be computed from the hydrostatic equation and the equation of state. Usually, the atmosphere is specified by giving a temperature profile with respect to altitude. The pressure and density can then be computed from the hydrostatic equation:

$$\frac{dp}{dz} = -\rho_A \quad (20)$$

and the equation of state:

$$p = \frac{R}{M_A} \rho_A T_A \quad (21)$$

where M_A and T_A are the molecular weight and the temperature of the atmosphere. Eliminating ρ_A from these two equations and integrating once, one obtains:
\[
\ln \frac{p}{p_0} = -\frac{M_A}{R} \int_{z_0}^{z} \frac{dz}{T_A}
\]

(22)

where \(p_0 \) is the pressure at the initial altitude \(z_0 \). It is clear now that, for a complete specification of the atmosphere, the initial pressure \(p_0 \) (or the initial density) is required in addition to the temperature profile.

Suppose the temperature profile is specified by giving a number of altitudes and corresponding temperature values, \(z_n \) and \(T_n \). Then in the interval \(n \) and \(n+1 \), the temperature can be approximated by the straight line:

\[
T_A = s_n z + b_n
\]

(23)

where:

\[
s_n = \frac{T_{n+1} - T_n}{z_{n+1} - z_n}
\]

(24)

\[
b_n = \frac{T_n z_{n+1} - T_{n+1} z_n}{z_{n+1} - z_n}
\]

(25)

Integrating Equation 22 with \(T_A \) as given by Equation 23, the following expressions are obtained. For an isothermal layer, \(T_{n+1} = T_n \) and \(s_n = 0 \):

\[
\frac{p}{p_n} = \exp \left[\frac{M_A}{RT_n} (z_n - z) \right]
\]

(26)

For a nonisothermal layer, \(T_{n+1} \neq T_n \) and \(s_n \neq 0 \):

\[
\frac{p}{p_n} = \left(\frac{T_n}{T_A} \right)^{(M_A/s_n R)}
\]

(27)
The corresponding expressions for the density are:

\[
\frac{\rho_A}{\rho_n} = \exp \left(\frac{M_A}{RT_n} (z_n - z) \right)
\]

(28)

for an isothermal layer, and:

\[
\frac{\rho_A}{\rho_n} = \left(\frac{T_n}{T_A} \right)^{(1 + M_A/s_n R)}
\]

(29)

for a nonisothermal layer.

G. HEAT TRANSFER BY CONVECTION

1. Air-Side Forced Convection

Forced and free convection as well as radiation depends on the shape of the heated object. Convection correlations exist in the literature for plates, cylinders and spheres but not for shapes taken by balloons, which can be anywhere from a distorted bubble with a long stem to an onion-like shape at ceiling.

The balloon is considered to be spherical of volume \(V_B \), and all heat transfer calculations are based on this geometry. Whenever the deviation of the actual balloon from the assumed shape is thought to have an important effect on a particular heat transfer mechanism, a correction constant is introduced. These correction constants are evaluated by correlation with actual flights.

The diameter, \(D \), cross-sectional area, \(A \), and surface area, \(S \), of a sphere of volume \(V_B \) are given by:

\[
D = 1.24V_B^{1/3}
\]

(30)

\[
A = 1.21V_B^{2/3}
\]

(31)

\[
S = 4.83V_B^{2/3}
\]

(32)
For a sphere in the Reynolds number range of 17 to 70,000, McAdams (Ref. 3) recommends the following correlation for the heat transfer coefficient, h, by forced convection:

$$\frac{hD}{k} = 0.37 (Re)^{0.6}$$

(33)

where k is the conductivity of the surrounding medium and Re is the Reynolds number. He points out that turbulence can increase the above value of h by 40 to 60 percent. The laminar flow past a sphere becomes turbulent when the Reynolds number is about 2.5×10^5.

For all big balloons, the Reynolds number is above 2.5×10^5 for the most part of their vertical flight. In calculating the heat exchange of the balloon fabric with the surrounding air by forced convection, the balloon is assumed to be spherical and Equation 33 is used with a correction constant C_4. The heat transfer is given by:

$$q_4 = 1.44 C_4 k A_B^{1/3} (T_A - T_F) (1.24 V_B^{1/3} \frac{\mu_A}{\rho_A})^{0.6}$$

(34)

where k is the conductivity of air in ft lb/ft sec °R and μ_A is the viscosity of air in lb/ft sec.

2. Free Convection

For free convection from vertical plates and inside vertical cylinders, McAdams recommends the following expression for the heat transfer coefficient, h, when X is in the range $10^9 - 10^{12}$.

$$\frac{hL}{k} = 0.13 X^{1/3}$$

(35)

where L is the height of the plate or cylinder. X is the product of the Grashof and Prandtl numbers and it is proportional to the third power of L.

Let us assume that, with an appropriate correction constant, the correlation given by Equation 35 is valid inside or outside a sphere, as long as X based on the diameter of the sphere is within or near the above range.

Taking the balloon as a sphere, it can be shown that, for both the air-side and helium-side of large balloons, X is within or near the above range. Using Equation 35 with correction constants C_5 and C_6, the heat transfers by free convection in the air-side, q_5, and helium-side, q_6, are given by:
\[q_5 = 0.628 \cdot \frac{2}{3} \cdot \left(\frac{g \rho_A}{\mu_A} \right)^{2/3} \frac{1}{T_A - T_F} \left(\frac{T_A - T_F}{T_A} \right)^{1/3} \]

\[q_6 = 0.628 \cdot \frac{2}{3} \cdot \left(\frac{g \rho_H}{\mu_H} \right)^{2/3} \frac{1}{T_B - T_F} \left(\frac{T_B - T_F}{T_B} \right)^{1/3} \]

where \(\Pr_A \) and \(\Pr_H \) are the Prandtl numbers of air and helium, respectively. \(k_H \) is the conductivity of helium in \(\text{ftlb/ftsec}^\circ R \) and \(\mu_H \) is its viscosity in \(\text{lb/ftsec} \). It has been assumed that the coefficients of expansion of air and helium are equal to the inverse of their absolute temperature.

3. The Thermal Parameters of Air and Helium

In the following paragraphs a brief description is given of the Prandtl number, viscosity and thermal conductivity of air and helium. The temperature range of interest is \(350^\circ R \) to \(550^\circ R \).

The Prandtl number for air and helium is essentially constant and equal to 0.7 (Ref. 3).

The viscosity is a function of the temperature only, and, in a given temperature range, it can be taken in the form (Ref. 4):

\[\mu = AT^n \]

The constants \(A \) and \(n \) are determined by making this expression conform to two experimentally measured values of the viscosity at the two extreme temperatures of the range of interest.

From Reference 5, the viscosity of air is \(1.333 \times 10^{-4} \) and \(1.827 \times 10^{-4} \) poise at temperatures \(-69.4 \) and \(18^\circ C \), respectively. Thus, Equation 38 becomes:

\[\mu_A = 1.22 \times 10^{-6} T_A^{0.883} \]

where the viscosity is in \(\text{lb/ft sec} \) and the temperature in \(^\circ R \).
From Reference 4, the viscosity of helium is equal to 1.587×10^{-4} and 1.967×10^{-4} poise at temperatures -60.9 and $17.6^\circ C$, respectively. Therefore:

$$\mu_H = 4.10 \times 10^{-6} T_H^{0.682} \quad (40)$$

where the units of μ_H and T_H are lb/ft sec and $^\circ R$, respectively.

The specific heat at constant pressure is essentially constant for most gases (Ref. 4). Therefore, since the Prandtl number is also constant, the thermal conductivity of air and helium must depend on temperature in the same way as the viscosity, i.e., in the form of Equation 38 with the same n. The only unknown constant A can be determined by making this expression conform to one experimentally measured value of the thermal conductivity at the middle of the temperature range of interest.

From Reference 4, the thermal conductivity of air and helium is 5.80×10^{-5} and 3.52×10^{-4} cal/cm sec $^\circ K$, respectively, at a temperature of $0^\circ C$. Thus:

$$k_A = 4.08 \times 10^{-7} T_A^{0.883} \quad (41)$$

$$k_H = 7.63 \times 10^{-6} T_H^{0.682} \quad (42)$$

where the thermal conductivity is in ft lb/ft sec $^\circ R$ and the temperature in $^\circ R$.

H. HEAT TRANSFER BY RADIATION

1. Emission of Radiation by the Balloon Fabric

The fabric emits radiation in the infrared part of the spectrum. The flux emitted by each side of the fabric is $\varepsilon \sigma T^4$, where ε is the average emissivity of the fabric in infrared and σ is the Stefan-Boltzmann constant. Since the balloon gas is considered transparent, part of the radiation emitted by the inner side of the fabric is absorbed by the fabric so that the effective emissivity ε_{ef} of the fabric as a whole is not 2ε but:

$$\varepsilon_{ef} = \varepsilon + \varepsilon - \varepsilon \alpha - \varepsilon \alpha \sigma - \varepsilon \alpha^2 - \varepsilon \alpha^3 - \ldots \quad (43)$$

where α and R are the average absorptivity and reflectivity of the fabric in infrared, respectively. This series can be summed to give the following two alternative results:
where the subscript r is used to denote infrared and $\bar{\tau}$ is the average transmissivity of the balloon fabric in the infrared spectrum at a reference temperature.

$$\alpha_r + \tau_r + R_r = 1$$ (45)

If the balloon is considered to be spherical, the radiating fabric area is the surface of a sphere of volume V_B as given by Equation 32. Therefore, the effective energy emitted by the fabric is given by:

$$q_3 = 4.83 \varepsilon_{ref} c \frac{2}{3} V_B \bar{T}_F^4$$ (46)

where σ is in ft lb/ft2secoR^4 so that the units of q_3 are ft lb/sec.

Arthur D. Little, Inc., has developed a computer program for computing the effective multiple absorptivity and emissivity of films. Using measured values of α and R versus wavelength and a given radiation intensity spectrum, $I(\lambda)$, the values of α, ε, and R of the film are computed from expressions such as the following:

$$\sigma = \frac{\int \alpha(\lambda) I(\lambda) d\lambda}{\int I(\lambda) d\lambda}$$

The effective absorptivity and emissivity of the film for multiple passes of radiation is then computed from Equation 44.

This program is used to calculate the effective absorptivity and emissivity of balloon fabrics in infrared as well as their effective absorptivity in the sun's radiation (0.3 to 3 microns). For infrared the radiation spectrum used is that of a black body at a temperature of about 300°K. For solar radiation, the sun's spectrum outside the earth's atmosphere is used. These values of effective absorptivity and emissivity are used for the entire flight of the balloon.

There are two sources of possible errors in the above described method of computing the effective absorptivity and emissivity of balloon fabrics. Firstly, the spectra of the various radiations are not the same throughout the flight of a balloon: the temperature of the fabric changes, and the spectra of the infrared radiation from the earth and of the solar radiation are altered through the atmosphere. Secondly,
the averaging process over wavelength should be carried out on the multiple-pass parameters and not on the one-pass parameters. The errors introduced by our approximate method will be significant when the radiative properties of the fabric change violently with wavelength in the spectrum of interest. Indeed, some fabrics behave in this manner.

2. Infrared Radiation From the Earth

The infrared radiation emitted by the earth is absorbed and emitted again by the atmosphere. To be sure the resulting radiation field varies throughout the atmosphere not only in its total intensity but in its frequency content as well. Water vapor and carbon dioxide are the main constituents of the atmosphere which interact heavily with the infrared radiation of the earth.

There are many papers dealing with the absorbing properties of water vapor and carbon dioxide layers. For instance, Reference 6 gives extensive tables and curves describing these properties. From these data it is possible to construct a theoretical model for the computation of the radiation received by a balloon as it moves through the atmosphere. However, such a model would require an inhibitive amount of computation and it would be almost useless since the concentration and stratification of water vapor and carbon dioxide in the atmosphere is quite unpredictable.

The infrared radiation field in the atmosphere has been measured by many observers. Most important in this field are the works of Gergen (Refs. 7-11). The radiation field versus altitude is measured with black ball flights. The equilibrium temperature of the black ball, T_r, is recorded and given in charts versus altitude.

This type of measurement has been made for many locations. The results show that the profile of T_r varies with geographical and seasonal conditions. Essential changes of the T_r profile for the same location can take place within days. The measurement is carried out during the night, so that the detector is not effected by the sun. It has been estimated that the day radiation field is about 10°F higher than the measured night field.

The results of these measurements support the following approximate but simple general rule. At ground, T_r is usually less than the temperature of the air, the deviation being not more than about 10°F. Then T_r decreases almost linearly with altitude up to tropopause, where σT_r is about 30% of its value at ground. From there to higher altitudes, T_r remains approximately constant.

3. Absorption of Infrared Radiation by the Balloon Fabric

The use of a spherical detector to measure the infrared radiation field is, indeed, a very fortunate coincidence. Since in the theoretical model the balloon is considered to be spherical, i.e., of the same shape...
as, the detector, the radiation flux incident on the balloon is simply \(\sigma T_r^4 \) and the energy absorbed by the fabric can be calculated very easily. This would not be the case, if the detector had a different shape. In the following calculation of the infrared radiation absorbed by the fabric, it is assumed that the \(T \) profile is known. If this profile has not been measured for a particular location and time, then the simple rule, described in the last paragraph of the preceding section, is recommended for its specification.

Since the balloon gas is considered transparent, the absorption of the incident flux \(\sigma T_r^4 \) by the fabric is multiple, as in the case of emission described in Section 1. Thus, an effective absorptivity, \(\alpha_{ref} \), and not the one-way absorptivity of the fabric must be used. The calculation of \(\alpha_{ref} \) is done as described in Section 1 with a radiation spectrum identical to that of a black body at temperature \(T_r \). With the absorbing surface \(S \) as given by Equation 32, the infrared radiation energy absorbed by the fabric is given by:

\[
q_2 = 4.83 \alpha_{ref} \sigma B V_B^{2/3} T_r^4
\]

(47)

4. Solar Radiation

The total intensity of solar radiation outside the earth's atmosphere is 2.05 cal/cm\(^2\)min (Ref. 6) or 96 ft lb/ft\(^2\)sec. The peak of the spectrum is in the visible range of frequencies. A considerable amount of energy is in the infrared and some energy is in the ultraviolet.

As this energy enters the atmosphere, part of it is absorbed by the various atmospheric constituents. Ozone absorbs ultraviolet; ozone, oxygen and water vapor absorb visible; water vapor and carbon dioxide absorb infrared. By the time the solar radiation reaches the earth its total intensity is reduced to 1.44 cal/cm\(^2\)min, when the azimuth angle of the sun is zero (i.e., the sun is directly overhead), and its frequency spectrum is altered.

An approximate way of describing the attenuation of the solar radiation in the atmosphere is through the optical air mass, \(m \), which is the ratio of the path length of the sun's rays through the atmosphere to the normal path length. The following table is constructed from data given in Reference 6.
Table I. Variation of Solar Radiation (Relative to Radiation Outside Atmosphere) With Optical Air Mass.

<table>
<thead>
<tr>
<th>Optical Air Mass (m)</th>
<th>Solar Radiation (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.7018</td>
</tr>
<tr>
<td>2</td>
<td>0.5596</td>
</tr>
<tr>
<td>3</td>
<td>0.4595</td>
</tr>
<tr>
<td>4</td>
<td>0.3849</td>
</tr>
<tr>
<td>5</td>
<td>0.3249</td>
</tr>
</tbody>
</table>

For a computer program, it is expedient to have closed form expressions instead of tables of values. The following expression conforms to the values of the above table with an error of less than 3%.

\[T = \frac{1}{2} \left(e^{-0.65m} + e^{-0.095m} \right) \] \hspace{1cm} (48)

The optical air mass, m, depends on the altitude and on the sun's azimuth angle, \(\delta \). When the sun is directly overhead, its azimuth angle is zero. Sea level sunrise or sunset correspond to \(\delta = 90^\circ \). For \(\delta = 0 \), m is equal to 0 and 1 for a point outside the atmosphere and at sea level, respectively.

Let \(m_0 \) be the value of m at sea level. Then, keeping \(\delta \) constant, the value of m at any altitude, where the pressure is \(p \), is given by:

\[m = m_0 \frac{p}{p_0} \] \hspace{1cm} (49)

where \(p_0 \) is the pressure at sea level.

The variation of \(m_0 \) with \(\delta \) is given in Table 16-18 of Reference 6. It can be verified easily that the following expression conforms to the values of this table with an error of less than 0.5%.

\[m_0 = \left[\frac{1228.6 + (613.8 \cos \delta)}{-613.8 \cos \delta} \right]^{1/2} \] \hspace{1cm} (50)

Thus, for given time (and, therefore, given \(\delta \)) and given altitude, the optical air mass can be found from Equations 49 and 50. Then the solar radiation (relative to that outside the atmosphere) for that particular time and point in the atmosphere can be computed from Equation 48. Obviously, this procedure is valid for values of \(\delta \) up to 90°. Sea level sunrise and sunset will occur at \(\delta = 90^\circ \), and a point at sea level will not receive any solar radiation for \(\delta \) greater than 90°.
This is not the case for a point higher up in the atmosphere, where sunrise and sunset occur at values of δ greater than 90°. This point will receive solar radiation for values of δ greater than 90°. A procedure must be devised for computing the solar radiation in this range of δ.

Consider point A in the atmosphere (Figure 1), which has an altitude z. At this particular time, the sun's rays are along line SA, and δ is larger than 90°. The atmospheric path travelled by the sun's rays is CA. Line BD, drawn from the earth's center, is perpendicular to line AC. The altitude of point B, z_1, is given by:

$$z_1 = (R + z) \sin \delta - R$$

where R is the radius of the earth.

For point B, the azimuth angle of the sun is equal to 90°. Thus, the optical air mass for point B, m_1, can be computed from Equations 49 and 50 with $\delta = 90^\circ$ and $p = p_1$, where p_1 is the pressure at z. Then the attenuation of solar radiation at point B is $T(m_1)$ as given by Equation 48.

