NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; OCT 1965. Other requests shall be referred to Air Force Materials Lab., Research and Technology Div., Wright-Patterson AFB, OH 45433.

AUTHORITY
AFSC/IST ltr, 21 Mar 1989
SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TERNARY PHASE EQUILIBRIA IN TRANSITION METAL-BORON-CARBON-SILICON SYSTEMS

Part I. Related Binary Systems
Volume IV. Hf-C System

E. Rudy
Aerojet-General Corporation

TECHNICAL REPORT NO. AFML-TR-65-2, Part I, Volume IV
September 1965

Air Force Materials Laboratory
Research and Technology Division
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center. The distribution of this report is limited because it contains technology identifiable with items on the Mutual Defense Assistance Control List excluded from export under U. S. Export Control Act of 1949, as implemented by AFR 400-10.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.
Subject: Report AFML-TR-65-2
Part I, Volume IV
Ternary Phase Equilibria In Transition
Metal-Boron-Carbon-Silicon Systems

To: Research and Technology Division (MAMC)
Wright-Patterson Air Force Base, Ohio
Attn: Capt. R. A. Peterson

Inclosure (1) is submitted in partial fulfillment of Contract AF 33(615)-1249.

R. L. Fulford, Supervisor
Editorial Services
Technical Publications

FOREWORD

The work described in this report has been carried out at the Materials Research Laboratory, Aerojet-General Corporation, Sacramento, California, under USAF Contract No. AF 33(615)-1249. The contract was initiated under Project No. 7350, Task No. 735001, and was administered under the direction of the Air Force Materials Laboratory, Research and Technology Division, with Captain R.A. Peterson acting as Project Engineer, and Dr. E. Rudy, Aerojet-General Corporation, as Principal Investigator. Professor Dr. Hans Nowotny, University of Vienna, served as consultant to the project.

The project, which includes the experimental and theoretical investigation of selected ternary systems in the system classes Me_1-Me_2-C, Me-B-C, Me_1-Me_2-B, Me-Si-B, and Me-Si-C, was initiated on 1 January 1964. The investigation of selected binary metal-carbon and metal-boron systems was performed as a subtask to the work on the ternary diagrams.

The author wishes to acknowledge the experimental help received from D. P. Harmon, C. E. Brukl, and St. Windisch. Of further assistance were: J. Pomodoro (sample preparation), J. Hoffman (metallographic preparations), and R. Cobb (X-ray exposures). The chemical analytical work was carried out under the supervision of Mr. W. E. Trahan, Quality Control Division. The drawings were prepared by R. Cristoni and Mrs. J. Weidner typed the report.

The manuscript of this report was released by the author July 1965 for publication as an RTD Technical Report.
Other reports issued under USAF Contract AF 33(615)-1249 have included:

Part I. Related Binaries
 Volume I. Mo-C System
 Volume II. Ti-C and Zr-C System
 Volume III. Mo-B and W-B Systems

Part II. Ternary Systems
 Volume I. Ta-Hf-C System
 Volume II. Ti-Ta-C System

Part III. Special Experimental Techniques
 Volume I. High Temperature Differential Thermal Analysis

Part IV. Thermochemical Calculations

Technical report has been reviewed and is approved.

W. G. RAMKE
Chief, Ceramics and Graphite Branch
Materials and Ceramics Division
Air Force Materials Laboratory
ABSTRACT

The alloy system hafnium-carbon was investigated by means of X-ray, DTA, and melting point techniques on chemically analyzed alloys, and a complete phase diagram was established.

The results are discussed and compared with previously reported data.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>INTRODUCTION AND SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>A.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>B.</td>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>1.</td>
<td>The Hafnium-Phase</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Hafnium Monocarbide</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>III.</td>
<td>EXPERIMENTAL PROGRAM</td>
<td>7</td>
</tr>
<tr>
<td>A.</td>
<td>Starting Materials</td>
<td>7</td>
</tr>
<tr>
<td>B.</td>
<td>Experimental Procedures</td>
<td>9</td>
</tr>
<tr>
<td>1.</td>
<td>Sample Preparation and Heat Treatment</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Differential Thermal Analysis</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Melting Points</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>X-ray Analysis</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>Metallography</td>
<td>11</td>
</tr>
<tr>
<td>6.</td>
<td>Chemical Analysis</td>
<td>12</td>
</tr>
<tr>
<td>C.</td>
<td>Results</td>
<td>12</td>
</tr>
<tr>
<td>1.</td>
<td>Hafnium</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>α-β-Transformation of Hafnium</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Effect of Carbon on the α-β-Transformation in Hafnium</td>
<td>15</td>
</tr>
<tr>
<td>4.</td>
<td>The Concentration Range from 5 to 34 At% C</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>The Monocarbide Phase</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>The Concentration Range Monocarbide-Graphite</td>
<td>42</td>
</tr>
<tr>
<td>IV.</td>
<td>DISCUSSION</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase Diagram of the System Hafnium-Carbon</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Hafnium-Carbon Phase Diagram (M.I. Copeland, 1962)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Hafnium-Carbon Phase Diagram (R.G. Avarbe, et.al., 1962)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>DTA-Thermogram of Hafnium</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>DTA-Thermograms (Heating) of Hafnium After Repeated Exposure to Graphite</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>DTA-Thermograms (Cooling) of Hafnium After Repeated Exposure to Graphite</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>DTA-Thermograms (Heating) of Hafnium in Contact with Graphite</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>Melting Temperatures of Hafnium-Carbon Alloys</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Hf-C (1.2 At% C), Rapidly Quenched from 2220°C</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Hf-C (3.4 At% C), Rapidly Cooled from 2195°C</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>DTA-Thermogram of an Hf-C alloy with 6 Atomic Percent Carbon</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>DTA-Thermogram of an Hf-C Alloy with 15 Atomic Percent Carbon</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>DTA-Thermogram of an Hf-C Alloy with 18 Atomic Percent Carbon</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>DTA-Thermogram of an Hf-C Alloy with 30 Atomic Percent Carbon</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>DTA-Thermogram of an Hf-C Alloy with 33 Atomic Percent Carbon</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>DTA-Thermograms (Heating) of a Hf-C Alloy with 34 Atomic Percent Carbon</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>Metal-Rich Portion of the System Hafnium-Carbon</td>
<td>28</td>
</tr>
</tbody>
</table>
Illustrations (Continued)

FIGURE PAGE

18a Hf-C (7 At% C), Quenched from 2400°C 29

18b Hf-C (7 At% C), Sample from Figure 18a Re-equilibrated
 for 15 Minutes at 2150°C (Slowly Cooled) 29

19a Hf-C (13 At% C), Quenched from 2450°C 30

19b Hf-C (13 At% C), Sample from Figure 19a Re-equilibrated
 at 2300°C, and Quenched 30

20a Hf-C (14.9 At% C), Quenched from 2450°C 31

20b Hf-C (14.9 At% C), Sample from Figure 20a
 Re-equilibrated for 15 Minutes at 2300°C 32

20ca Hf-C (14.9 At% C), Sample from Figure 20a,
 Re-equilibrated for 1 Hour at 2300°C 32

21 Hf-C (16 At% C), Equilibrated at 2310°C, and Quenched 34

22 Hf-C (19 At% C), Equilibrated at 2310°C, and Quenched 34

23 Hf-C Alloys, Equilibrated, Quenched from 2400°C 36
 a. 25 At% C, Slowly Cooled
 b. 32.8 At% C, Slowly Cooled
 c. 33.2 At% C, Rapidly Quenched

24 Hf-C (34.3 At% C), Quenched from 2400°C 36

25 Single Phase Hafnium Monocarbide Alloys
 a. 38.8 At% C, 3635°C 37
 b. 42.6 At% C, 3675°C 37
 c. 47.2 At% C, 3896°C 38
 d. 49 At% C, 3800°C 38