In travelling the remaining air path BA, the solar radiation is reduced further. Let m_2 be the optical air mass corresponding to altitude z and azimuth angle of the sun equal to $180^\circ - \delta$, i.e., when the sun is at S'. Any radiation originating at B is reduced to $T(m_2)$ when it arrives at C', and any radiation originating at S' (or C') is reduced to $T(m_2)$ when it arrives at A. Therefore, any radiation originating at B is reduced to $T(m_1)/T(m_2)$ when it arrives at A. Thus, the solar radiation received by point A (relative to that outside the atmosphere) is given by:

$$T = \frac{T^2(m_1)}{T(m_2)}$$

The range of δ covered by this computation is:

$$90^\circ < \delta < 90^\circ + \cos^{-1} \frac{R}{R + z}$$

For larger values of δ, the solar radiation received by point A is equal to zero.

5. Absorption of Solar Radiation By the Balloon Fabric

The area of a spherical balloon normal to the solar rays, which come from infinity, is equal to the area of a circle, A, as given by Equation 31. This is the effective absorbing area of the fabric for one pass of radiation. However, since the balloon gas is again considered
FIGURE 1 CALCULATION OF SOLAR RADIATION FOR AZYMUTH ANGLES GREATER THAN 90°
transparent, there is multiple absorption by the fabric and an effective absorptivity \(\alpha \) must be used, not the one-way absorptivity of the fabric. The subscript \(v \) stands for solar radiation. This absorptivity is computed as described in Section 1 with the solar radiation spectrum.

Thus, the solar energy absorbed by the fabric is given by:

\[
q^v_7 = 116 \alpha^v \, T \frac{V^2}{B}^{2/3}
\]

(54)

The numerical constant in this equation comes from the solar constant outside the atmosphere (96 ft lb/ft\(^2\) sec) times the numerical constant of the effective area (1.21) as given by Equation 31. \(T \) is a function of the optical air mass computed as described in Section 4.

It remains to define the sun's azimuth angle, \(\delta \), in a time coordinate system which is related to the flight of the balloon. Let LONG and LAT be the longitude and latitude of the balloon in degrees, respectively. If at time zero, the Greenwich hour angle is GHA, then at any subsequent time \(t \) the local hour angle, LHA, is given by:

\[
LHA = GHA - LONG + \frac{t}{240}
\]

(55)

where LHA and GHA are in degrees and \(t \) is in seconds. Let DEC be the declination of the sun in degrees. DEC is a slowly varying function of time so that it can be considered constant throughout a balloon flight. Then \(\delta \) is given by the following equation.

\[
\cos \delta = \sin LAT \sin DEC + \cos LAT \cos DEC \cos LHA
\]

(56)

I. SUMMARY OF EQUATIONS. REQUIREMENTS FOR UNIQUE SOLUTION.

In summary, the governing differential equations of the model are:

\[
\dot{z} = y
\]

(57)

\[
(w_G + w_F + w_B + C_B \, \rho_A \, v_B) \dot{\rho}_B = \rho_B \, v_B - w_G - w_F - w_B
\]

\[
- \frac{1.21}{2g} \, C_D \, \rho_A |y| \, y \, v_B^{2/3}
\]

(58)

\[
C_v \, w_B \, T_B = \frac{R}{M_B} \, T_B \, \dot{v}_B - p V_B - q_6
\]

(59)

\[
C_F \, w_F \, T_F = q_2 - q_3 + q_4 + q_5 + q_6 + q_7
\]

(60)

Arthur D. Little, Inc.
\[V_B = \frac{R}{pM_B} \left(\omega_B \dot{T}_B + T_B \dot{\omega}_B \right) + \frac{\rho_A}{p} V_B \ddot{z} \] \hspace{1cm} (61)

\[\ddot{\omega}_B = \dot{\rho}_B \dot{E} - \frac{\dot{\rho}_B}{\rho_A - \rho_B} \dot{L}_V \] \hspace{1cm} (62)

Notice that in the drag term of Equation 58, the effective area has been taken equal to the cross-sectional area of a spherical balloon of volume \(V_B \).

Thus, there are six first order nonlinear differential equations. The independent variable is, of course, time. Let the six dependent variables be \(z, y, \omega_B, V_B, T_B, \) and \(T_F \). For a unique solution of these variables, all other variables must be known. In detail, the following items must be specified.

1. The launch site (longitude and latitude) and the launch time.

2. The atmospheric temperature (\(T_A \)), pressure (\(p \)), density (\(\rho_A \)), thermal conductivity (\(k_A \)) and viscosity (\(\nu_A \)). The specification of all these properties is accomplished by means of a temperature profile (\(T_A vs z \)) and the initial pressure or density.

3. The infrared radiation field in the atmosphere. It is specified by giving the "black ball radiation equilibrium temperature" profile (\(T_r vs z \)).

4. The weight (\(\omega_r \)), specific heat (\(C_r \)), infrared effective multiple emissivity (\(\varepsilon_{ref} \)) and effective multiple absorptivity for infrared (\(\alpha_{ref} \)) and for solar radiation (\(\alpha_{vef} \)) of the balloon fabric.

5. The total payload including ballast (\(\omega_G \)), and the ballasting schedule.

6. The valving schedule and exhausting rate. Specification of the latter is very difficult, if not impossible, since, in addition to the size and shape of the appendix, the instantaneous pressure differential across the appendix must be known. In the computer program, exhausting is allowed through a mathematical expedient which will be described in Section III-C.

7. The thermal conductivity (\(k_H \)) and viscosity (\(\nu_H \)) of the gas as functions of the gas temperature (\(T_B \)).
8. The Prandtl number for air and for the balloon gas. Also, the specific heat at constant volume of the gas \(C_v \) and \(R, M_A \) and \(M_B \).

9. The five constants \(C_B, C_D, C_4, C_5 \) and \(C_6 \). As it will be shown in Section IV good correlation with actual flights is obtained with the following values for these constants:

\[
\begin{align*}
C_B &= 0.5 \\
C_D &= 0.3 \\
C_4 &= 1.5 \\
C_5 &= 1.5 \\
C_6 &= 1.0
\end{align*}
\]

Furthermore, for a unique solution, initial values of the six dependent variables must be given. For a balloon flight, the initial values of \(z, y, T_B \) and \(T_F \) can be obtained rather easily with the exception, perhaps, of \(T_F \). As for the initial values \(w_B \) and \(V_B \), they can be calculated from the initial value of the free lift, which must be given, and the equation of state with, of course, the gas pressure equal to the atmospheric pressure.
III. THE COMPUTER PROGRAM

A. INTRODUCTION

A computer program has been devised to solve the problem of the vertical flight of a balloon as formulated in Section II. The program integrates numerically the six first order differential equations (Equations 57 to 62) once the necessary input data are given.

The program is coded in the FORTRAN II algebraic language and it has been operated in the IBM 7090 Data Processing Equipment in conjunction with the FORTRAN MONITOR SYSTEM. The computer time depends primarily on the integration time interval, the on and off line printing period and the plotting period. For an integration time interval of 20 seconds, an off-line printing period of 15 minutes and a plotting period of 5 minutes, the times required by the 7090, which does the integration, and by the 1401, which prints the output, are both about one hundredth of the actual flight time.

In the following sections, the program is explained in detail. The FORTRAN listing of the entire program and a general flow chart are given at the end of this report. The symbols used in the program are defined in the List of Symbols. The flow chart is intended to show in one compact picture the general flow of information, sequence of operations and logic of the program.

B. INPUT DATA

The input data contain all the information required for a unique solution (see Section II-I) as well as information pertaining to the integration, and to printing and plotting of output.

All input data are read in the program from the input tape, which gets this information from a deck of cards. No information can be fed to the computer on-line. However, all six sense switches can be used during the course of computation to perform various functions.

Besides the leading title card, which contains alphanumeric information in format 12A6, there are two categories of input cards: control cards and data cards. Control cards must have only an integer number, from 0 to 13, in the first two columns in format 12. Data cards must have the first two columns blank and then, in successive fields of 10, input data in format F10.4. The data are divided in eleven types. Each type must be preceded by a control card.

The content of a complete set of data cards for one flight is shown in Table 2. Each line represents one card. Notice the order of control cards. The control card with the number 1 will make the
computer to start computing and, therefore, it must be placed after all the data cards. The control card with the number 2 will make the computer to CALL EXIT instantly and, therefore, it must be the last card in the deck. It is not necessary to have the various types of data in the indicated order. They can be rearranged as long as they carry the correct control card. For instance, data type 4 can be placed after data type 8, and so on. However, within a given type of data, the data must be given in the indicated order. A control card must always be followed by the appropriate data cards.

Type 3 data contain the specific heat of the fabric (C1) in ftlb/lb °R, the constants of convective heat transfer (C4, C5 and C6) which are equivalent to the constants C4, C5 and C6 of Section II, the infrared effective multiple absorptivity (ABIR) and emissivity (EMIR) of the fabric, and the effective multiple absorptivity for solar radiation (ABUV) of the fabric.

Type 4 data contain the initial weight of the payload including ballast (WGO) in lbs, the weight of fabric (WFO) in lbs, the inflated volume of the balloon (VBM) in ft³ as specified by its manufacturer, the initial free lift (FLO) in lbs, and the aerodynamic constants for drag (CD) and apparent additional mass (CB) which are equivalent to the constants C_D and C_B of Section II.

Type 5 data contain the initial temperature of the gas (TBO) in °R, the initial temperature of the fabric (TFO) in °R, the initial altitude of the balloon above sea level (Z0) in ft, the initial velocity of the balloon (Y20) in ft/sec, the declination of the sun (DEC) in degrees, and the latitude (XLAT) and longitude (XLONG) of the balloon in degrees.

Type 6 data contain the time interval for the integration (H) in sec, the printing period of output (DPR) in sec, the initial time (XO) in sec, the final time (XT) in sec, the Greenwich mean time (GMTS) in sec at the initial time, the Greenwich hour angle (GHA) in degrees at the initial time, and the plotting period of output (DP) in sec.

Type 7 data contain two arrays of time (TCSI) in sec and corresponding values of the so called "solar radiation factor" (CCSI). They must be in order of increasing TCSI. The number of cards must not exceed 100. Solar radiation for a clear sky is computed automatically. Reduction of the solar radiation caused by transient effects such as clouds are accounted for by the solar radiation factor. When no such effects are considered, the correct and sufficient data of this type are the following two cards:

\[
\begin{align*}
TCSI(1) &= XO & CCSI(1) &= 1.0 \\
TCSI(2) &= XT & CCSI(2) &= 1.0
\end{align*}
\]
Table 2. Content and Order of Input Cards for One Flight

<table>
<thead>
<tr>
<th>Field</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>T I T L E</td>
<td>12A6</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>C1</td>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
<td>C6</td>
</tr>
<tr>
<td>ABIR</td>
<td>EMIR</td>
</tr>
<tr>
<td>ABUV</td>
<td>F10.4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>WGO</td>
<td>WFO</td>
</tr>
<tr>
<td>VBM</td>
<td>FLO</td>
</tr>
<tr>
<td>CD</td>
<td>CB</td>
</tr>
<tr>
<td>F10.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>TBO</td>
<td>TFO</td>
</tr>
<tr>
<td>Z0</td>
<td>Y20</td>
</tr>
<tr>
<td>DEC</td>
<td>XLAT</td>
</tr>
<tr>
<td>XLØNG</td>
<td>F10.4</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>H</td>
<td>DPR</td>
</tr>
<tr>
<td>XO</td>
<td>XT</td>
</tr>
<tr>
<td>GMTS</td>
<td>GHA</td>
</tr>
<tr>
<td>DP</td>
<td>F10.4</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
</tr>
<tr>
<td>TCSI(1)</td>
<td>CCSI(1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCSI(NSI)</td>
</tr>
<tr>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>VO</td>
<td></td>
</tr>
<tr>
<td>TV(1)</td>
<td>VV(1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV(NVI)</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td></td>
</tr>
<tr>
<td>TB(1)</td>
<td>BB(1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TB(NBI)</td>
</tr>
</tbody>
</table>

Arthur D. Little, Inc.
<table>
<thead>
<tr>
<th>Field</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>RH0</td>
<td>F10.4</td>
</tr>
<tr>
<td>ZZ(1)</td>
<td>F10.4</td>
</tr>
<tr>
<td>...</td>
<td>F10.4</td>
</tr>
<tr>
<td>ZZ(N)</td>
<td>F10.4</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>ZIR(1)</td>
<td>F10.4</td>
</tr>
<tr>
<td>...</td>
<td>F10.4</td>
</tr>
<tr>
<td>ZIR(N)R</td>
<td>F10.4</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>ETME(1)</td>
<td>F10.4</td>
</tr>
<tr>
<td>...</td>
<td>F10.4</td>
</tr>
<tr>
<td>ETME(NEX)</td>
<td>F10.4</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>TIR(1)</td>
<td>F10.4</td>
</tr>
<tr>
<td>...</td>
<td>F10.4</td>
</tr>
<tr>
<td>TIR(NCIR)</td>
<td>F10.4</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
To account for a transient effect, more cards are needed containing values of CCSI smaller than 1.0 and the corresponding times TCSI.

Type 8 data contain the "manual"* valving rate (VO) in pounds of lost lift per second on the first card. Even when no gas will be valved manually in the course of computation, this card must lead the valving data. The following cards contain two arrays of time (TV) in sec and corresponding values of automatic valving rate (VV) in pounds of lost lift per second. They must be in order of increasing TV. The number of cards must not exceed 100. Also, TV(1) must be equal to or smaller than XO and TV(NVI) must be equal to or greater than XT. The following example shows the meaning of these valving data and the way they are used by the program.

Suppose for a flight XO = 0 and XT = 36,000 sec, and that the valving data for this flight are:

\[
\begin{align*}
V_C &= 1.0 \\
TV(1) &= 0 \\
TV(2) &= 18000. \\
TV(3) &= 18100. \\
TV(4) &= 36000. \\
VV(1) &= 0.
\end{align*}
\]

These data mean that the "manual" valving rate is 1 and that automatic valving takes place only between times 18000 and 18100 at a constant rate of 0.3. Thus, the total amount of gas valved automatically is equivalent to a loss of 30 lbs of lift.

Type 9 data contain ballasting information. The first card contains the "manual"* ballasting rate (BO) in lbs/sec. Even when no manual ballasting will be done in the course of computation, this card must be first. The following cards contain two arrays of time (TB) in sec and corresponding values of automatic ballasting rate (BB) in lbs/sec. The rules for writing these data as well as their interpretation by the program are similar to those of valving data (type 8).

Type 10 data contain the air density (RH\(\Phi\)) in lbs/ft\(^3\) at ground level on the first card. The following cards contain two arrays of altitude above sea level (ZZ) in ft and the corresponding values of air temperature (TZ) in \(\degree R\). They must be in order of increasing ZZ. The number of cards must not exceed 100. ZZ(1) must be equal to ground level. ZZ(NT) must be equal to or greater than the expected maximum altitude of the balloon. Atmospheric data corresponding to ZZ(NT) are used whenever the balloon goes above ZZ(NT) (see subroutine RHOT).

* See Section III-C1 for an explanation.
Type 11 data contain two arrays of altitude above sea level (ZIR) in ft and the corresponding values of the equilibrium radiation temperature of a black ball (RTIR) in °R. The rules for writing these data are the same as those for type 10 data. Whenever the balloon goes above ZIR(NIR), infrared data corresponding to ZIR(NIR) are used (see subroutine YPRIME).

Type 12 data contain two arrays of observed time (ETIME) in sec and corresponding values of observed balloon altitude above sea level (EALT) in ft. These data are used for flight correlation. The only restriction on these data is that they must be in order of increasing ETIME and the number of cards is limited to 400.

Finally, type 13 data contain two arrays of time (TIR) in sec and the corresponding values of the so-called, "infrared factor" (CIR). These data pertain to infrared radiation from the earth and the atmosphere. For a predictable atmosphere, infrared radiation is computed by the program from the input data (type 11) of equilibrium radiation temperature of a black ball. The infrared factor accounts for possible transient effects. The rules of writing these data are similar to those of "solar radiation factor" data (type 7).

For an example of a complete set of values of input data see Section III-E.

Multiple Flights. More than one flights can be computed in one run. This is accomplished by placing the decks of input cards for each flight in consecutive order. However, between flights the control card with the number 2 must be replaced by a blank card. If the input data of certain type(s) of a following flight are the same as those of the preceding flight, it is not required to include these data in the deck of the following flight. It should be emphasized that this holds for entire type(s) of data and not for part of the data in a given type.

C. A BRIEF DESCRIPTION OF THE PROGRAM

The program is composed of a MAIN routine and four subroutines (RNGKTA, YPRIME, RHOT and PLOT), which perform special tasks.

1. The MAIN Routine

The MAIN reads the input data from the input tape. When a run is made with more than one flights, the computer will read the input data and compute one flight at a time. The cards containing the input data as well as the control cards must be punched correctly and must be in the proper order, as described in Section III-B. Otherwise, the first time that the MAIN finds an error, it will terminate the entire run after writing a comment in the output tape, which will help one to locate the error in the data.
As a further check that the correct data are used, the MAIN will write in the output tape all the data used for the flight before proceeding to the computation of the flight. The input data printed in the output should be examined carefully to make sure that they are identical to the input data fed in the computer.

A flight will be terminated automatically when:

(a) The entire payload, including the gondola, has been dropped. This could happen by excessive "manual" ballasting (see below). A comment will be written in the output tape indicating that this has happened.

(b) The balloon hits the ground.

(c) The time exceeds the final time of the flight specified in the input data.

Then the program will proceed to the next flight.

A flight can be terminated instantly by turning SENSE SWITCH 6 on. The computer will pause. Turn this switch off and press START to proceed to the next flight.