26 HfC_{1-x}: Variation of the Lattice Parameter with the
 Carbon Concentration 39

27 DTA-Thermogram of a Hafnium Carbon Alloy with
 66 Atomic Percent Carbon 40

28 Hf-C Alloys from the Concentration Range 56 to 61 Atomic
 Percent Carbon, Quenched from Temperatures Above the
 Eutectic Line. 41
 a. 56.1 At% C, 3500°C 41
 b. 58.5 At% C, 3500°C 41
 c. 60.3 At% C, 3300°C 42
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Hf-C (65.2 At% C), Quenched from 3200°C</td>
<td>43</td>
</tr>
<tr>
<td>30</td>
<td>Hf-C (73.2 At% C), Rapidly Cooled (\sim 40°C/sec)</td>
<td>43</td>
</tr>
<tr>
<td>31</td>
<td>Hf-C (82 At% C), Rapidly Cooled from 3700°C</td>
<td>44</td>
</tr>
<tr>
<td>TABLE</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Reaction Isotherms in the System Hafnium-Carbon</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Reported Lattice Parameters for Hafnium Monocarbide</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Maximum Melting Temperatures for Hafnium Monocarbide (Literature Data)</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Literature Data for the HfC-C Eutectic Reaction Isotherm</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Etching Procedures for Hafnium-Carbon Alloys</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Temperatures for the α-β-Transformation in Hafnium Obtained by Differential Thermal Analysis</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Reported Temperatures for the α-β-Transformation in Hafnium</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Melting Temperatures of Hafnium-Carbon Alloys</td>
<td>21</td>
</tr>
</tbody>
</table>
I. INTRODUCTION AND SUMMARY

A. INTRODUCTION

The present report is one in the series of documentary reports on the phase relationships in refractory binary carbide and boride systems. The initial task of this program, the establishment of the phase-relationships in ternary metal-carbon-boron-silicon systems, was redirected in November 1964 to include also the partial or complete investigation of selected binary systems. The ultimate objective of this extended effort is to provide reliable boundary system data for the interpretation of the phase-relationships in the ternary systems.

Due to the limited time available for these investigations, not every detail in these systems could be examined as closely as probably would have been desirable. Nevertheless, it is felt, that the results reported should represent the phase-relationships in these systems to a sufficient degree of accuracy and provide valuable supplemental information to the existing data.

In every instance, care was exercised to obtain reliable results. Wherever possible, independent methods of investigation were used to countercheck the experimental findings.

B. SUMMARY

Based on the results obtained from X-ray, metallographical, and differential-thermoanalytical investigations on chemically analyzed alloys, a constitution diagram for the binary system hafnium-carbon was established (Figure 1, and Table 1).
Figure 1. Phase Diagram of the System Hafnium-Carbon

[The Temperature Uncertainties Refer to the Precision of the Measurements and do not include the Calibration Errors (Section III-3)]

1. The Hafnium-Phase*

\(\beta \)-Hafnium melts at 2218 ± 6°C. The low temperature hexagonal close-packed (\(\alpha \)) modification transforms at 1795 + 35°C (extrapolated to 100% Hf) into the body centered cubic allotrope. Under lattice dilatation, the \(\alpha \)-modification takes up to 14 atomic % carbon into

*The starting material used for the investigations contained 4 At% zirconium. For the sake of clarity in the text, this starting material is referred to as "hafnium".
Table 1: Reactions Isotherms in the System Hafnium-Carbon

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Reaction</th>
<th>Composition of the Equilibrium Phases, At% C</th>
<th>Type of Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3928 ± 20°</td>
<td>L ↔ HfC_{1-x}</td>
<td>~48.5 ~48.5</td>
<td>Congruent Trans.</td>
</tr>
<tr>
<td>3180 ± 20°</td>
<td>L ↔ HfC_{1-x} + C</td>
<td>65+1 ~49.7 ~100</td>
<td>Eutectic Reaction</td>
</tr>
<tr>
<td>2360 ± 30</td>
<td>L + HfC_{1-x} ↔ α-ss</td>
<td>5±0.3 34±1 14±1</td>
<td>Peritectic Reaction</td>
</tr>
<tr>
<td>2218 ± 6</td>
<td>L ↔ β-Hf</td>
<td>- - -</td>
<td>Melting Point of Hafnium</td>
</tr>
<tr>
<td>2180 ± 10</td>
<td>L ↔ α + β</td>
<td>~1.5 <1 ~2</td>
<td>Eutectic Reaction</td>
</tr>
<tr>
<td>1795 ± 35°</td>
<td>β ↔ α</td>
<td>- - -</td>
<td>α-β-Transformation in Hafnium</td>
</tr>
</tbody>
</table>

solid solution and is stabilized to higher temperatures. A eutectic at 2180 ± 10°C and ~1.5 At% carbon is formed between the α(< 1 At% C) and the β(≈2 At% C)-modification. The β-(Hf,C) solid solution forms in a peritectic reaction at 2360 ± 30°C from melt and monocarbide according to

\[P (5 \text{ At% } C) + B1 (34 \text{ At% } C) ⇌ α-(Hf,C)-ss (14 \text{ At% } C) \]

2. Hafnium Monocarbide

Hafnium monocarbide, with a face centered cubic, B1-type of crystal structure extends at 1600°C from approximately 38 At% C (a = 4.619 Å) to 49.5 At% C (a = 4.640 Å). At 2360°C, the low carbon boundary is located at 34 At% C (a = 4.608 Å). The phase, which melts congruently at 3928 ± 20°C at a carbon concentration of 48.5 ± 0.5 At% C, forms a eutectic with graphite. The eutectic point is located at 3180 ± 20°C and 65 ± 1 At% C.
LITERATURE REVIEW

Only one intermediate carbide phase occurs in the system. Hafnium monocarbide, with a face-centered cubic, B1-type of structure, was first prepared by K. Moers\(^1\),\(^2\) and its structure was clarified by K. Becker\(^3\). The phase extends from 37 (\(a = 4.614 \, \text{Å}\)) to approximately 50 atomic percent carbon (\(a = 4.633 \, \text{Å}\)) at 1550°C\(^9\),\(^10\). The most probable lattice parameter for the stoichiometric composition is \(a = 4.640 \, \text{Å}\) (Table 2). For further references on earlier work, the data compilation in M. Hansen’s "Constitution of Binary Alloys",\(^{12}\), as well as in R. Kieffer and F. Benesovsky’s "Hartstoffe"\(^{13}\) may be consulted.

Conflicting results have been reported for the metal-rich portion of the hafnium-carbon system\(^8\),\(^9\),\(^16\),\(^18\). M. I. Copeland\(^16\) has presented a diagram (Figure 2), where about equal solubilities in the \(\alpha\)- and \(\beta\)-modification were reported. The peritectoid temperature decomposition of the \(\alpha\)-(Hf, C) solid solution was placed at 1890°C. A radically different diagram was presented by R. G. Avarbe, et al.\(^{18}\) (Figure 3), indicating extended solid solution formation of the \(\alpha\)-Hf-phase, and only a very nominal carbon solid solubility in the \(\beta\)-modification. The diagram presented by R. V. Sara and C. E. Lowell\(^8\) follows closely the layout proposed by M. I. Copeland.

Reported melting temperatures for the monocarbide phase vary between 3820 and 3895°C (Table 3). The data obtained by the resistive-heating (containerless) method\(^{14\,\text{ and }\,15}\) are probably to be given preference, since interaction between test and container material in other techniques used may have lead to erroneous results\(^8\). The existence of a eutectic reaction isotherm between the monocarbide and graphite at temperatures
Figure 2. Hafnium-Carbon Phase Diagram
(M. I. Copeland, 1962)

Figure 3. Hafnium-Carbon Phase Diagram
(R. G. Avarbe, et.al., 1962)
Table 2: Reported Lattice Parameters for Hafnium Monocarbide

<table>
<thead>
<tr>
<th>Composition, At% C</th>
<th>Lattice Parameter A</th>
<th>Investigator</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.646</td>
<td>Curtis, et.al., 1959</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>4.641</td>
<td>Cotter and Kohn, 1954</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>4.64</td>
<td>Glaser, et.al., 1953</td>
<td>6</td>
</tr>
<tr>
<td>47.2</td>
<td>4.6382±0.0003</td>
<td>Krikorian, et.al., 1963(4)</td>
<td>31</td>
</tr>
<tr>
<td>49.2</td>
<td>4.643</td>
<td>Sara and Lowell, 1964</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>4.622</td>
<td>Sara and Lowell, 1964(5)</td>
<td>8</td>
</tr>
<tr>
<td>37</td>
<td>4.614</td>
<td>Benesovsky and Rudy, 1960</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>4.631</td>
<td>Benesovsky and Rudy, 1960(6)</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>4.637</td>
<td>Zhelankin and Kutsov, 1963(7)</td>
<td>11</td>
</tr>
<tr>
<td>36.7</td>
<td>4.607</td>
<td>Zhelankin and Kutsov, 1963(7)</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 3. Maximum Melting Temperatures for Hafnium Monocarbide (Literature Data)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Ref</th>
<th>Melting Temperature, °C</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agte and Alterthum, 1930</td>
<td>14</td>
<td>3890 ± 150</td>
<td>HfC₁,₀</td>
</tr>
<tr>
<td>Adams and Beall, 1963</td>
<td>15</td>
<td>3895*</td>
<td>HfC₀,₉₈₅</td>
</tr>
<tr>
<td>Copeland, 1962</td>
<td>16</td>
<td>3820 ± 100</td>
<td>HfC₀,₈₆₅</td>
</tr>
<tr>
<td>Sara and Lowell, 1964</td>
<td>8</td>
<td>3820-3820*</td>
<td>HfC₀,₉₀₅</td>
</tr>
</tbody>
</table>
in the vicinity of 3000°C is firmly established from previous work (Table 4).