The MAIN does a considerable amount of computation involved in the reduction of the input data to a suitable form and in the required interpolations of the input data. It, also, computes some of the variables in the desired output form and units, as shown in Section III-E, and stores them in the output tape. A unit of output has two lines of print. The second line, which contains the six heat transfer rates, is obtained only when SENSE SWITCH 2 is on.

The MAIN also stores internally, not in the output tape, the information needed by subroutine PLOT, which is called only once before proceeding to the next flight. The information stored consists of five arrays which contain the time (sec) and the corresponding computed altitude (ft) and temperatures (°R) of the fabric and gas as well as the temperature of air (°R). The dimension of these arrays is 400. For a given flight, after these arrays are filled, no more information is stored.

On-line printing of output is controlled by SENSE SWITCH 3. With this switch on, each time the computer stores output in the output tape it also prints on-line the title of the flight and the following information: Greenwich Mean Time, balloon altitude above sea level (ft), balloon velocity (ft/min), valving rate (in pounds of lost lift per second), percent of total gas valved, ballasting rate (lb/sec), percent of total ballast dropped and percent of total gas exhausted. Other information is also printed on-line, as it is required by the program, and, therefore, the on-line print should always be saved.
Automatic valving and ballasting takes place at rates specified in the input data. Additional valving and ballasting ("manual") can be effected during the course of the computation by SENSE SWITCHES 1 and 4, respectively. When SENSE SWITCH 1 is on, the computer will valve gas in addition to that valved automatically at a rate \(VO \) which is specified in the input data. The same is true with SENSE SWITCH 4 and ballasting.

The MAIN also performs exhausting of gas in a rather artificial way. The integration is carried out in steps of time intervals equal to \(H \). At the end of each step, the instantaneous volume of the gas, \(Y(6) \), is compared with the inflated volume of the balloon, \(VBM \), as specified by its manufacturer. If \(Y(6) \) is equal to or smaller than \(VBM \), no gas is exhausted and the computer proceeds to the next step. If \(Y(6) \) is greater than \(VBM \), the exhausting rate is set equal to \(\frac{Y(6) - VBM}{H} \) and the same step is repeated. If again \(Y(6) \) comes out greater than \(VBM \), the exhausting rate is increased by \(\frac{Y(6) - VBM}{H} \), and so on. Twenty such iterations per integrating step are allowed automatically. If at the end \(Y(6) \) is still greater than \(VBM \), the computer will print on-line "ITERATION DOES NOT CONVERGE, etc" and pause. In this position, when START is pressed with SENSE SWITCH 5 on, the computer will enter again the iterative loop for more iterations and so on. On the other hand, when START is pressed with SENSE SWITCH 5 off, the computer will proceed to the following flight. Our experience with this program is that an adequate amount of gas is exhausted with only one iteration per integrating step.

Finally, the MAIN does an energy check, which will be described in Section III-D.

2. Subroutine RNGKTA

The actual integration of the six differential equations is carried out by this subroutine with Gill's fourth order Runge and Kutta method, which is a stable, self starting, accurate numerical integration technique. RNGKTA requires another subroutine, YPRIME, in which the differential equations are stated.

3. Subroutine YPRIME

YPRIME contains the six first order differential equations and evaluates the first derivatives of the dependent variables. It, also, evaluates the various heat transfer rates. Thus, YPRIME is called frequently by MAIN, as well as by RNGKTA, whenever information on the derivatives of the dependent variables or the heat transfer rates is needed.

For the rate of absorption of solar radiation, YPRIME computes the intensity of solar radiation and, when sunrise or sunset occurs at the balloon, it computes the Greenwich Mean Time and writes directly on the output tape the appropriate comment (for instance, GMT = 2.20.13 SUNSET AT BALLOON).
When the balloon goes above the infrared radiation field specified in the input data (type 11), YPRIME will print on-line an appropriate comment and the computer will pause. In this position, if START is pressed, the flight will be continued using the infrared data of the highest altitude for as long as the balloon remains above the specified infrared field. On the other hand, if START is pressed with SENSE SWITCH 6 on, the flight will be terminated.

In computing the convective heat transfer rates due to the atmosphere, YPRIME gets information about the atmosphere from subroutine RHOT.

4. Subroutine RHOT

This subroutine computes the atmospheric temperature and the product of atmospheric temperature and density for given altitude. The computation is done according to formulae developed in Section II-F.

When the balloon goes above the atmospheric temperature profile specified in the input data (type 10), RHOT will print on-line an appropriate comment and the computer will pause. In this position, if START is pressed, the flight will be continued using the atmospheric data of the highest altitude for as long as the balloon remains above the specified atmosphere. On the other hand, if START is pressed with SENSE SWITCH 6 on, the flight will be terminated.

Subroutine RHOT is called frequently by MAIN, as well as by YPRIME, to give information about the atmosphere.

5. Subroutine PLOT

After the completion of the computation of a flight and before proceeding to the next flight, this subroutine is called to store in the output tape information from which the IBM 1401 will produce a plot in graphical form. Subroutine PLOT is furnished to the user in binary card form as the FORTRAN source deck is not available for all the included subroutines.

The grid of the graph is marked with small crosses. The abscissa represents time elapsed from the beginning of the flight in hours, and the ordinate represents altitude above sea level in feet and temperature in °R. There are two compilations of this subroutine: in one, the range of the ordinate is from 0 to 147,500 feet for altitude and from 300 to 595°R for temperature, and in another from 0 to 100,000 feet for altitude and from 300 to 550°R for temperature.

On the produced graph paper, points for the computed and observed balloon altitude and the computed temperatures of the air, fabric and gas are marked with symbols described in the following key:
where \(C \) is the specific heat at constant pressure of the gas.

Notice that Equation 63 relates the rates at which the various forms of energy of the gas-fabric system are exchanged. The interpretation of the various terms is as follows. \(\text{ETOT} \) is the internal energy. \(\text{DKE} \) and \(\text{DPE} \) are the rates of change of kinetic and potential energy, respectively. \(\text{DDRAG} \) is the rate at which energy is expended to overcome drag. \(\text{DEWA} \) is the rate of work done (on the atmosphere) when the balloon expands. \(\text{DEVE} \) is the rate of energy lost when gas is valved and/or exhausted. Finally, the sum of the \(q \) terms is the rate of net heat received by the system.

Let the right hand side of Equation 63 be denoted by \(\text{ER} \). Integrating this equation from time 0 to \(t \), one obtains:

\[
\text{ENET} = \text{ETOT} - \text{ETOT}^1 = \int_0^t \text{ER} \, dt
\]

where \(\text{ETOT}^1 \) is the value of \(\text{ETOT} \) at zero time. Let the integral of Equation 70 be approximated by the following first order formula:

\[
\text{EP} = H \sum_{i=1}^{N} \text{ER}_i
\]

where \(\text{ER}_i \) is the value of \(\text{ER} \) at the end of each time step \(H \).

At the end of each integration by \text{RNGKTA}, the MAIN routine evaluates \(\text{ETOT} \), and, therefore, \(\text{ENET} \) from the integrated variables. Similarly, it evaluates the increment in \(\text{EP} \), which is \(H(\text{ER}_i) \), due to each step and keeps track of the total \(\text{EP} \). Clearly, \(\text{ENET} \) and \(\text{EP} \), thus evaluated, are not equal for two reasons (if all integrations were exact, \(\text{ENET} \) and \(\text{EP} \) would be identical). Firstly, there is an error involved in the integrations done by \text{RNGKTA}. Secondly, there is another error involved in the above approximate first order integration of \(\text{ER} \). To be sure the second error is larger than the first one. Nevertheless, the ratio:

\[
\text{ECHK} = \frac{\text{ENET} - \text{EP}}{\text{ENET}}
\]

which is evaluated by MAIN and stored in the output tape each time output is stored there, has some bearing on the accuracy of \text{RNGKTA}. If \(\text{ECHK} \) is a small number, this means, at least, that \text{RNGKTA} is very accurate.
A - Air Temperature
B - Balloon Gas Temperature
E - Observed Balloon Altitude
F - Balloon Fabric Temperature
L - Overlap of A and B
P - Overlap of A and F
Q - Overlap of B and F
Z - Computed Balloon Altitude
$ - Overlap of E and Z, or of A, B, E, F, Z and Grid.

Since the computer can mark a maximum of sixteen equally spaced points per half hour of abscissa, the uncertainty in time for each marked point can be as large as 1 minute and 53 seconds. Similarly, there is an uncertainty in the ordinate. For instance, with the 0 to 100,000 ft compilation the computer can mark a maximum of six points per 10,000 ft of ordinate and, therefore, the uncertainty for each marked altitude point can be as large as 1,667 ft.

D. ACCURACY OF INTEGRATION

With a program as massive as this program it is highly desirable to have a scheme by which the accuracy of integration can be estimated for given integrating time interval. With such a scheme the integrating time interval can be maximized for a given desired accuracy and, thus, the total computer time per flight can be minimized.

To this end, an energy check is most effective. If Equation 58 times y and Equations 59 and 60 are added and the resulting equation is rearranged, the following energy equation is obtained:

$$\frac{d}{dt} (ETOT) = - DKE + DPE - DDRAG - DEWA + DEVE + q_2 - q_3 + q_4 + q_5 + q_7$$

where:

$$ETOT = C_v w_B T_B + C_F w_F T_F$$

$$DKE = (w_G + w_F + w_B + C_B \rho_A V_B) \frac{\dot{y}}{g} y$$

$$DPE = (\rho_A V_B - w_G - w_F - w_B) y$$

$$DDRAG = \frac{1.21}{2g} \rho_A C_D \left| y \right| y^2 v_B^{2/3}$$
DEWA = $p \dot{V}_B$ \hspace{1cm} (68)

DEVE = $C_p T_B \dot{V}_B$ \hspace{1cm} (69)

where C_p is the specific heat at constant pressure of the gas.

Notice that Equation 63 relates the rates at which the various forms of energy of the gas-fabric system are exchanged. The interpretation of the various terms is as follows. ETOT is the internal energy. DKE and DPE are the rates of change of kinetic and potential energy, respectively. DDRAG is the rate at which energy is expended to overcome drag. DEWA is the rate of work done (on the atmosphere) when the balloon expands. DEVE is the rate of energy lost when gas is valved and/or exhausted. Finally, the sum of the q terms is the rate of net heat received by the system.

Let the right hand side of Equation 63 be denoted by ER. Integrating this equation from time 0 to t, one obtains:

$$ENET = ETOT - ETOT_0 = \int_0^t ER dt \hspace{1cm} (70)$$

where ETOT$_0$ is the value of ETOT at zero time. Let the integral of Equation 70 be approximated by the following first order formula:

$$EP = H \sum_{i=1}^N ER_i \hspace{1cm} (71)$$

where ER$_i$ is the value of ER at the end of each time step H.

At the end of each integration by RNGKTA, the MAIN routine evaluates ETOT, and, therefore, ENET from the integrated variables. Similarly, it evaluates the increment in EP, which is $H(ER_i)$, due to each step and keeps track of the total EP. Clearly, ENET and EP; thus evaluated, are not equal for two reasons (if all integrations were exact, ENET and EP would be identical). Firstly, there is an error involved in the integrations done by RNGKTA. Secondly, there is another error involved in the above approximate first order integration of ER. To be sure the second error is larger than the first one. Nevertheless, the ratio:

$$ECHK = \frac{ENET - EP}{ENET} \hspace{1cm} (72)$$

which is evaluated by MAIN and stored in the output tape each time output is stored there, has some bearing on the accuracy of RNGKTA. If ECHK is a small number, this means, at least, that RNGKTA is very accurate.

Arthur D. Little, Inc.
Many flights have been computed with H equal to 10 and 20 sec. The corresponding values of E_{CHK} are of the order of 0.003 and 0.007.

E. Outputs

As stated in Section III-C, the first part of output is a printout of the input data used for the flight. They are printed in the form shown in Figure 2. Notice that the appropriate control card identification (IT) precedes each type of data. The meaning and units of these data are as described in Section III-B. This printout of data should be checked carefully to make sure that the correct input data have been used by the computer.

The printout of input data is followed by the computed output in the form shown in Figure 3. A unit output contains two lines. The contents of the first line are the values of the variables appearing at the head of each page of output. These variables are:

- Greenwich Mean Time (GMT) in hours, minutes and seconds.
- Time from beginning of flight (TIME) in sec.
- Altitude of balloon from sea level (ALTITUDE) in ft.
- Velocity of balloon (VEL) in ft/min.
- Atmospheric pressure (PRESS) in mbar.
- Atmospheric temperature (TA) in °R.
- Balloon fabric temperature (TF) in °R.
- Balloon gas temperature (TB) in °R.
- Balloon volume (VOLUME) in ft3.
- Weight of payload and balloon fabric (LOAD) in lb.
- Weight of balloon gas (GAS WT) in lb.
- Free lift (FR LIFT) in lb.
- Cumulative ballast dropped (PERB) in percent of initial load (payload plus balloon fabric).
- Cumulative gas valved (PERV) in percent of initial gas weight.
- Cumulative gas exhausted (PERE) in percent of initial gas weight.
- Number of iterations (IRS) required to exhaust an adequate amount of gas during the most recent integrating step.
- Energy check (E_{CHK}) as explained in Section III-D.

The second line of unit output contains the six heating rates in ft3/sec. This line appears in the output only when SENSE SWITCH 2 is on. The heating rates are:

- Rate of absorption of infrared radiation by balloon fabric (IRAB).
- Rate of emission of infrared radiation by balloon fabric (IREM).
- Forced convection heating rate of balloon fabric by air (FCAF).
- Natural convection heating rate of balloon fabric by air (NCAF).
- Natural convection heating rate of balloon fabric by balloon gas (NCGF).
- Rate of absorption of solar radiation by balloon fabric (SLAB).

When sunset or sunrise occurs at the balloon, the Greenwich Mean Time of the occurrence together with the appropriate comment are printed in the output (see Figure 3).
<table>
<thead>
<tr>
<th>IT = 3</th>
<th>250.00000</th>
<th>1.50000</th>
<th>1.50000</th>
<th>1.00000</th>
<th>0.69000</th>
<th>0.69000</th>
<th>0.15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT = 4</td>
<td>11120.00000</td>
<td>3320.00000</td>
<td>5505000.00000</td>
<td>1460.00000</td>
<td>0.30000</td>
<td>0.50000</td>
<td></td>
</tr>
<tr>
<td>IT = 5</td>
<td>542.00000</td>
<td>542.00000</td>
<td>1000.00000</td>
<td>0.00000</td>
<td>19.90000</td>
<td>31.75000</td>
<td>102.50000</td>
</tr>
<tr>
<td>IT = 6</td>
<td>20.00000</td>
<td>900.00000</td>
<td>0.00000</td>
<td>40080.00000</td>
<td>4920.00000</td>
<td>198.39000</td>
<td>300.00000</td>
</tr>
<tr>
<td>IT = 7</td>
<td>0.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT = 8</td>
<td>1.00000</td>
<td>-0.00000</td>
<td>0.30000</td>
<td>0.33000</td>
<td>0.35000</td>
<td>0.38000</td>
<td>0.43000</td>
</tr>
<tr>
<td>IT = 9</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.41670</td>
<td>2.40.00000</td>
<td>0.00000</td>
<td>1.41670</td>
</tr>
<tr>
<td>IT = 10</td>
<td>0.07000</td>
<td>100.00000</td>
<td>542.00000</td>
<td>535.00000</td>
<td>529.00000</td>
<td>513.00000</td>
<td>483.00000</td>
</tr>
</tbody>
</table>

FIGURE 2 INPUT DATA PRINTED IN OUTPUT FOR STRATOSCOPE FLIGHT S4-2
FIGURE 2 cont'd. INPUT DATA PRINTED IN OUTPUT FOR STRATOSCOPE FLIGHT S4-2
<table>
<thead>
<tr>
<th>GMT</th>
<th>TIME</th>
<th>ALTITUDE</th>
<th>VEL</th>
<th>PRESS</th>
<th>TA</th>
<th>TF</th>
<th>TB</th>
<th>VOLUME</th>
<th>LOAD</th>
<th>GAS</th>
<th>WT</th>
<th>FR</th>
<th>LIFT</th>
<th>PEB</th>
<th>PERV</th>
<th>PERE</th>
<th>IRS</th>
<th>CTMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>0.0</td>
<td>0.0</td>
<td>1000</td>
<td>0.0</td>
<td>911.5</td>
<td>542.0</td>
<td>542.0</td>
<td>542.0</td>
<td>263664</td>
<td>14403</td>
<td>2555.2</td>
<td>1460.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.37</td>
<td>0.0</td>
<td>900.0</td>
<td>20267</td>
<td>994.0</td>
<td>479.4</td>
<td>479.3</td>
<td>475.8</td>
<td>444.0</td>
<td>437630</td>
<td>14185</td>
<td>2555.2</td>
<td>355.04</td>
<td>1.8</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.52</td>
<td>0.0</td>
<td>1800.0</td>
<td>37628</td>
<td>1411.0</td>
<td>221.7</td>
<td>406.1</td>
<td>411.7</td>
<td>378.3</td>
<td>778804</td>
<td>14185</td>
<td>2555.2</td>
<td>451.33</td>
<td>1.8</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.0</td>
<td>2700.0</td>
<td>54029</td>
<td>439.0</td>
<td>102.1</td>
<td>366.8</td>
<td>358.1</td>
<td>325.4</td>
<td>1506126</td>
<td>13760</td>
<td>2555.2</td>
<td>57.15</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>0.0</td>
<td>3600.0</td>
<td>60972</td>
<td>462.0</td>
<td>72.1</td>
<td>378.9</td>
<td>368.7</td>
<td>335.9</td>
<td>2201481</td>
<td>13760</td>
<td>2555.2</td>
<td>41.88</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.0</td>
<td>6300.0</td>
<td>79099</td>
<td>-117.0</td>
<td>30.1</td>
<td>400.0</td>
<td>389.2</td>
<td>372.2</td>
<td>5506669</td>
<td>13760</td>
<td>2604.9</td>
<td>-4.49</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3.37</td>
<td>0.0</td>
<td>7200.0</td>
<td>79066</td>
<td>44.0</td>
<td>30.1</td>
<td>399.9</td>
<td>392.6</td>
<td>386.2</td>
<td>5486201</td>
<td>13760</td>
<td>2313.0</td>
<td>60.21</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3.52</td>
<td>0.0</td>
<td>8100.0</td>
<td>79172</td>
<td>-176.0</td>
<td>30.0</td>
<td>400.0</td>
<td>394.0</td>
<td>392.3</td>
<td>5482115</td>
<td>13760</td>
<td>2264.5</td>
<td>8.63</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>9000.0</td>
<td>79217</td>
<td>20.0</td>
<td>30.0</td>
<td>400.0</td>
<td>393.9</td>
<td>393.5</td>
<td>5467683</td>
<td>13760</td>
<td>2259.9</td>
<td>35.15</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>0.0</td>
<td>10800.0</td>
<td>79237</td>
<td>95.0</td>
<td>29.9</td>
<td>400.0</td>
<td>394.0</td>
<td>393.2</td>
<td>5494986</td>
<td>13760</td>
<td>2257.5</td>
<td>-0.22</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4.37</td>
<td>0.0</td>
<td>11700.0</td>
<td>79301</td>
<td>10.0</td>
<td>29.8</td>
<td>400.4</td>
<td>394.0</td>
<td>393.1</td>
<td>5504970</td>
<td>13760</td>
<td>2255.7</td>
<td>-21.97</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4.52</td>
<td>0.0</td>
<td>12600.0</td>
<td>79266</td>
<td>56.0</td>
<td>29.8</td>
<td>400.3</td>
<td>393.9</td>
<td>393.5</td>
<td>5505935</td>
<td>13760</td>
<td>2256.0</td>
<td>-5.69</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>13500.0</td>
<td>79227</td>
<td>-23.0</td>
<td>29.9</td>
<td>400.2</td>
<td>393.9</td>
<td>393.9</td>
<td>5495051</td>
<td>13760</td>
<td>2254.5</td>
<td>10.69</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5.22</td>
<td>0.0</td>
<td>14400.0</td>
<td>79242</td>
<td>29.0</td>
<td>29.9</td>
<td>400.3</td>
<td>393.9</td>
<td>393.9</td>
<td>5497670</td>
<td>13760</td>
<td>2254.3</td>
<td>6.39</td>
<td>4.7</td>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Sample of printed output
Following the printed output, the output contains a plot as shown in Figure 4. The contents of this plot have already been explained in Section III-C5, where subroutine PLOT was described.

When a flight is aborted because of errors in the data, the output contains comments which will help one to locate the errors.

F. OTHER OPERATING INSTRUCTIONS

In accordance with the requirements of the FORTRAN MONITOR SYSTEM (FMS), a few starred cards must be used in the order indicated below when the program is run with FMS.

*IDENTIFICATION CARD
*XEQ
MAIN ROUTINE DECK
SUBROUTINE RNGKTA DECK
SUBROUTINE YPRIME DECK
SUBROUTINE RHOT DECK
SUBROUTINE PLOT DECK
*DATA
INPUT DATA DECK

The asterisk of the starred cards must be in column 1, and their contents must start from column 7.

The tapes that are used in FMS are A2 (logical 5) for input and A3 (logical 6) for output.

The functions of the six sense switches of FMS, when they are on, have been described in Section III-C. In summary, the functions of these switches are:

SS1: "Manual" valving of gas, in addition to automatic valving, at rate VO.
SS2: Heating rates are printed in output.
SS3: On-line print of output.
SS4: "Manual" ballasting, in addition to automatic ballasting, at rate BO.
SS5: Iterations for exhausting gas will be continued.
SS6: Present flight is discontinued.
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Air Temperature</td>
</tr>
<tr>
<td>B</td>
<td>Gas Temperature</td>
</tr>
<tr>
<td>C</td>
<td>Observed Altitude</td>
</tr>
<tr>
<td>D</td>
<td>Fabric Temperature</td>
</tr>
<tr>
<td>E</td>
<td>Overlap of A and B</td>
</tr>
<tr>
<td>F</td>
<td>Overlap of S and P</td>
</tr>
<tr>
<td>G</td>
<td>Computed Altitude</td>
</tr>
<tr>
<td>H</td>
<td>Overlap of F and G</td>
</tr>
<tr>
<td>I</td>
<td>or of A, B, E, F, G, S, P, and Grid</td>
</tr>
</tbody>
</table>

Figure 4 PLOTTED OUTPUT FOR STRATOSCOPE FLIGHT S4-2

Arthur D. Little, Inc.
FIGURE 4 cont'd. PLOTTED OUTPUT FOR STRATOSCOPE FLIGHT S4-2

Arthur D. Little, Inc.
IV. CORRELATION OF COMPUTED AND ACTUAL FLIGHTS

A. A BRIEF DISCUSSION OF THE APPROXIMATIONS IN THE MODEL AND OF THE UNCERTAINTIES IN THE INPUT DATA

To appreciate the correlation of a computed with an actual flight, one should have a good understanding of the mathematical model and of the computer program. Then one would be in a position to know the degree of correlation he should expect. In developing the mathematical model we have made many simplifications, some of them quite gross, of the actual balloon. In addition, the computer program requires a certain amount of specified quantities (input data), and the question arises as to how accurately these data should and could be specified. In this section, we will review briefly the approximations contained in the mathematical model and the factors which, according to the model, play a very important role in balloon performance. Then, in the following section, we will present the correlation of some recent balloon flights with those computed by our program.

In calculating the dynamic parameters of the balloon (drag and apparent additional mass) and all the heat transfer rates (convective and radiant), we have considered the balloon to be a sphere with the same volume as the actual balloon. To compensate for this rough approximation, we have introduced correction factors whose values have been determined by correlation of actual balloon flights with an acceptable degree of accuracy.

Thus, the drag coefficient of the balloon, based on the cross-sectional area of the equivalent sphere, has been taken equal to 0.3, 50% smaller than the drag coefficient of a sphere, since it is expected that a balloon must have less drag than the equivalent sphere. The coefficient of apparent additional mass, based on the mass of the displaced air, has been taken equal to 0.5, which is equal to that of a sphere in potential flow (viscous effects have been neglected). Evidently, this is a reasonable approximation, since this coefficient depends on volume more than it depends on cross-section.

Besides the spherical model approximation, more approximations have been introduced in the calculation of the convective heat transfer rates. For forced convection, it has been assumed that a known formula for spheres in laminar flow is applicable to balloons, even through the Reynolds number of balloons is usually higher than the Reynolds numbers covered by this formula. In fact, due to high Reynolds numbers, the flow of air around a balloon is quite turbulent, which means that the heat transfer is greater than that given by this formula. Thus, we have taken the correction constant equal to 1.5. For free convection, it has been assumed that known formulae which hold for vertical plates and cylinders are applicable to balloons with the diameter of the spherical balloon equal to the height of the plate. The correction
constants have been taken equal to 1.5 and 1.0 for the air-side and gas-side, respectively, since it is expected that the air-side must have greater heat transfer than the gas-side.

For the radiant heat transfers, we believe that the spherical model is quite accurate and, therefore, we have not introduced any correction constants explicitly. However, corrections can be introduced through the effective absorptivities and emissivities.

Another basic approximation introduced in the theory is that both the gas and the fabric are characterized by an average temperature. The main support for the validity of this approximation stems from the fact that balloons experience very violent rotations, which tend to mix the gas as well as to equalize the temperature of the fabric and the amount of solar radiation incident on the fabric as a whole. However, any heat transfer associated with the rotations of balloons has not been considered in the mathematical model. Heat transfer as well as other effects associated with the horizontal drift of balloons have also been neglected.

As pointed out earlier, the exhausting process of the model is quite artificial. This may give, sometimes, a bad correlation as the balloon arrives at its ceiling.

There are quite a few parameters which play an important role in balloon performance and which must be specified in the computer program as input data. One of the most important ones is the initial free lift. It has a pronounced effect on the rise of a balloon to its ceiling. The initial free lift is computed by subtracting the weight of the payload from the gross lift (minus weight of fabric) which is measured on ground with a scale. Usually, the initial free lift is not more than about 10% of the gross lift. If there is a 1% error in both the measurement of the payload and the measurement of the gross lift, the uncertainty in free lift can be as large as 20%.

The initial values of temperature of the balloon gas and fabric must be specified as input data. For a balloon which has just been filled with gas and is waiting to be released, specifying these temperatures is not an easy task. In our practice of the computer program we have been taking both of these temperatures approximately equal to the air temperature at ground level. These temperatures have an important effect on balloon performance only during the initial part of the ascent phase.

The effective absorptivity of the balloon for solar radiation and its effective emissivity and absorptivity in infrared are three more crucial factors which are sometimes difficult to specify very accurately. This is so because these parameters are effective for multiple passes of radiation, the balloon gas being considered transparent. The one-pass absorptivity or emissivity of a fabric can be measured very accurately. But, in order to calculate the effective multiple-pass absorptivity or emissivity, the one-pass reflectivity of the fabric must also be known (see Section II.H.1). Accurate measurement of reflectivity is not an
easy task.

The black ball equilibrium radiation temperature must also be specified accurately, since a 2.5% uncertainty in this temperature (say, 10\(^\circ\)R in a nominal temperature of 400\(^\circ\)R) would give an uncertainty of 10% in radiation intensity. Infrared radiation plays an important role in balloon performance, especially in the absence of solar radiation, as is the case quite often for a major part of the flight of large balloons. In order to specify this temperature accurately, a black ball flight should be made before launching a balloon. If such a flight is not possible and there is no other way of specifying this radiation field, as for instance from black ball measurements made at the launch site or another similar site under similar seasonal conditions, the rule prescribed in Section II.H.2 should be followed in specifying this field. In any case, a change in the radiation temperature of the above order can easily take place overnight.

Air temperature data play a very important role, but usually they can be specified accurately. The same is true for valving and ballasting data.

Finally, it should be pointed out that observed balloon altitude is computed usually from pressure measurements using the hydrostatic law and a standard atmosphere for atmospheric temperature. It can be shown that possible deviations of the atmospheric temperature from that of a standard atmosphere can give changes in altitude of the order of a couple of thousand feet for altitudes above 25,000 ft. or so.

B. FLIGHT CORRELATION

Three recent flights are correlated and discussed in this section. Other flights have been treated in our previous report (Ref. 2). These three flights include a variety of effects: sunset, sunrise, ascent, overnight performance, descent, valving, ballasting, different fabric materials, etc. Fairly accurate and reliable input data can be prescribed for all of them. Keeping in mind the discussion in the preceding section, one can say that the correlation of computed and observed balloon trajectories is reasonable and in fact very good.

The correlation of these and other flights was obtained with the following values of the five correction constants:

\[
\begin{align*}
CB & = 0.5 \\
CD & = 0.3 \\
C4 & = 1.5 \\
C5 & = 1.5 \\
C6 & = 1.0
\end{align*}
\]

These values are compatible with theoretical considerations as it was pointed out in the preceding section. We recommend that these values be used in predicting balloon performance.
1. **Stargazer Manned Flight**

This balloon was launched from Holloman Air Force Base, New Mexico on December 13, 1962. It was launched at 1100 MST, reached its ceiling of 81,000 ft. in about 90 minutes and dropped to 71,000 ft. after sunset which occurred about 6 hours and 20 minutes after launch.

The input data used for this flight are shown in Figure 5. The fabric of the balloon was GT-12 (mylar and scrim), which has a specific heat of 250 ft lb /lb °R. Notice the value of 0.69 for ABIR and EMIR and the value of 0.15 for ABUV. These values were estimated by our computer program (see Section II.H.1) and then were corrected somewhat for best flight correlation. Notice, also that the initial gas and fabric temperatures (519°R) are 90°R above the air temperature at ground level. The initial free lift specified in the flight data was 6% of the gross load. To obtain a reasonable correlation in the ascent phase, the initial free lift has been increased to 9.6% of gross load or 650 lb. The infrared radiation field (IT = 11) is specified according to the approximate rule given in Section II.H.2. Ballasting and valving are identical to those of the actual flight. The air temperature data were given by the Holloman base.

The correlation of computed and actual flights is shown in Figure 6. Notice that the agreement is excellent not only in the ascent phase but also during and after sunset. In the computed flight, 14.5% of the initial gas was exhausted by the time the balloon was stabilized at its ceiling. An additional 0.7% was exhausted when, in anticipation of sunset, ballasting took place a little prematurely. Thus, a total of 15.2% of gas was exhausted as compared to 0.9% valved as the balloon was reaching its ceiling. The amount of ballast dropped during sunset was 7.2% of gross load.

2. **Thermistor Flight**

This flight was sponsored by ONR and was launched by NCAR from Page, Arizona, on October 18, 1964. Arthur D. Little, Inc., requested this flight in order to measure the temperature of the balloon gas as well as the temperature of air at various distances from the balloon. This was accomplished by various thermistors which were placed by Arthur D. Little, Inc., in and near the balloon. The principal objective of this flight was to acquire knowledge about the temperature of the balloon gas and to compare this temperature with gas temperatures computed by our program. Such a comparison is the ultimate check of the validity and accuracy of our model. A description of the flight and the instrumentation will be published in the near future.

A print-out of the input data is shown in Figure 7. The fabric of the balloon was 1.5 mil polyethylene film. Its specific heat is equal to 428 ft lb /lb °R. The radiative parameters of this fabric (0.17 and 0.10) have been estimated with our computer program (see Section II.H.1). The initial temperature of the balloon gas (519°R) and of the balloon.

45

Arthur D. Little, Inc.
FIGURE 5 INPUT DATA FOR STARGAZER MANNED FLIGHT
<table>
<thead>
<tr>
<th>T</th>
<th>Input Data for Stargazer Manned Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT=10</td>
<td>0.06694 509.85000 506.15000 389.07000 370.35000 367.67000 365.67000 383.67000 419.67000</td>
</tr>
<tr>
<td>IT=11</td>
<td>4290.00000 39498.00000 500.00000 392.00000</td>
</tr>
<tr>
<td>IT=13</td>
<td>-0.5 50000.00000 1.00000 1.00000</td>
</tr>
</tbody>
</table>

FIGURE 5 cont'd. INPUT DATA FOR STARGAZER MANNED FLIGHT
FIGURE 6 PLOTTED OUTPUT FOR STARGAZER MANNED FLIGHT
Figure 6 cont’d. PLOTTED OUTPUT FOR STARGAZER MANNED FLIGHT

- **Date**: 6 cont’d
- **REX**: 5
- **A**: Air Temperature
- **B**: Gas Temperature
- **C**: Observed Attitude
- **D**: Pitot Temp.
- **E**: Overlay of A and B
- **F**: Overlay of A and F
- **G**: Overlay of A and C
- **H**: Composed Attitude
- **I**: Overlay of B and E
- **J**: Overlay of A, B, E, F, and G

Arthur D. Little, Inc.
FIGURE 7 INPUT DATA FOR THERMISTOR FLIGHT

<table>
<thead>
<tr>
<th>IT</th>
<th>428.00000</th>
<th>1.50000</th>
<th>1.50000</th>
<th>1.00000</th>
<th>0.17000</th>
<th>0.17000</th>
<th>0.10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>325.00000</td>
<td>189.00000</td>
<td>250000.00000</td>
<td>10.00000</td>
<td>0.30000</td>
<td>0.50000</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>519.00000</td>
<td>525.00000</td>
<td>4300.00000</td>
<td>0.</td>
<td>-9.80000</td>
<td>37.00000</td>
<td>111.45000</td>
</tr>
<tr>
<td>IT</td>
<td>10.00000</td>
<td>150.00000</td>
<td>0.</td>
<td>6600.00000</td>
<td>57840.00000</td>
<td>73.72000</td>
<td>300.00000</td>
</tr>
<tr>
<td>IT</td>
<td>0.</td>
<td>1.00000</td>
<td>20000.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>1.00000</td>
<td>0.</td>
<td>20000.00000</td>
<td>0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>0.</td>
<td>0.900000000</td>
<td>0.600000000</td>
<td>0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>4020.00000</td>
<td>0.600000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>4030.00000</td>
<td>-0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>4440.00000</td>
<td>0.800000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>4450.00000</td>
<td>-0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>20000.00000</td>
<td>-0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>0.06520</td>
<td>525.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>10680.00000</td>
<td>510.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>18935.00000</td>
<td>472.980000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>21107.00000</td>
<td>466.810000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>22193.00000</td>
<td>459.920000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>24555.00000</td>
<td>454.040000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>25776.00000</td>
<td>447.520000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>26594.00000</td>
<td>445.070000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>27568.00000</td>
<td>439.420000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>28936.00000</td>
<td>435.520000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>29260.00000</td>
<td>432.770000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>30181.00000</td>
<td>429.310000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>31131.00000</td>
<td>424.520000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>31882.00000</td>
<td>420.930000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>32651.00000</td>
<td>415.640000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>33519.00000</td>
<td>411.770000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>34331.00000</td>
<td>407.810000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>35166.00000</td>
<td>404.430000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>36028.00000</td>
<td>400.610000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>36916.00000</td>
<td>396.650000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>37742.00000</td>
<td>394.050000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>38691.00000</td>
<td>389.860000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>39574.00000</td>
<td>386.190000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>40386.00000</td>
<td>383.440000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>41226.00000</td>
<td>382.130000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>41830.00000</td>
<td>384.320000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>42672.00000</td>
<td>387.650000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>43506.00000</td>
<td>385.070000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>44362.00000</td>
<td>380.940000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>45117.00000</td>
<td>377.170000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>46027.00000</td>
<td>372.880000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>47107.00000</td>
<td>369.290000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>48909.00000</td>
<td>368.410000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>48540.00000</td>
<td>373.030000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>49309.00000</td>
<td>377.170000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4300.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41300.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>515.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>382.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4300.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9073.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14125.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21106.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31131.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41226.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51633.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61360.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70892.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75925.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79177.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81779.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83134.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83933.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 7 cont'd. INPUT DATA FOR THERMISTOR FLIGHT

Arthur D. Little, Inc.
fabric (525°R) were deduced from the measurements of some thermistors. Notice that the gas is colder than the fabric, the latter being at ground air temperature. The air temperature data are actual temperature measurements made by a thermistor hanging below the gondola. The infrared radiation data are specified according to the approximate rule given in Section II.H.2. The observed altitude data (IT = 12) were computed from measurements of both atmospheric temperature and pressure using the hydrostatic law. Therefore, we believe that they are very accurate.