Table 4: Literature Data for the HfC-C Eutectic Reaction Isotherm.

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Ref</th>
<th>Eutectic Temperature °C</th>
<th>Eutectic Composition At% C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copeland, 1962</td>
<td>16</td>
<td>~3400</td>
<td>N.D.</td>
</tr>
<tr>
<td>Adams and Beall, 1963</td>
<td>15</td>
<td>~3220</td>
<td><68</td>
</tr>
<tr>
<td>Portnoi, et al., 1961</td>
<td>17</td>
<td>3250 ± 500</td>
<td>~85</td>
</tr>
<tr>
<td>Cotter and Kohn, 1954</td>
<td>5</td>
<td>2800</td>
<td>N.D.</td>
</tr>
<tr>
<td>Krikorian, 1962</td>
<td>7</td>
<td>2915</td>
<td>N.D.</td>
</tr>
<tr>
<td>Sara and Lowell, 1964</td>
<td>8</td>
<td>3150</td>
<td>66</td>
</tr>
</tbody>
</table>

III. EXPERIMENTAL PROGRAM

A. STARTING MATERIALS

The experimental alloy material was prepared from sponge-hafnium, hafnium metal powder (Wah Chang Corporation, Albany, Oregon), and high purity graphite. The metal powder had the following impurities (contents in ppm): Al-20, C-210, Nb-680 (<1000)*, Cr-<20, Cu-40, Fe-265, H-55, Mo-40, N-200 (<300), O-810 (<1000), Si-<40 (10), Ta-<200 (400),

*The concentration figures given in the brackets are data from a control analysis performed at the Analytical Chemistry Laboratory of Aerojet-General Corporation.
Ti-20, W-235, sum of remainder < 100; it further contained 4.1 At% zirconium. Lattice parameters of $a = 3.196\,\AA$ and $c = 5.057\,\AA$ were obtained from a powder diffraction pattern with Cu-K$_\alpha$ radiation. This compares favorably with reported literature values of $a = 3.194 - 3.199\,\AA$, and $c = 5.0510 - 5.0620\,\AA$ (1). The sponge-hafnium had the following analysis (impurity contents in ppm): Al-94, Cu-<40, Fe-185, Cl-100, Mg-450, N-30, O-680, Si-<40, Ti-250, W-<2-. The zirconium content of the sponge was 4 At%.

To circumvent difficulties in the preparation of the alloys, arising from the violent reaction between hafnium and carbon to form the monocarbide, prealloyed hafnium monocarbide, prepared by direct combination of the elements in a high vacuum furnace (2 hrs at 1950°C, 5.10$^{-6}$ Torr) was used. The reaction product, which had a total carbon content of 49.3 At% C ($a = 4.640\,\AA$), was comminuted in hard-metal lined ball mills to a grain size of <44 micrometers. Cobalt traces, which were picked up during ball-milling were removed by leaching the powder in a 5 normal mixture of hydrochloric and sulfuric acid.

The spectrographic grade graphite powder (Union Carbide Corporation, Carbon Products Division) had the following analysis: Sum of metallic impurities (Al + Cu + Mg + Si + Fe) = 9 ppm, ash < 500 ppm, and 100 ppm volatile matter. No second phase impurities could be detected in strongly overexposed powder patterns. The lattice parameters, determined from an exposure with Cu-K$_\alpha$ radiation were $a = 2.463\,\AA$, $c = 6.729\,\AA$. These values are in good agreement with reported parameters of $a = 2.461\,\AA$ and $c = 6.708\,\AA$ (1).
B. EXPERIMENTAL PROCEDURES

1. Sample Preparation and Heat Treatment

Specimens were prepared for melting point, differential thermal analysis, as well as for X-ray and metallographic investigations. Alloys in the concentration range from 35 to 70 At% carbon were prepared by hot-pressing the well-blended components in graphite sleeves at temperatures varying between 2200 and 2800°C. Excess metal-containing alloys were prepared by cold-pressing and subsequent sintering in a tungsten mesh element furnace (R. Brew Company) under a vacuum better than 2×10^{-6} Torr.

A number of alloys was also melted in a non-consumable electrode arc furnace (Model ZAK) under a high purity helium atmosphere and subjected to the same homogenization treatments. While this method produced satisfactory results with alloy compositions from within the homogeneous range of the monocarbide phase and also for alloys having excess graphite, considerable segregation of the alloy mixtures in excess metal-containing alloys was noticed. Somewhat better controllable and reproducible conditions were obtained by electron-beam melting; nevertheless, extended heat-treatment after the melting procedures were in both cases necessary in order to re-establish equilibrium. Based on these findings, samples for the metallographic studies were therefore prepared by equilibration of the prehomogenized alloy specimens at the desired temperature in the Pirani-furnace. Rapid quenching was achieved by dropping the sample from the equilibrium temperature into a preheated tin bath.

The specimens for the differential-thermoanalytical investigations in the very metal-rich portion of the system (0-10 At% carbon)
were prepared by repeated electron-beam melting of cold-compactcd mixtures of hafnium and graphite powder, and subsequent machining of the small ingots into the required dimensions.

2. **Differential Thermal Analysis**

Apparative details of the DTA-setup have been described earlier\(^2,3\). High purity graphite was used as container material. For the studies of the \(\alpha\)-\(\beta\)-transformation of hafnium, the sample proper was physically insulated from the container walls by a loose stuffing (\(\sim 1\) mm) of hafnium powder, in order to retard interaction of the specimen surface with graphite. No disadvantageous interference was encountered in the investigations within the solidus range; however, carburization was comparatively fast at temperatures close to or above melting.

3. **Melting Points**

The melting temperatures of the alloys were determined with the Pirani-technique. Apparative details of the furnace, which was designed and built in this laboratory, were described earlier\(^30\).

Excess metal-phase containing alloys were melted under vacuum. To prevent carbon and hafnium losses from the alloys in the high melting monocarbide region, the furnace chamber was pressurized to 2 1/4 atmospheres with high purity helium, after the alloys had received a final degassing treatment at temperatures between 2200 and 2550°C. The temperature measurements were carried out with a disappearing-filament type micropyrometer, which was calibrated against certified standard lamps and a standard pyrometer from the National Bureau of Standards. The overall temperature uncertainties are \(\pm 10°C\) at 2300°C, \(\sim \pm 17°C\) at 3000°C, and \(\pm 30°C\) (estimated) at 4000°C. The
temperature uncertainties referred to in the text denote the precision of the measurements, and do not include calibration errors. The overall uncertainties in the melting temperatures can be computed from

$$
\sigma_m = +\sqrt{\sigma_c^2 + \sigma_m^2}
$$

where \(\sigma_m \) stands for the overall temperature uncertainty, \(\sigma_c \) for the average calibration error, and \(\sigma_m \) denotes the precision of the measurement.

4. **X-Ray Analysis**

Since the crystal structures of all phases were known, only powder patterns (Cu-K\(\alpha \)-radiation) were prepared.

The exposures were taken in a 57.4 mm dia. camera on a Siemens-Crystalloflex II unit and the film readings were taken on a Siemens-Kirem coincidence scale. The precision micrometer allows the measurements to be accurate to \(\pm 0.01 \) mm. Use of two-radian (114.6 mm dia) cameras was not considered, since the accuracy of the lattice spacings obtainable with the small camera are well within the accuracy limits set by the uncertainties in the chemical analysis.

5. **Metallography**

For the metallographic examination of the alloys, the specimens were mounted in an electrically conductive mixture of copper-coated lucite powder and diallylphthalate. The mounted specimens were coarse-ground on silicon-carbide papers with grit sizes varying between 120 and 600. They were polished on nylon-cloth, using a slurry of 0.05 micron alumina in a 10 percent oxalic acid solution. The etching procedures varied with the carbon content of the alloys. Good results were obtained with the mixtures described in Table 5.
Table 5: Etching Procedures for Hafnium-Carbon Alloys