The correlation of computed and actual flights is excellent as shown in Figure 8. Unfortunately, the thermistor measuring air temperature ceased to function properly after the balloon reached its ceiling and, therefore, we cannot continue the correlation to the end of the ceiling phase. Four hours and twenty minutes after launch, the cut-down command was given and the flight was terminated. The payload was brought to ground by parachute.

The correlation of computed and measured temperatures is shown in Figure 9. Several thermistors were suspended inside the balloon along its centerline. Only the upper three functioned properly throughout the entire flight. They were at a fixed distance of 7, 19 and 31 feet from the top of the balloon. The relation of the temperature of each thermistor to the average temperatures of the gas and fabric depends, of course, on the position of the thermistor with respect to the volume of the balloon. The position of each thermistor during the flight can be deduced roughly from the sketch on the lower right of Figure 9, in which the balloon is represented grossly by a sphere. The diameter of the balloon was about 26, 46, and 80 feet at ground, tropopause and ceiling, respectively. Thus, at ground, the lower thermistor was buried in the loose fabric.

With the aid of this sketch, a careful examination of Figure 9 shows that the correlation of computed average temperatures and measured temperatures is very good. The maximum deviation, at some parts of the flight, is less than 10°R. During most of the flight, the deviation is much less than 1°R.

We think that this flight has given considerable support to the validity of our analysis, and that it has verified our long held view that the fabric of balloons experiences rather low temperatures through tropopause. The temperature of the top thermistor must be closely coupled to the fabric temperature. As shown in Figure 9, the fabric of this balloon was at a temperature of about 380°R (-78°F) at tropopause.

The small oscillations in the computed temperatures at tropopause are due to corresponding oscillations in the input air temperature data.

3. Stratoscope Flight S4-2

Stratoscope II Flight S-4 (Photo) was launched from Palestine, Texas, on July 23, 1965, at 122 GMT. It reached its ceiling of 80,000 ft
<table>
<thead>
<tr>
<th>Elapsed Time - Hours</th>
<th>50</th>
<th>525</th>
<th>550</th>
<th>575</th>
<th>600</th>
<th>625</th>
<th>650</th>
<th>675</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 8: Plotted Output for Thermistor Flight

Key:
- A: Air Temperature
- B: Gas Temperature
- F: Fabric Temperature
- L: Overlap of A and B
- G: Overlap of B and F
- Z: Combined Altitude
- S: Overlap of E, F, G, B, and F

Arthur D. Little, Inc.
FIGURE 9 TEMPERATURE CORRELATION OF THERMISTOR FLIGHT. SKETCH AT LOWER RIGHT SHOWS THE POSITION OF THE THREE THERMISTORS WITH RESPECT TO BALLOON VOLUME.
after one hour and twenty-five minutes, approximately 35 min after balloon sunset. It dropped about 3,000 ft during the night. It was brought down the next day during sunrise.

The input data are shown in Figure 2. The fabric of the balloon was GT-12 (mylar and scrim). Notice that the fabric properties are identical to those of the Stargazer Manned Flight. The initial free lift (1,460 lb) is exactly the value specified in the flight data. The initial balloon gas and fabric temperatures (542° R) are taken equal to air temperature at ground level. The air temperature data are not measured values for Palestine. They were computed from the table of Reference 12 pertaining to the July subtropical atmosphere (30° N). The infrared data have been computed according to the approximate rule given in Section II-H.2.

The correlation of actual and computed flights is shown in Figure 4. Considering the fact that standard instead of actual atmospheric data have been used, the correlation is fairly good during the ascent and early ceiling phases. From this correlation and from the excellent correlation of the Stargazer Manned Flight, it appears that the following values for the properties of the GT-12 (mylar and scrim) fabric are acceptable:

\[C_1 = 250 \text{ ftlb/}^{\circ}\text{R} \]

\[\text{ABIR} = 0.69 \]

\[\text{EMIR} = 0.69 \]

\[\text{ABUV} = 0.15 \]

A better correlation during the latter part of the ceiling phase can be obtained by reducing the infrared radiation during the night. This can be achieved through the infrared radiation factor data (IT = 13). Leaving all the other data as they are and changing the infrared radiation factor data as follows:

\[\begin{array}{c|c}
0.0 & 1.0 \\
7200.0 & 1.0 \\
36000.0 & 0.9 \\
41000.0 & 1.0 \\
\end{array} \]

we obtain the correlation shown in Figure 10. The above data mean that from 2 to 10 hours after launch the infrared radiation incident on the balloon is reduced by 10%. This means that the black ball radiation temperature is about 10° R less than that given in the input data (IT = 11).
FIGURE 10 PLOTTED OUTPUT FOR STRATOSCOPE FLIGHT S4-2 WITH REDUCED (by 10%) INFRARED RADIATION DURING NIGHT

Arthur D. Little, Inc.
Figure 10 cont’d. PLOTTED OUTPUT FOR STRATOSCOPE FLIGHT S4-2 WITH REDUCED (by 10%) INFRARED RADIATION DURING NIGHT.
Such a change in the infrared radiation field from day to night has, in fact, been noticed (see Section II-H.2). Notice that the correlation during the night is now much better. Evidently, reduction of infrared radiation caused the actual balloon to drop 3,000 ft during the night.

The correlation of the last part of the descent phase is not good. This must be due to the fact that there is some uncertainty in the time of closing of the helium valve.
REFERENCES

LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Fortran</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(A)</td>
<td>Effective area of balloon in direction of motion, cross-sectional area of spherical balloon.</td>
<td>(\text{ft}^2)</td>
</tr>
<tr>
<td>(b_n)</td>
<td>(BZB(I))</td>
<td>See Equation 25.</td>
<td>(\circ R)</td>
</tr>
<tr>
<td>(B)</td>
<td>(B)</td>
<td>Ballasting rate.</td>
<td>(\text{lb/sec})</td>
</tr>
<tr>
<td>(C_B)</td>
<td>(CB)</td>
<td>Apparent additional mass coefficient of balloon.</td>
<td></td>
</tr>
<tr>
<td>(C_D)</td>
<td>(CD)</td>
<td>Drag coefficient of balloon.</td>
<td></td>
</tr>
<tr>
<td>(C_F)</td>
<td>(C_1)</td>
<td>Specific heat of balloon fabric.</td>
<td>(\text{ftlb/lb}^\circ R)</td>
</tr>
<tr>
<td>(C_P)</td>
<td>(CP)</td>
<td>Specific heat of balloon gas at constant pressure.</td>
<td>(\text{ftlb/lb}^\circ R)</td>
</tr>
<tr>
<td>(C_V)</td>
<td>(CV)</td>
<td>Specific heat of balloon gas at constant volume.</td>
<td>(\text{ftlb/lb}^\circ R)</td>
</tr>
<tr>
<td>(C_4)</td>
<td>(C_4)</td>
<td>Correction constant for forced convection heat transfer from air to balloon fabric.</td>
<td></td>
</tr>
<tr>
<td>(C_5)</td>
<td>(C_5)</td>
<td>Correction constant for free convection heat transfer from air to balloon fabric.</td>
<td></td>
</tr>
<tr>
<td>(C_6)</td>
<td>(C_6)</td>
<td>Correction constant for free convection heat transfer from balloon gas to balloon fabric.</td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>(D)</td>
<td>Diameter of spherical balloon.</td>
<td>(\text{ft})</td>
</tr>
<tr>
<td>(\dot{D}_{DRAG})</td>
<td>(DDRAG)</td>
<td>Rate of energy spent to overcome drag.</td>
<td>(\text{ftlb/sec})</td>
</tr>
<tr>
<td>(\text{DEC})</td>
<td>(DEC)</td>
<td>Declination of sun.</td>
<td>(\text{deg})</td>
</tr>
<tr>
<td>(\dot{DEVE})</td>
<td>(DEVE)</td>
<td>Rate of energy lost when gas is valved and/or exhausted.</td>
<td>(\text{ftlb/sec})</td>
</tr>
<tr>
<td>(\dot{DEWA})</td>
<td>(DEWA)</td>
<td>Rate of work done by balloon gas on atmosphere when balloon expands.</td>
<td>(\text{ftlb/sec})</td>
</tr>
<tr>
<td>(DKE)</td>
<td>(DKE)</td>
<td>Rate of change of kinetic energy of balloon.</td>
<td>(\text{ftlb/sec})</td>
</tr>
<tr>
<td>(DPE)</td>
<td>(DPE)</td>
<td>Rate of change of potential energy of balloon.</td>
<td>(\text{ftlb/sec})</td>
</tr>
<tr>
<td>(\dot{E})</td>
<td>(E)</td>
<td>Rate of volumetric gas flow due to exhausting.</td>
<td>(\text{ft}^3/\text{sec})</td>
</tr>
<tr>
<td>(ECHK)</td>
<td>(ECHK)</td>
<td>Energy check ratio of integration (see Section III-D).</td>
<td></td>
</tr>
<tr>
<td>(ENET)</td>
<td>(ENET)</td>
<td>Difference of internal energy of gas and fabric from that at beginning of flight.</td>
<td>(\text{ftlb})</td>
</tr>
<tr>
<td>(EP)</td>
<td>(EP)</td>
<td>Same as ENET, but found from integration (see Section III-D).</td>
<td>(\text{ftlb})</td>
</tr>
<tr>
<td>(ER)</td>
<td>(ER)</td>
<td>Rate of change of mechanical and thermal energy of balloon.</td>
<td>(\text{ftlb/sec})</td>
</tr>
<tr>
<td>Algebraic</td>
<td>Fortran</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>ER<sub>i</sub></td>
<td>ER</td>
<td>Value of ER at the end of each step of integration.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>ETOT</td>
<td>ETOT</td>
<td>Internal energy of balloon gas and fabric.</td>
<td>ftlb</td>
</tr>
<tr>
<td>ETOT<sub>i</sub></td>
<td>ETOT<sub>i</sub></td>
<td>Value of ETOT at beginning of flight.</td>
<td>ftlb</td>
</tr>
<tr>
<td>FL</td>
<td>FL</td>
<td>Free lift.</td>
<td>lb</td>
</tr>
<tr>
<td>g</td>
<td>G</td>
<td>Acceleration of gravity (= 32.2).</td>
<td>ft/sec<sup>2</sup></td>
</tr>
<tr>
<td>GHA</td>
<td>GHA</td>
<td>Greenwich hour angle at beginning of flight.</td>
<td>deg</td>
</tr>
<tr>
<td>GL</td>
<td>GL</td>
<td>Gross lift.</td>
<td>lb</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>Coefficient of heat transfer.</td>
<td>ftlb/ft<sup>2</sup>sec<sup>0</sup>R</td>
</tr>
<tr>
<td>k</td>
<td>k</td>
<td>Thermal conductivity.</td>
<td>ftlb/ft<sup>2</sup>sec<sup>0</sup>R</td>
</tr>
<tr>
<td>k<sub>A</sub></td>
<td>CAIR</td>
<td>Thermal conductivity of air.</td>
<td>ftlb/ft<sup>2</sup>sec<sup>0</sup>R</td>
</tr>
<tr>
<td>k<sub>H</sub></td>
<td>CHE</td>
<td>Thermal conductivity of balloon gas.</td>
<td>ftlb/ft<sup>2</sup>sec<sup>0</sup>R</td>
</tr>
<tr>
<td>L<sub>V</sub></td>
<td>V</td>
<td>Lost lift per unit time due to valving.</td>
<td>lb/sec</td>
</tr>
<tr>
<td>LAT</td>
<td>XLAT</td>
<td>Latitude of balloon.</td>
<td>deg</td>
</tr>
<tr>
<td>LHA</td>
<td>LHA</td>
<td>Local hour angle.</td>
<td>deg</td>
</tr>
<tr>
<td>LONG</td>
<td>XLONG</td>
<td>Longitude of balloon.</td>
<td>deg</td>
</tr>
<tr>
<td>m</td>
<td>ATM</td>
<td>Air mass.</td>
<td></td>
</tr>
<tr>
<td>m<sub>0</sub></td>
<td>AIRM</td>
<td>Air mass at sea level.</td>
<td></td>
</tr>
<tr>
<td>m<sub>1</sub></td>
<td>AIRM1</td>
<td>Air mass for point B in Figure 1.</td>
<td></td>
</tr>
<tr>
<td>m<sub>2</sub></td>
<td>AIRM2</td>
<td>Air mass corresponding to the supplement of actual azimuth angle of sun.</td>
<td></td>
</tr>
<tr>
<td>M<sub>A</sub></td>
<td>XMA</td>
<td>Molecular weight of air.</td>
<td></td>
</tr>
<tr>
<td>M<sub>B</sub></td>
<td>XMB</td>
<td>Molecular weight of balloon gas.</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>Index.</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>P</td>
<td>Atmospheric pressure.</td>
<td>lb/ft<sup>2</sup></td>
</tr>
<tr>
<td>p<sub>n</sub></td>
<td>PZER</td>
<td>Atmospheric pressure at altitude z<sub>n</sub>.</td>
<td>lb/ft<sup>2</sup></td>
</tr>
<tr>
<td>p<sub>0</sub></td>
<td>PZER</td>
<td>Atmospheric pressure at ground level.</td>
<td>lb/ft<sup>2</sup></td>
</tr>
<tr>
<td>p<sub>1</sub></td>
<td>P21</td>
<td>Atmospheric pressure at point B in Figure 1.</td>
<td>lb/ft<sup>2</sup></td>
</tr>
<tr>
<td>Pr<sub>A</sub></td>
<td>Prondtl number of air.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr<sub>H</sub></td>
<td>Prondtl number of balloon gas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q<sub>2</sub></td>
<td>DEH2</td>
<td>Rate of absorption of infrared radiation by balloon fabric.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>q<sub>3</sub></td>
<td>DEH3</td>
<td>Rate of emission of infrared radiation by balloon fabric.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>Algebraic</td>
<td>Fortran</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>q_4</td>
<td>DEH4</td>
<td>Rate of heating of balloon fabric by air through forced convection.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>q_5</td>
<td>DEH5</td>
<td>Rate of heating of balloon fabric by air through free convection.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>q_6</td>
<td>DEH6</td>
<td>Rate of heating of balloon fabric by balloon gas through free convection.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>q_7</td>
<td>DEH7</td>
<td>Rate of absorption of solar radiation by balloon fabric.</td>
<td>ftlb/sec</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>Energy supplied to a system.</td>
<td>ftlb</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>Gas constant per mol ($= 1,545$), or average reflectivity of balloon fabric, or $R_{	ext{ETH}}$ average radius of earth ($= 20,903,520$).</td>
<td>ftlb/lbmol0R</td>
</tr>
<tr>
<td>R_{r}</td>
<td></td>
<td>Infrared average reflectivity of balloon fabric.</td>
<td>ft</td>
</tr>
<tr>
<td>R_e</td>
<td></td>
<td>Reynolds number.</td>
<td></td>
</tr>
<tr>
<td>s_n</td>
<td>TZA(I)</td>
<td>See Equation 24.</td>
<td>$^0R/ft$</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Surface area of spherical balloon.</td>
<td>ft2</td>
</tr>
<tr>
<td>t</td>
<td>X</td>
<td>Time from beginning of flight.</td>
<td>°C</td>
</tr>
<tr>
<td>T</td>
<td>TRANS</td>
<td>Intensity of solar radiation relative to that outside atmosphere.</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>TA</td>
<td>Temperature of air.</td>
<td>0R</td>
</tr>
<tr>
<td>T_B</td>
<td>Y(4)</td>
<td>Temperature of balloon gas.</td>
<td>0R</td>
</tr>
<tr>
<td>T_F</td>
<td>Y(3)</td>
<td>Temperature of balloon fabric.</td>
<td>0R</td>
</tr>
<tr>
<td>T_n</td>
<td>TZA(I)</td>
<td>Temperature of air at altitude Z_2.</td>
<td>0R</td>
</tr>
<tr>
<td>T_r</td>
<td></td>
<td>Black ball equilibrium radiation temperature.</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>Internal energy of a system.</td>
<td>ftlb</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Rate of volumetric gas flow due to valving.</td>
<td>ft3/sec</td>
</tr>
<tr>
<td>V_B</td>
<td>Y(6)</td>
<td>Volume of balloon.</td>
<td>ft3</td>
</tr>
<tr>
<td>W_B</td>
<td>Y(5)</td>
<td>Weight of balloon gas.</td>
<td>lb</td>
</tr>
<tr>
<td>W_G</td>
<td></td>
<td>Weight of payload.</td>
<td>lb</td>
</tr>
<tr>
<td>W_F</td>
<td>WF</td>
<td>Weight of balloon fabric.</td>
<td>lb</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>Work done by a system.</td>
<td>ftlb</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Product of Grashof and Prandtl numbers.</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical velocity of balloon.</td>
<td>ft/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude of balloon above sea level.</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitudes at which atmospheric input data are given.</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude of ground above sea level.</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude of point B in Figure 1.</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average absorptivity of balloon fabric.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared average absorptivity of balloon fabric.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective infrared absorptivity of balloon fabric for multiple absorption.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective ultraviolet absorptivity of balloon fabric for multiple absorption (solar radiation).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azimuth angle of sun.</td>
<td>deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average emissivity of balloon fabric.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective average emissivity of balloon fabric for multiple emission.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared average emissivity of balloon fabric.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective infrared emissivity of balloon fabric for multiple emission.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity of air.</td>
<td>lb/ftsec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity of balloon gas.</td>
<td>lb/ftsec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of air.</td>
<td>lb/ft³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of balloon gas.</td>
<td>lb/ft³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of air at altitude z_n.</td>
<td>lb/ft³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stefan - Boltzmann constant ($= 3.6995 \times 10^{-10}$).</td>
<td>ft lb/ft² sec⁰ R⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared average transmissivity of balloon fabric.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebraic</td>
<td>Fortran</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>AH</td>
<td></td>
<td>Hours part of Greenwich Mean Time.</td>
<td>hours</td>
</tr>
<tr>
<td>AM</td>
<td></td>
<td>Minutes part of Greenwich Mean Time.</td>
<td>min</td>
</tr>
<tr>
<td>AS</td>
<td></td>
<td>Seconds part of Greenwich Mean Time.</td>
<td>sec</td>
</tr>
<tr>
<td>BO</td>
<td></td>
<td>Manual ballasting rate.</td>
<td>lb/sec</td>
</tr>
<tr>
<td>BB(I)</td>
<td></td>
<td>Array of specified automatic ballasting rates</td>
<td>lb/sec</td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td>Cosine of azimuth angle of sun.</td>
<td></td>
</tr>
<tr>
<td>CCIR</td>
<td></td>
<td>Infrared radiation factor.</td>
<td></td>
</tr>
<tr>
<td>CCSI(I)</td>
<td></td>
<td>Array of specified solar radiation factors.</td>
<td></td>
</tr>
<tr>
<td>CLATD</td>
<td></td>
<td>Cosine of LAT times cosine of DEC.</td>
<td></td>
</tr>
<tr>
<td>CIR(I)</td>
<td></td>
<td>Array of specified infrared radiation factors.</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td></td>
<td>Solar radiation factor.</td>
<td></td>
</tr>
<tr>
<td>DCIRD(I)</td>
<td></td>
<td>Array of computed slopes of infrared radiation factor.</td>
<td>sec^-1</td>
</tr>
<tr>
<td>DIRDZ(I)</td>
<td></td>
<td>Array of computed slopes of FIR(I).</td>
<td>ftlb/ft^3 sec</td>
</tr>
<tr>
<td>DP</td>
<td></td>
<td>Plotting time interval.</td>
<td>sec</td>
</tr>
<tr>
<td>DPR</td>
<td></td>
<td>Printing time interval.</td>
<td>sec</td>
</tr>
<tr>
<td>DSIDT(I)</td>
<td></td>
<td>Array of computed slopes of solar radiation factor.</td>
<td>sec^-1</td>
</tr>
<tr>
<td>EALT(I)</td>
<td></td>
<td>Array of observed balloon altitudes above sea level corresponding to times ETIME(I).</td>
<td>ft</td>
</tr>
<tr>
<td>ETIME(I)</td>
<td></td>
<td>Array of times.</td>
<td>sec</td>
</tr>
<tr>
<td>FCAF</td>
<td></td>
<td>Forced convection heating rate of balloon fabric by air. ftlb/sec</td>
<td></td>
</tr>
<tr>
<td>F(2)</td>
<td></td>
<td>Vertical acceleration of balloon.</td>
<td>ft/sec^2</td>
</tr>
<tr>
<td>F(3)</td>
<td></td>
<td>Time derivative of balloon fabric temperature.</td>
<td>°R/sec</td>
</tr>
<tr>
<td>F(4)</td>
<td></td>
<td>Time derivative of balloon gas temperature.</td>
<td>°R/sec</td>
</tr>
<tr>
<td>F(5)</td>
<td></td>
<td>Time derivative of balloon gas weight.</td>
<td>lb/sec</td>
</tr>
<tr>
<td>F(6)</td>
<td></td>
<td>Time derivative of balloon volume.</td>
<td>ft^3/sec</td>
</tr>
<tr>
<td>FIR(I)</td>
<td></td>
<td>Array of computed atmospheric radiation fluxes.</td>
<td>ftlb/ft^2 sec</td>
</tr>
<tr>
<td>FLO</td>
<td></td>
<td>Initial free lift.</td>
<td>lb</td>
</tr>
<tr>
<td>FLUXIR</td>
<td></td>
<td>Infrared radiation flux.</td>
<td>ftlb/ft^2 sec</td>
</tr>
<tr>
<td>Algebraic Code</td>
<td>Description</td>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>FSOL</td>
<td>Value of solar constant outside earth's atmosphere (≈ 96).</td>
<td>ftlb/ft²sec</td>
<td></td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time.</td>
<td>hr:min:sec</td>
<td></td>
</tr>
<tr>
<td>GMTS</td>
<td>Greenwich Mean Time at beginning of flight.</td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Time interval for integration.</td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>IRAB</td>
<td>Rate of absorption of infrared radiation by balloon fabric.</td>
<td>ftlb/sec</td>
<td></td>
</tr>
<tr>
<td>IREM</td>
<td>Rate of emission of infrared radiation by balloon fabric.</td>
<td>ftlb/sec</td>
<td></td>
</tr>
<tr>
<td>IRS, LAMBDA</td>
<td>Number of iterations in exhausting gas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOAD</td>
<td>Weight of payload and balloon fabric.</td>
<td>lb</td>
<td></td>
</tr>
<tr>
<td>NCAF</td>
<td>Natural convection heating rate of balloon fabric by air.</td>
<td>ftlb/sec</td>
<td></td>
</tr>
<tr>
<td>NCGF</td>
<td>Natural convection heating rate of balloon fabric by balloon gas.</td>
<td>ftlb/sec</td>
<td></td>
</tr>
<tr>
<td>PERB</td>
<td>Cumulative ballast dropped in percent of initial load (payload plus balloon fabric).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERE</td>
<td>Cumulative gas exhausted in percent of initial balloon gas weight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERV</td>
<td>Cumulative gas valved in percent of initial balloon gas weight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHI</td>
<td>One-third power of balloon volume.</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>FM, PRESS</td>
<td>Atmospheric pressure.</td>
<td>mbar</td>
<td></td>
</tr>
<tr>
<td>RAD</td>
<td>Conversion factor from degrees to radians (\frac{\pi}{180}).</td>
<td>rad/deg</td>
<td></td>
</tr>
<tr>
<td>RHFO</td>
<td>Density of air at ground level.</td>
<td>lb/ft³</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Product of density and temperature of air</td>
<td>lb²/ft³</td>
<td></td>
</tr>
<tr>
<td>RTIR(I)</td>
<td>Array of specified black ball equilibrium radiation temperatures.</td>
<td>°R</td>
<td></td>
</tr>
<tr>
<td>RTZ(I)</td>
<td>Array of products of density and temperature of air computed from atmospheric data.</td>
<td>lb²/ft³</td>
<td></td>
</tr>
<tr>
<td>SLAB</td>
<td>Rate of absorption of solar radiation by balloon fabric.</td>
<td>ftlb/sec</td>
<td></td>
</tr>
<tr>
<td>SLATD</td>
<td>Sine of LAT times sine of DEC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63
<table>
<thead>
<tr>
<th>Algebraic</th>
<th>Fortran</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAA(I)</td>
<td></td>
<td>Array of computed air temperatures stored for subroutine PLOT.</td>
<td>°R</td>
</tr>
<tr>
<td>TP(I)</td>
<td></td>
<td>Array of specified times for automatic ballasting.</td>
<td>sec</td>
</tr>
<tr>
<td>TBO</td>
<td></td>
<td>Initial temperature of balloon gas.</td>
<td>°R</td>
</tr>
<tr>
<td>TCSI(I)</td>
<td></td>
<td>Array of specified times for solar radiation factor.</td>
<td>sec</td>
</tr>
<tr>
<td>TFO</td>
<td></td>
<td>Initial temperature of balloon fabric.</td>
<td>°R</td>
</tr>
<tr>
<td>TIR(I)</td>
<td></td>
<td>Array of specified times for infrared radiation factor.</td>
<td>sec</td>
</tr>
<tr>
<td>TV(I)</td>
<td></td>
<td>Array of specified times for automatic valving.</td>
<td>sec</td>
</tr>
<tr>
<td>VALD</td>
<td></td>
<td>Cumulative weight of valved gas.</td>
<td>lb</td>
</tr>
<tr>
<td>VBM</td>
<td></td>
<td>Inflated volume of balloon.</td>
<td>ft^3</td>
</tr>
<tr>
<td>VFL</td>
<td></td>
<td>Vertical velocity of balloon.</td>
<td>ft/min</td>
</tr>
<tr>
<td>VO</td>
<td></td>
<td>Manual valving rate (in pounds of lost lift per second).</td>
<td>lb/sec</td>
</tr>
<tr>
<td>VV(I)</td>
<td></td>
<td>Array of specified automatic valving rates (in pounds of lost lift per second).</td>
<td>lb/sec</td>
</tr>
<tr>
<td>WBO</td>
<td></td>
<td>Initial weight of balloon gas.</td>
<td>lbs</td>
</tr>
<tr>
<td>WFO</td>
<td></td>
<td>Weight of balloon fabric.</td>
<td>lb</td>
</tr>
<tr>
<td>WG</td>
<td></td>
<td>Weight of payload and balloon fabric.</td>
<td>lb</td>
</tr>
<tr>
<td>WGO</td>
<td></td>
<td>Initial weight of payload.</td>
<td>lb</td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td>Initial weight of payload and balloon fabric.</td>
<td>lb</td>
</tr>
<tr>
<td>XLAH</td>
<td></td>
<td>Local hour angle.</td>
<td>rad</td>
</tr>
<tr>
<td>XP</td>
<td></td>
<td>Printing time.</td>
<td>sec</td>
</tr>
<tr>
<td>XPL</td>
<td></td>
<td>Plotting time.</td>
<td>sec</td>
</tr>
<tr>
<td>XT</td>
<td></td>
<td>Specified final time of flight.</td>
<td>sec</td>
</tr>
<tr>
<td>XO</td>
<td></td>
<td>Specified initial time of flight.</td>
<td>sec</td>
</tr>
<tr>
<td>XXXX(I)</td>
<td></td>
<td>Array of times stored for subroutine PLOT.</td>
<td>sec</td>
</tr>
<tr>
<td>Y1(I)</td>
<td></td>
<td>Array of computed balloon altitudes stored for subroutine PLOT.</td>
<td>ft</td>
</tr>
<tr>
<td>Y20</td>
<td></td>
<td>Specified initial vertical velocity of balloon.</td>
<td>ft/sec</td>
</tr>
<tr>
<td>Y3(I)</td>
<td></td>
<td>Array of computed temperatures of balloon fabric stored for subroutine PLOT.</td>
<td>°R</td>
</tr>
<tr>
<td>Algebraic</td>
<td>Fortran</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Y4(I)</td>
<td></td>
<td>Array of computed temperatures of balloon gas stored for subroutine PLOT.</td>
<td>°R</td>
</tr>
<tr>
<td>ZIR(I)</td>
<td></td>
<td>Array of altitudes above sea level at which RTIR(I) is given.</td>
<td>ft</td>
</tr>
<tr>
<td>Z0</td>
<td></td>
<td>Specified initial altitude of balloon above sea level.</td>
<td>ft</td>
</tr>
</tbody>
</table>
NOTES:
1. Sequence of operations in each box starts from the top always.
2. "Read Card" means read card from input tape.
3. "Write" means write output tape.
5. SS means sense switch.
Figure 11 GENERAL FLOW CHART
C ONR-ADL COMPUTED VERTICAL TRAJECTORY OF HIGH ALTITUDE BALLOONS
C COMPILATION SH
C SENSE SWITCH CONTROLS
C SENSE SWITCH 1 VALVE GAS (VO) DOWN NORMAL
C SENSE SWITCH 2 PRINT DETAIL (VO) UP NORMAL
C SENSE SWITCH 3 PRINT UN-LINE (VO) NORMAL
C SENSE SWITCH 4 DROP BALLAST (VO) NORMAL
C SENSE SWITCH 5 CONTINUE ITERATIONS (VO) STOP AFTER 20
C SENSE SWITCH 6 ABORT FLIGHT (VO) NORMAL

5 FORMAT (12, 3F10.5)
10 FORMAT (12, 7E10.3)
15 FORMAT (77H YOU HAVE NOW THROWN AWAY ALL OF THE BALLAST - - INCLUD
ING THE GONDOLA./1HO/1HO)
20 FORMAT (12, 7F10.4)
25 FORMAT (129H ITERATION DOES NOT CONVERGE/54H SENSE SWITCH 5 DOWN A
IND START TO CONTINUE ITERATIONS/40H SENSE SWITCH 5 UP AND START T
20 END RUN /1HO/1HO)
30 FORMAT (12, 2F10.4)
31 FORMAT (12, 2F10.4)
35 FORMAT (7HO TIME=F10.5, 4H U=10.F2, 7HI DOT=F10.5, 5H TF=F10.4,
15H TR=F10.4, 5H WB=F10.4, 5H VR=15.8/ 7HO VB=15.8; 3H E=15.8)
40 FORMAT (7HI TIME=F10.5, 8H TV(1)=F10.5)
45 FORMAT (15H INPUT IS WRONG/1HO/1HO)
50 FORMAT (31H CARD AFTER TITLE CARD IS WRONG/1HO)
55 FORMAT (7HI TIME=F10.5, 8H TB(1)=F10.5)
60 FORMAT (9H NO TYPE I2,5H DATA/1HO)
65 FORMAT (7HI TIME=F10.5, 9H TCSI(1)=F10.5)
70 FORMAT (15H TOO MANY TYPE I2,5H DATA/1HO)
75 FORMAT (20H WB DOT IS POSITIVE F10.5)
80 FORMAT (20H IT AFTER DATA TYPE I2,12H IS NEGATIVE/1HO)
81 FORMAT (7HI TIME=F10.5, 8H TR(1)=F10.5)
90 FORMAT (16HO TOO MANY TYPE I2,13H DATA CARDS./1HO/1HO)
91 FORMAT (5HO GMT=F3.0, F3.0, F3.0, 10H ALTIMETER=F6.0, 10H VELOCITY=F6.0,
110H VAL RATE=F5.2, 13H PERCENT VAL=F4.2, 10H RAL RATE=F5.2,
213H PERCENT RAL=F6.2, 13H PERCENT EXD=F6.2/1HO/1HO)
993 FORMAT (1HI, 51H CARD AFTER CARD TYPE 1 OF PREVIOUS PROBLEM IS WRONG
1/1HO)
994 FORMAT (1HI, 12A6)
995 FORMAT (12A6)
975 FORMAT (12, 5F10.5)
976 FORMAT (1HO, 3X, 3HMGT, 6X, 4HTIME, 2X, 8HALTITUDE, 4X, 3HMVEL, 4X, 5HHPRESS, 3X
1, 2HTA, 5X, 2HTF, 5X, 2HTR, 5X, 6HVOLUME, 4X, 4HLLOAD, 3X, 6HGas WT, 2X, 7HFRT L1
2F1, 2X, 6HPW1B, 2X, 4HPRE, 2X, 3HRS, 3X, 4HECHK)
977 FORMAT (1HO, 3F3.0, 1XF7.0, 2XF7.0, 2XF6.0, 2XF6.1, 2XF5.1, 2XF5.2, 12F
15.1, 2XF8.0, 2XF6.0, 2XF6.1, 2XF7.2, 2XF4.1, 2XF4.1, 2XF4.1, 2XI2, 2XF6.3)
5001 FORMAT (4X, 5HMRAF=1PE11.4, 3X, 5HREM=1PE11.4, 3X, 5HFCF=1PE11.4, 3X, 5H
INCAF=1PE11.4, 3X, 5HNGCF=1PE11.4, 3X, 5HSLAB=1PE11.4)
2000 FORMAT (1HI, 11H INPUT DATA)
2001 FORMAT (1HI, 4H IT=12)
2002 FORMAT (7F16.5)
2005 FORMAT (2F16.5)
2006 FORMAT (F16.5)
DIMENSION SCALE(60)
DIMENSION I2(100), IZ(100), IZ(100), IZ(100), IZ(100)
DIMENSION ICSI(100), ICSI(100), TV(100), TV(100), TV(100)

DIMENSION TB(100), BB(100), XX(100)
DIMENSION Y(100), F(100), Q(100)
DIMENSION TITLE (12)
DIMENSION RTIR(100), FIR(100), DIRCZ(100), DSIDT(100)
DIMENSION ZUV(100), FUV(100), DUVDZ(100)
DIMENSION Y1(400), Y3(400), Y4(400), XXX(400), TAA(400)
DIMENSION ETIME(400), FALT(400)
DIMENSION TIR(100), CIR(100), DCIRDT(100)
COMMON X, Y, F, Q
COMMON NT, ZZ, TZ, RTZ, TZA, TZB
COMMON C1, C2, C3, C4, C5, C6, C7
COMMON TA, RT, P, RHO, PHI, WG, OMEGA, CSI, E, V
COMMON XMA, XMB, G, CP, CV, R, CD, VAM, WF
COMMON DEH, DEH3, DEH4, DEH5, DEH6, DEH7
COMMON Wfh, DWFH, WFO
COMMON CB
COMMON ZIR, FIR, DIRDZ, NFR, ZUV, FUV, DUVDZ, NUV, DSIDT
COMMON ABIR, EMIR, ABUV
COMMON M, Y3, Y4, TAA, XXX
COMMON OP, X, XO, ETIME, FALT
COMMON CCIR
COMMON SLATD, CLATD, RAD, GHA, XLONG, PZER, FSOL, SBOLZ, AH, AM, AS, GMTS
FSOL=96.
SBOLZ=3.6995E-10
XMB=4.
XMA=28.89
CP=972.69
CV=596.73
R=1545.
G=32.2
RAD=3.14159/180.
1001 READ INPUT TAPE 5, 995, (TITLE(I), I=1, 12)
DO 990 MZY=1, 400
 Y1(MZY)=0.
 Y3(MZY)=0.
 Y4(MZY)=0.
 XXX(MZY)=0.
 TAA(MZY)=0.
990 CONTINUE
PRINT 994, (TITLE(I), I=1, 12)
999 READ INPUT TAPE 5, 10, IT
IF(IT) GO TO 998, 998, 1000
998 WRITE OUTPUT TAPE 6, 994, (TITLE(I), I=1, 12)
WRITE OUTPUT TAPE 6, 50
CALL EXIT
1000 GOTO(1000, 200, 300, 400, 500, 950, 700, 800, 900, 600, 960, 980, 1400, IT
997 WRITE OUTPUT TAPE 6, 994, (TITLE(I), I=1, 12)
WRITE OUTPUT TAPE 6, 80, IP
CALL EXIT
970 WRITE OUTPUT TAPE 6, 994, (TITLE(I), I=1, 12)
WRITE OUTPUT TAPE 6, 60, IP
CALL EXIT
971 WRITE OUTPUT TAPE 6, 994, (TITLE(I), I=1, 12)
WRITE OUTPUT TAPE 6, 70, IP
CALL EXIT
200 CALL EXIT
100 WRITE OUTPUT TAPE 6,994,(TITLE(I),I=1,12)
 WRITE OUTPUT TAPE 6,2000
 I=3
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2002,C1,C4,C5,C6,ABIR,EMIR,ABUV
 I=4
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2002,WG0,WFO,VBM,FLO,CD,CB
 I=5
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2002,TB0,TF0,Z0, Y20,DEC,XLAT,XLONG
 I=6
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2002,H,DFR,X0,XT,GMTS,GHA,DP
 I=7
 WRITE OUTPUT TAPE 6,2001,I
 DO 2004 I=1,NSI
2004 WRITE OUTPUT TAPE 6,2005,TCSI(I),CCSI(I)
 I=8
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2006,VU
 DO 2007 I=1,NVI
2007 WRITE OUTPUT TAPE 6,2005,TV(I),VV(I)
 I=9
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2006,B0
 DO 2008 I=1,NHI
2008 WRITE OUTPUT TAPE 6,2005,TH(I),BB(I)
 I=10
 WRITE OUTPUT TAPE 6,2001,I
 WRITE OUTPUT TAPE 6,2006,RODO
 DO 2009 I=1,NT
2009 WRITE OUTPUT TAPE 6,2005,ZZ(I),TZ(I)
 I=11
 WRITE OUTPUT TAPE 6,2001,I
 DO 2010 I=1,NIR
2010 WRITE OUTPUT TAPE 6,2005,ZIR(I),RTIR(I)
 I=12
 WRITE OUTPUT TAPE 6,2001,I
 DO 2011 I=1,NEX
2011 WRITE OUTPUT TAPE 6,2005,ETIME(I),EALT(I)
 I=13
 WRITE OUTPUT TAPE 6,2001,I
 DO 2012 I=1,NCIR
2012 WRITE OUTPUT TAPE 6,2005,TIR(I),CIR(I)
2013 CLATD=COSF(XLAT*RAD)*COSF(DEC*RAD)
 SLATD=SINF(XLAT*RAD)*SINF(DEC*RAD)
 Y(1)=ZZ(I)
 CALL RHOT (Y(1),TEMP,RT)
 PZER=RT*R/XMA
 FL=FLO
 Y(1) = Z0
Y(2) = Y20
Y(3) = TFO
Y(4) = TBO
X = X0
XP = X0
XPL = X0
WF = WFO
WG = WGO + WFO
VALD = 0
WT = WG
LP = 25
LPC = 1
IY = 0
NPL = 0
CALL RHO (Y(I), TEMP, RT)
RHO = RT / TEMP
P = RT * \gamma *\gamma
TA = TEMP
Y(5) = (FL*WG)/((XMA*Y(4)/(XMB*TA)) - 1.)
WBO = Y(5)
Y(6) = R*Y(5)*Y(4)/(P*XMB)
CSI = CCSI(1)
CCM = CCM(1)
PHI = Y(6)**(1./3.)

--- INITIALIZING TOTAL ENERG Y --- E1 ---

CALL YPRIME
\[\text{DKE} = (\text{WG} + Y(5)) + 0.5*\text{RHO} \]
\[\text{DPE} = (\text{RHO} * Y(6) - \text{WG} - Y(5)) + Y(2) \]
\[\text{DDRAG} = CD\ast 60375 \ast \text{PHI} \ast \text{PHI} \ast \text{RHO} \ast Y(2) \ast \text{ABS} Y(2) \ast Y(2) / G \]
\[\text{DEWA} = P \ast F(6) \]
\[\text{DEVE} = Y(4) \ast CP \ast F(5) \]
\[\text{ETOT} = CV \ast Y(5) \ast Y(4) + C1 \ast WFO \ast Y(3) \]
\[\text{ETOT1} = \text{ETOT} \]
\[\text{ENER} = 0 \]
\[\text{EP} = 0 \]
\[\text{CHECK} = 0. \]

101 \text{LAMBD} = 0
\text{IF} (X - TV(1)) \text{102, 103, 103}
102 \text{WRITE OUTPUT TAPE} 6,40,X,TI(1)
\text{WRITE OUTPUT TAPE} 6,45
GO TO 996
103 \text{IF} 104 \text{L} = 2,100
\text{IF} (TV(1) \ast 0.5 \ast H - X) \text{104, 104, 105}
104 \text{CONTINUE}
107 \text{WRITE OUTPUT TAPE} 6,108
108 \text{FORMAT} (28H1 X \text{IS GREATER THAN} TV(100) / H0 / H0)
GO TO 996
105 \text{V} = VV(1-1)
114 \text{IF} (\text{SENSE SWITCH} 1) \text{106, 110}
106 \text{V} = V + V0
110 \text{IF} (X - TB(1)) \text{111, 112, 112}
111 \text{WRITE OUTPUT TAPE} 6,55,X,TB(1)
\text{WRITE OUTPUT TAPE} 6,45
GO TO 996
DO 113 I=2,100
IF (X - TBI(I) -0.5*H) 116, 113, 113
113 CONTINUE
WRITE OUTPUT TAPE 6,125
125 FORMAT (28HI X IS GREATER THAN TB(100)/H0/1H0)
GO TO 996
116 B = BB (I-1)
117 IF (SENSE SWITCH 4) 118, 119
118 B = B+BA
119 WG = WG -R*H
IF (WG) 109, 109, 120
109 WRITE OUTPUT TAPE 6,15,WG
PRINT 15,WG
GO TO 996
120 IF (X - TCSI(I)) 121, 122, 122
121 WRITE OUTPUT TAPE 6,45
GO TO 996
122 DO 123 I=2,NSI
IF(X-TCSI(I)+.5*H)124,123,123
123 CONTINUE
124 CSI=DSIDT(I-1)*(X-TCSI(I-1)*CCSI(I-1)
IF(X-TIR(I))126,127,127
126 WRITE OUTPUT TAPE 6,45
GO TO 996
127 DO 128 I=2,NCIR
IF(X-TIR(I))129,128,128
128 CONTINUE
129 CCIR=CIR(I-1)+DCIRDT(I-1)*(X-TIR(I-1))
132 IF(IY)130,153,130
153 IY=1
GOTO140
130 E = 0.
XS = X
DO 131 I=1,6
131 Y(I+10) = Y(I)
CALL RNGKTA (H, 6, 10)
134 IF(Y(6)-VBM)160,160,133
160 PHV = Y(6)**(1./3.)
C
---- INCREMENTING TOTAL ENERGY ----E2----
CALL YPRIME

DKE=W*Y(5)+.5*RH0*Y(6)*Y(2)*F(2)/G
DPE= (RH0*Y(6)-W-Y(5)+Y(2)
DDRAG=CD+60375*PHI*PHI*RH0*Y(2)*ABS(Y(2))*Y(2)/G
DEWA=F(6)
DEVE=Y(4)*CP+F(5)
EP=EP-DKE+DPE-DDRAG-DEWA+DEVE+DEH2-DEH3+DEH4+DEH5+DEH7)*H
ETDT=CV*Y(5)*Y(4)+C1*WFO*Y(3)
ENET=ETOT-ETOT1
ECHK=(ENET-EP)/ENET
FL=Y(5)*(XMA*Y(4)/(XMA*TA)-1.)-WG
VALD=VALD+H*V/((XMA*Y(4))/(XMA*TA)-1.)
GO TO 140
GO TO 996
DO 135 LAMDA=1, 20
 E = E + (VBM - Y(6)) / H
 X = XS
 DO 136 I=1, 6
136 Y(I) = Y(I+10)
 CALL RNGKTA (H, 6, 1, 1)
 IF(Y(6)-VBM)160,160,139
139 IF (SENSE SWITCH 5) 137, 135
137 PRINT 35, X, (Y(I), I=1,6), VBM, E
135 CONTINUE
145 PRINT 25
PAUSE
 IF(SENSE SWITCH 5) 133, 138
140 IF(Y(I)-ZZ(1))141,142,142
141 IF(X = 1
GO TO 143
142 IF((X -XT) 144, 141, 141
144 IF(X=2
 IF(X-XP)157,143,143
143 XP = XP + DPR
 IF(LP-17)146,147,147
147 IF (SENSE SWITCH 3) 148, 149
148 PRINT 994, (TITLE (1), I=1,12)
149 WRITE OUTPUT TAPE 6, 994, (TITLE (1), I=1,12)
WRITE OUTPUT TAPE 6, 978
 LPC = LPC+1
 LP = 0
146 VR = V - RHO*E
 A=INT((GMTS+X)/3600.1)
 AM=INT((GMTS+X-3600.*AM)/60.1)
 AS=GMTS+X-60.*AM-3600.*AH
 AM=ABS (AM)
 AS=ABS(SA)
 PERB=100.*((WT-WG)/WT
 PERV=100.*VAL0/WK0
 PERE=100.*((W80-Y(5))/W80)-PERV
 VEL=60.*Y(2)
 PM=0.4786019
 IF (SENSE SWITCH 3) 150, 151
150 PRINT 91,AH,AM,AS,Y(I),VEL,VR,PERB,PERB,PERE
151 WRITE OUTPUT TAPE 6,977,AH,AM,AS,X,Y(I),VEL,PM,TA,Y(3),Y(4),Y(6),W
 IG,Y(5),FL,PERB,PERV,PERE,LAMRDA,EECHK
 LP=LP+1
155 IF(SENSE SWITCH 2)156,157
156 WRITE OUTPUT TAPE 6,5001,DEH2,DEH3,DEH4,DEH5,DEH6,DEH7
157 CONTINUE
 IF(X-XPL)210,209,209
209 XPL=XPL+CP
 NPL=NPL+1
 IF(NPL-400)211,211,210
211 N=NPL
 Y1(N)=Y(1)
 Y3(N)=Y(3)
 Y4(N)=Y(4)
XXX(N)=X
TAA(N)=TA
210 GOTO (212,152),IX
212 CALL PLOT
GOTO 996
152 IF (SENSE SWITCH 6) 165, 101
165 PRINT 166
166 FORMAT (22HO RESET SENSE SWITCH 6/1HO/1HO)
PAUSE
996 READ INPUT TAPE 5,10,IT
IF(IT-2) 991,200,991
991 IF(IT) 992,1001,992
992 WRITE OUTPUT TAPE 6,993
CALL EXIT
300 READ INPUT TAPE 5,20,IT,(XX(I)),I=1,7
IP=3
IF(IT) 997,302,970
302 C1 = XX(1)
C4=XX(2)
C5=XX(3)
C6=XX(4)
ABIR=XX(5)
EMIR=XX(6)
ABUV=XX(7)
304 READ INPUT TAPE 5,20,IT
IF(IT) 997,971,1000
400 READ INPUT TAPE 5,20,IT,(XX(I)),I=1,7)
IP=4
IF(IT) 997,402,970
402 WGO=XX(1)
WFO=XX(2)
VBM=XX(3)
FLR=XX(4)
CD=XX(5)
CH=XX(6)
404 READ INPUT TAPE 5,20,IT
IF(IT) 997,971,1000
500 READ INPUT TAPE 5,20,IT,(XX(I)),I=1,7)
IP=5
IF(IT) 997,502,970
502 TBO=XX(1)
TFO=XX(2)
Z0=XX(3)
Y20=XX(4)
DEC=XX(5)
XI,AT=XX(6)
XLV=NC=XX(7)
504 READ INPUT TAPE 5,20,IT
IF(IT) 997,971,1000
950 READ INPUT TAPE 5,20,IT,(XX(I)),I=1,7)
IP=6
IF(IT) 997,952,970
952 M = XX(1)
DPR=XX(2)
XO=XX(3)
XT=XX(4)
GMS=XX(5)
GHA=XX(6)
DP=XX(7)

954 READ INPUT TAPE 5, 975, IT
 IF(IT) 997, 971, 1000

700 IP=7
 DO 701 I=1,100
 READ INPUT TAPE 5, 30, IT, TCSI(I), CCSI(I)
 IF(IT) 997, 701, 704

701 CONTINUE
 READ INPUT TAPE 5, 30, IT
 IF(IT) 997, 971, 706

706 I=1
707 N51=I-1
 DO 705 J=2, N51
 USIDT(J-1)=((CCSI(J)-CCSI(J-1))/(TCSI(J)-TCSI(J-1)))

705 CONTINUE
 GOTO 1000

800 READ INPUT TAPE 5, 30, IT, XX(1)
 IP=8
 IF(IT) 997, 802, 970

802 VO = XX(1)
 DO 801 I=1,100
 READ INPUT TAPE 5, 30, IT, TV(I), VV(I)
 IF(IT) 997, 801, 804

801 CONTINUE
 READ INPUT TAPE 5, 30, IT
 IF(IT) 997, 971, 805

805 I=I+1
804 NVI=I-1
 GOTO 1000

900 READ INPUT TAPE 5, 30, IT, XX(1)
 IP=9
 IF(IT) 997, 902, 970

902 BO = XX(1)
 DO 901 I=1,100
 READ INPUT TAPE 5, 30, IT, TR(I), BR(I)
 IF(IT) 997, 901, 905

901 CONTINUE
 READ INPUT TAPE 5, 30, IT
 IF(IT) 997, 971, 904

904 I=I+1
905 NBI=I-1
 GOTO 1000

600 READ INPUT TAPE 5, 30, IT, XX(1)
 IP=10
 IF(IT) 997, 602, 970

602 RHOO= XX(1)
 DO 603 I=1,100
 READ INPUT TAPE 5, 30; IT, ZZ(I), TZ(I)
 IF (IT) 997, 603, 608

603 CONTINUE
 READ INPUT TAPE 5, 30, IT
IF(IT) 997,971,609
609 I = I+1
608 NT = I-1
RTZ(I) = RHOO * TZ(I)
DO 604 I=2, NT
IF (TZ(I) - TZ(I-1)) 605, 606, 605
605 TZA(I-1) = (TZ(I) - TZ(I-1))/(ZZ(I) - ZZ(I-1))
TZB(I-1) = (ZZ(I) * TZ(I-1) - ZZ(I-1) * TZ(I)) / (ZZ(I) - ZZ(I-1))
RTZ(I) = RTZ(I-1) * (TZ(I-1)/TZ(I))**2(XMA/(R * TZA(I-1))
GO TO 604
606 TZA(I-1) = 0.0
TZB(I-1) = TZ(I)
RTZ(I) = RTZ(I-1) * EXPF(XMA*(ZZ(I-1)-ZZ(I))/R * TZ(I-1))
604 CONTINUE
GO TO 1000
960 IP=11
DO 961 I=1,100
READ INPUT TAPE 5,30,IT,ZIR(I),RTIR(I)
FIR(I) = SBOZ*RTIR(I)**4.0
IF(IT) 997,961,962
961 CONTINUE
READ INPUT TAPE 5,30,IT
IF(IT) 997,971,964
964 I=I+1
962 NIR=I-1
DO 963 J=2,NIR
DIRDZ(J-1) = (FIR(J)-FIR(J-1))/(ZIR(J)-ZIR(J-1))
963 CONTINUE
GO TO 1000
980 IP=12
DO 984 MZY=1,400
ETIMF(MZY)=0.
EALT(MZY)=0.
984 CONTINUE
DO 981 I=1,400
READ INPUT TAPE 5,31,IT,ETIME(I),EALT(I)
IF(IT) 997,981,982
981 CONTINUE
READ INPUT TAPE 5,30,IT
IF(IT) 997,971,983
983 I=I+1
982 NEX=I-1
GO TO 1000
1400 IP=13
DO 1401 I=1,100
READ INPUT TAPE 5,30,IT,TIR(I), CIR(I)
IF(IT) 997,1401,1402
1401 CONTINUE
READ INPUT TAPE 5,30,IT
IF(IT) 997,971,1403
1403 I=I+1
1402 NCIR=I-1
DO 1404 I=2,NCIR
DCIRDT(I-1) = (CIR(I)-CIR(I-1))/(TIR(I)-TIR(I-1))
1404 CONTINUE
GO TO 1000
END
SUBROUTINE RNGKTA(H1,N1,N2,N3)
COMMON X,Y,F,Q
DIMENSION Y(100),F(100), Q(100)
IF(N3=1)2,1,2
1 H=H1
HH=.5*H
N=N1
M=N2
DO 3 I=1,N
3 Q(I)=0.0
2 DO 4 J=1,M
CALL YPRIME
DO 5 I=1,N
S=F(I)*H
T=.5*(S-2.*Q(I))
Y(I)=Y(I)+T
4 Q(I)=Q(I)+3.*T-.5*S
X=X+HH
CALL YPRIME
DO 6 I=1,N
S=F(I)*H
T=.29289322*(S-Q(I))
Y(I)=Y(I)+T
5 Q(I)=Q(I)+3.*T-.29289322*S
X=X+HH
CALL YPRIME
DO 7 I=1,N
S=F(I)*H
T=1.7071067*(S-Q(I))
Y(I)=Y(I)+T
6 Q(I)=Q(I)+3.*T-1.707106*S
X=X+HH
CALL YPRIME
DO 8 I=1,N
S=F(I)*H
T=(S-2.*Q(I))/6.
Y(I)=Y(I)+T
7 Q(I)=Q(I)+3.*T-.5*S
CONTINUE
RETURN
END
SUBROUTINE YPRIME

COMPILATION BD

DIMENSION ZZ(100), TZ(100), RTZ(100), TZA(100), TZB(100)

DIMENSION TCSI(100), CC8I(100), TV(100), TVV(100)

DIMENSION TB(100), BB(100), XX(100)

DIMENSION Y(100), F(100), Q(100)

DIMENSION TITLE (12)

DIMENSION ZIR(100), FIR(100), DIRDZ(100), DSIDT(100)

DIMENSION ZUV(100), FUV(100), DUVDZ(100)

DIMENSION Y1(400), Y3(400), Y4(400), XYZ(400), TAA(400)

DIMENSION ETIME(400), EALT(400)

COMMON X, Y, F, Q

COMMON NT, ZZ, RTZ, TZA, TZB

COMMON C1, C2, C3, C4, C5, C6, C7

COMMON TA, RT, P, RHO, PHI, WG, OMEGA, CS1, E, V

COMMON XMA, XMR, G, CP, CV, R, CD, VBM, WF

COMMON DEH2, DEH3, DEH4, DEH5, DEH6, DEH7

COMMON WFH, DWFH, WFO

COMMON CB

COMMON ZIR, FIR, DIRDZ, NIR, ZUV, FUV, DUVDZ, NUV, DSIDT

COMMON ABIR, EMIR, ABUV

COMMON M, Y1, Y3, Y4, TAA, XXX

COMMON DP, XT, XO, ETIME, EALT

COMMON CCIR

COMMON SLATD, CLATD, RAD, GHA, XLONG, PZER, FSOL, SBOLZ, AH, AM, AS, GMTS

CALL RHOY (Y(1), TA, RT)

P = RT * Y / XMA

RHO = RT / T

PHI = Y(6) * (1.0 / 3.0)

DO 181 I = 2, NIR

181 IXY = 2

IF (Y(1) - ZIR(1)) > 182, 181, 181

182 IXY = 2

GO TO 183

183 IXY = 1

GO TO 163

102 IXY = 1

103 FLUXIR = DIRDZ(I-1) * (Y(I) - ZIR(I-1)) + FIR(I-1)

DEH2 = CCIR * ABIR = 4.83 * PHI * PHI * FLUXIR

DEH3 = EMIR = 4.83 * PHI * PHI * SBOLZ * (Y(3) ** 4.)

186 XLAM = RAD * (GHA - XLONG + X/240.)

CAM = SLATD + CLATD * COSF(XLAM)

IF (CAM) 100, 101, 101

101 AIRM = (P/PZER) * (1228.6 + 376750.44 * CAM * CAM) * 0.5 - 613.8 * CAM

TRANS = 5 * (EXPF(-0.65 * AIRM) + EXPF(-0.095 * AIRM))

FLUXUV = FSOL * TRANS
GOTO 110
100 RETH = 20903520.
 CAL = RETH/(RETH+Y(1))
 CAMM = 1.0*CAL + CAL**.5
 IF (CAMM-CAM) .LT. 102, 103, 103
102 Z1 = (RETH+Y(1))*(1.0-CAM-CAM)**.5-RETH
 CALL RHOI(Z1, TTT, RTT)
 PI1 = RTT*R/XMA
 AIRM1 = 35.1*PL1/PLER
 AIRMN = (P/PLER)*(1228.6+376750.44*CAM-CAM)**.5+613.8*CAM
 TRAN1 = .5*(EXP(-.65*AIRM1)+EXP(-.095*AIRM1))
 TRAN2 = .5*(EXP(-.65*AIRMN)+EXP(-.095*AIRMN))
 FLUXUV = FSOL*TRAN1/TRAN1/TRAN2
 GOTO 110
103 FLUXUV = 0.
110 CONTINUE
 DEHH7 = DEH7
 DEH7 = CSI*ABUV*1.208*PHI*PHI*FLUXUV
 IF (DEHH7) 111, 111, 110
111 IF (DEH7) 119, 119, 114
114 IF (X) 119, 119, 120
120 INM = 1
 GO TO 121
112 WRITE OUTPUT TAPE 6, 113, AH, AM, AS
113 FORMAT (1HO, 25X, 4H GMT = 3F3.0, 5X, 18HSUNRISE AT BALLOON)
 GO TO 119
115 IF (DEHH7) 118, 118, 119
118 INM = 2
121 AM = INTF((GMTS*X)/3600.)
 AM = INTF((GMTS*X-3600.0*AM)/60.)
 AS = GMTS*X-60.0*AM-3600.0*AM
 AM = ABSF(AM)
 AS = ABSF(AS)
 GO TO 112, 116)
116 WRITE OUTPUT TAPE 6, 117, AH, AM, AS
117 FORMAT (1HO, 25X, 4H GMT = 3F3.0, 5X, 17HSUNSET AT BALLOON)
119 VISA = 1.096E-05*(TA/460.)**.883
 CAIR = 260.0*VISA
 VISH = 1.21E-05*(Y(4)/460.)**.682
 CHE = 1443.0*VISH
 RHOD = RHO*P/(R*Y(4))
 FNUS = .37*(1.24*RHO*PHI*ABSF(Y(2))/VISA)**.6
 DEH4 = 3.895*C6*CHE*PHI*FNUS*(TA-Y(3))
 DEH5 = 3.895*C6*CHE*PHI*FNUS*(TA-X(3))/VISA
 VISA**.6*(VISASP=XUSP*(TA-Y(3)))/(VISASP=XUSP*(TA-Y(3))**.6)
1.0/3.0
 DEH6 = 3.895*C6*CHE*PHI*FNUS*(TA-Y(3))
 XNUSP = .1612*PHI*F((RHO/RHO+G.7*ABSF(Y(4)-Y(3)))/(VISH*VISH)*Y(4))
1.0/3.0
 DEH6 = 3.895*C6*CHE*PHI*FNUS*(TA-Y(3))
 FI1 = Y(2)
 F(2) = ((RHO*Y(6)-WG*Y(5))*G.6038*CD*PHI*PHI*RHO*Y(2)*ABSF(Y(2)))/
1.0*Y(5)*CB*RHO*Y(6)
 FI3 = 10DEH2-DEH3+DEH4+DEH5+DEH6+DEH7/11CA*WF
 FI4 = (-DEH6-RHO*Y(6)*Y(2))/(Y(5)*CV*R/XMN)
 FI5 = RHO*E-RHO*V/(RHO-RHO)
 FI6 = (((F(4)/Y(4))+(F(5)/Y(5))+(XMA*Y(2))/R*TA))**.6
 RETURN
END
SUBROUTINE RHOT (Z, T, RT)
C COMPILATION 8C
DIMENSION SCALE(60)
DIMENSION ZC(100), TZ(100), RTZ(100), TZA(100), TZB(100)
DIMENSION TCSI(100), CCSI(100), TV(100), VV(100)
DIMENSION TR(100), BB(100), XX(100)
DIMENSION Y(100), F(100), Q(100)
DIMENSION TITLE (12)
DIMENSION ZIR(100), FIR(100), DIRDZ(100), DSIDT(100)
DIMENSION ZUV(100), FUV(100), DUVDZ(100)
DIMENSION Y1(400), Y3(400), Y4(400), XXX(400), TAA(400)
DIMENSION ETIME(400), ELALT(400)
COMMON X, Y, F, Q
COMMON NT, ZZ, TZ, RTZ, TZB, TTZB
COMMON C1, C2, C3, C4, C5, C6, C7
COMMON TA, RT, P, RHO, PHI, WG, OMEGA, CSI, E, V
COMMON XMA, XMB, G, CP, CV, R, CD, VBM, WF
COMMON DEH2, DEH3, DEH4, DEH5, DEH6, DEH7
COMMON WFE, DWF, WF0
COMMON CB
COMMON ZIR, FIR, DIRDZ, NIR, ZUV, FUV, DUVDZ, NUV, DSIDT
COMMON ABIR, EMIR, ABUV
COMMON M, Y3, Y4, TAA, XXX
COMMON DP, XT, XO, ETIME, ELALT
IF (Z - ZZ(1)) = 100.0, 200, 200
100 T = TZ(1)
RT = RTZ(1)
RETURN
200 NMI = NT - 1
DO 201 J = 1, NMI
IF (Z - ZZ(J)) = 300, 300, 201
201 CONTINUE
GO TO (202,203), IYX
202 PRINT 20, X, Y(I)
20 FORMAT(1HO, 9H AT TIME=F7.0, 6H SEC THE BALLOON WENT ABOVE ATMOSPHERE SPECIFIED IN INPUT DATA./18H BALLOON ALTITUDE=F7.0, 6H FEET./128
2H START TO CONTINUE FLIGHT USING ATMOSPHERIC DATA OF UPPER POINT 0 3F SPECIFIED ATMOSPHERE FOR AS LONG AS BALLOON REMAINS ABOVE IT./51
4H SENSE SWITCH 6 DOWN AND START TO TERMINATE FLIGHT.)
IYX = 2
PAUSE
GO TO 203
300 IYX = 1
203 IF (TZA(J)) = 301, 302, 301
301 T = TZA(J) + Z + TZB(J)
RT = RTZ(J) + (TZ(J)/T) + (XMA/(R*TZA(J)))
RETURN
302 T = TZB(J)
RT = RTZ(J) + EXPF(XMA*(ZZ(J)-Z)/(R*T))
RETURN
END
SUBROUTINE PLUT

DIMENSION ZZ(100), TZA(100), TZR(100), RTZ(100), TZA(100), TZA(100)
DIMENSION TCS1(100), GCCS1(100), TV(100), VX(100)
DIMENSION TC(100), BN(100), XX(100)
DIMENSION Y(100), F(100), BA(100)
DIMENSION TITLE (12)
DIMENSION ZIR(100), FIR(100), DIRDZ(100), OSINT(100)
DIMENSION ZUV(100), FUV(100), DUVDZ(100)
DIMENSION Y1(400), Y3(400), Y4(400), YX(400), YAA(400)
DIMENSION ETIME(400), EALT(400)

COMMON X, Y, F, D
COMMON NT, ZZ, TZA, TZR, RTZ
COMMON C1, C2, C3, C4, C5, C6, C7
COMMON TA, RT, P, RH, PHI, WG, OMEGA, CSI, E, V
COMMON XMA, XMH, G, CP, CV, R, CD, VBM, WF
COMMON DEH2, DEH3, DEH4, DEH5, DEH6, DEH7
COMMON WFH, DWFH, WF0
COMMON CD
COMMON ZIR, FIR, DIRDZ, NIR, ZUV, FUV, DUVDZ, SINT
COMMON ABTR, EMT, ABV
COMMON F, Y1, Y3, Y4, TAA, XXX
COMMON DT, XT, XE, ETIME, EALT

SCALE(5) = 6H 325
SCALE(7) = 6H 10000
SCALE(11) = 6H 350
SCALE(13) = 6H 20000
SCALE(17) = 6H 375
SCALE(19) = 6H 30000
SCALE(23) = 6H 400
SCALE(25) = 6H 40000
SCALE(29) = 6H 425
SCALE(31) = 6H 50000
SCALE(35) = 6H 450
SCALE(37) = 6H 60000
SCALE(41) = 6H 475
SCALE(43) = 6H 70000
SCALE(47) = 6H 500
SCALE(49) = 6H 80000
SCALE(53) = 6H 525
SCALE(55) = 6H 90000
SCALE(59) = 6H 550

18 MM = 1
MT = XI(5T1, (XT - XO) / 10000, 1) * 1
7 MM = MM + 1
GO TO (4, 12, 12, 14, 15, 16, 17, 18), MM
12 SCALE(1) = 6H 8-3
GO TO 9
13 SCALE(1) = 6H 3-6
GO TO 9
14 SCALE(1) = 6H 6-9
GO TO 9
15 SCALE(1) = 6H 9-12
GO TO 9
SURROUTINE PLOT

16 SCALE(1)=nH 12-15
GO TO 9
17 SCALE(1)=6H 15-18
9 XM=FLOAT(M)
 XXM=(XM-1.)*10800.
 XXXM=XM*10800.
 CALL LIMITS (XXM,XXXM,0.,100000.)
 CALL GRID (XXM,1800.,0.,10000.)
 K=XFIXF((10800./DP)*(XM-1.))+1
 L=XFIXF((10800./DP)*(XM))+1
 GC30J=K,L
 CALL POINTS (XXX(J),Y1(J),35).
 CALL LIMITS (XXM,XXXM,300.,550.)
 DO 100 J=K,L
 10 CALL LIMITS (XXM,XXXM,300.,550.)
 DO 100 J=K,L
 10 CALL POINTS (XXX(J),Y3(J),15)
 CALL LIMITS (XXM,XXXM,300.,550.)
 DO 110 J=K,L
 11 CALL POINTS (XXX(J),Y4(J),11)
 CALL LIMITS (XXM,XXXM,300.,550.)
 DO 120 J=K,L
 12 CALL POINTS (XXX(J),Y3(J),15)
 CALL LIMITS (XXM,XXXM,300.,550.)
 DO 130 J=K,L
 13 CALL POINTS (ETIME(J),EALT(J),14)
 CALL GRAPH (SCALE)
 4 PRINT 300:
 M=M+1
 IF(M-131,19,19)
 IF(M=M+17,7,19)
 19 RETURN
 ENC(1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
SUBROUTINE PLOT
C
COMPIKATION FOR 147500 FT
3000 FORMAT(14H GRAPH PRINTED)

DIMENSION SCALE(60)
DIMENSION ZZ(100), TZ(100), RTZ(100), TZA(100), TZE(100)
DIMENSION TCSI(100), CCSI(100), TV(100), VV(100)
DIMENSION TB(100), BB(100), XX(100)
DIMENSION Y(100), F(100), Q(100)
DIMENSION TITLE (12)
DIMENSION ZIR(100), FIR(100), DIRDZ(100), DSIDT(100)
DIMENSION ZUV(100), FUV(100), DUVDZ(100)
DIMENSION Y1(400), Y3(400), Y4(400), XXX(400), TAA(400)
DIMENSION ETIME(400), EALT(400)
COMMON X, Y, F, Q
COMMON NT, ZZ, TZ, RTZ, TZA, TZE
COMMON C1, C2, C3, C4, C5, C6, C7
COMMON TA, KT, P, RHO, PHI, WG, OMEGA, CSI, E, V
COMMON XMA, XMB, G, CP, CV, R, CD, VBM, WF
COMMON DEH2, DEH3, DEH4, DEH5, DEH6, DEH7
COMMON WFH, DWFH, WFO
COMMON CB
COMMON ZIR, FIR, DIRDZ, NIR, ZUV, FUV, DUVDZ, NUV, DSIDT
COMMON ABIR, EMIN, ABUV
COMMON M, Y1, Y3, Y4, TAA, XXX
COMMON DP, XT, XO, ETIME, EALT
SCALE(1) = 6H 340
SCALE(9) = 6H 20000
SCALE(16) = 6H 380
SCALE(17) = 6H 40000
SCALE(24) = 6H 420
SCALE(25) = 6H 60000
SCALE(32) = 6H 460
SCALE(33) = 6H 80000
SCALE(40) = 6H 500
SCALE(41) = 6H 100000
SCALE(48) = 6H 540
SCALE(49) = 6H 120000
SCALE(56) = 6H 780
SCALE(57) = 6H 140000

18 M = 1
MT = XINTF((XT - XO)/10800.)*1
7 MM = M + 1
GO TO (4, 12, 13, 14, 15, 16, 17, MM)
12 SCALE(1) = 6H 0 - 3
GO TO 9
13 SCALE(1) = 6H 3 - 6
GO TO 9
14 SCALE(1) = 6H 6 - 9
GO TO 9
15 SCALE(1) = 6H 9 - 12
GO TO 9
16 SCALE(1) = 6H 12 - 15
GO TO 9
17 SCALE(1) = 6H 15 - 18
9 XM=FLOATF(M)
 XXM= (XM-1.)*10800.
 XXXM=XM*10800.
 CALL LIMITS(XXM,XXXM,0.,147500.)
 CALL GRID (XXM,1800.,0.,20000.)
 K=FIXF((10800./DP)*(XM-1.))+1
 L=FIXF((10800./DP)*(XM))+1
 DO 90 J=K,L
 CALL POINTS (XXX(J),Y1(J),35)
 CALL LIMITS (XXM,XXXM,300.,595.)
 DO 100 J=K,L
 CALL POINTS (XXX(J),Y3(J),15)
 CALL LIMITS (XXM,XXXM,300.,595.)
 DO 110 J=K,L
 CALL POINTS (XXX(J),Y4(J),11)
 CALL LIMITS (XXM,XXXM,300.,595.)
 DO 120 J=K,L
 CALL POINTS (XXX(J),TAA(J),10)
 CALL LIMITS (XXM,XXXM,0.,147500.)
 DO 130 J=1,400
 CALL POINTS (ETIME(J),EALT(J),14)
 CALL GRAPH (SCALE)
 4 PRINT 3000
 M=M+1
 IF(M-7)131,19,19
 IF(M-HT)7,7,19
 19 RETURN
 END