<table>
<thead>
<tr>
<th>Alloy, At% C</th>
<th>Etching Solution (percent base solution* in water)</th>
<th>Dip-etch, time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>1</td>
<td>1 sec</td>
</tr>
<tr>
<td>26-35</td>
<td>10</td>
<td>to</td>
</tr>
<tr>
<td>36-55</td>
<td>100</td>
<td>3 min</td>
</tr>
<tr>
<td>56-70</td>
<td>-</td>
<td>no etching required</td>
</tr>
</tbody>
</table>

*Base Solution: 4 parts aqua regia plus 1 part HF

6. Chemical Analysis

The majority of the alloys were analyzed for their carbon content, using the standard combustion technique. The oxygen content of selected specimens was determined by gas fusion analysis. The results were not as consistent as the carbon analysis, and sometimes variations up to ± 400 ppm were noticed; in neither case, however, were higher values than 600 ppm found.

C. RESULTS

1. Hafnium

The melting point of hafnium was determined on as-pressed as well as pressed and high-vacuum sintered (<10⁻⁵ Torr specimens); a value of 2218 ± 6°C was derived from four measurements.
2. **α-β-Transformation of Hafnium**

The experimental alloy material for these investigations was prepared by remelting the sponge-hafnium several times in an electron-beam furnace (Heraeus ES 2/4), until no gas evolution could be observed. The resulting bars were then fabricated into samples of desired size (≈ 14 mm x 16 mm high), and subjected to the DTA-studies. The DTA-runs were performed under vacuum as well as under a high purity helium atmosphere. The results were identical.

A slight difference between the reaction onset on the heating and cooling cycle of the runs was noticed in all experiments (Figure 4, Table 6). This may be indicative, that despite repeated electron-beam melting, some traces of interstitial elements may have remained in the metal. In view of the extreme negative partial free energy of oxygen at low concentrations, this is not surprising (the concentration remains constant, if \(n_O > n_{Hf} \), the molar vaporization rates of oxygen and hafnium are equal at a given temperature).

In order to achieve more effective desoxydation conditions, small amounts of boron were added to the hafnium prior to the electron-beam melting in a further experiment. This resulted in somewhat lower transformation temperatures (Table 6). A post-experiment analysis performed on one of the alloys showed a drop of the zirconium content from 4 At% in the original raw material to 1.9 ± 0.5 At% after melting. Applying the corrections suggested by D. K. Deardorff and H. Kato\(^{(19)}\), and taking into account the temperature uncertainties of the pyrometer readings, a value of 1795 ± 35°C is derived for the temperature of the α-β-transformation in pure hafnium.
Heating Rate: 5 °C sec⁻¹
Cooling Rate: 5 °C sec⁻¹

Figure 4. DTA-Thermogram of Hafnium

Alloy Material: Hf-Sponge (4 At% Zr, <0.4 At% O),
Remolten Twice in an Electron-Beam Furnace. Zr-Content After Melting:
≈ 1.9 At%.

This value agrees very well with the determination by D. K. Deardorff and H. Kato (1760 ± 35°C), but less favorably with more recent determinations by A. Taylor and N.J. Doyle (21) and R. G. Ross and W. Hume-Rothery (22) (Table 7).

The cause for the relatively large differences among the various investigators may possibly be sought in varying interstitial impurity contents of the starting materials as well as the apparative techniques used for the determinations.
Table 6. Temperatures for the α-β-Transformation in Hafnium Obtained by Differential Thermal Analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Heating Cycle</th>
<th>Cooling Cycle</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1785</td>
<td>1815</td>
<td>1800±25</td>
</tr>
<tr>
<td>2</td>
<td>1795</td>
<td>1805</td>
<td>1890±25</td>
</tr>
<tr>
<td>3*</td>
<td>1775</td>
<td>1810</td>
<td>1790±25</td>
</tr>
<tr>
<td>4**</td>
<td>1770</td>
<td>1780</td>
<td>1775±25</td>
</tr>
</tbody>
</table>

Legend to Table 6:

* Zr-content after electron-beam melting
 1.9 ± 0.5 At%

** 1 At% Boron added prior to electron-beam melting.

3. Effect of Carbon on the α-β-Transformation in Hafnium

The experimental studies were carried out using the same starting materials as described under paragraph 2 of this section.

In order to delineate the features in the low-carbon portion of the system, a hafnium specimen was repeatedly heated and equilibrated in a graphite holder in the DTA-apparatus, and differential-heating and cooling studies were performed after each equilibration experiment.

The heating curves are shown in Figure 5. With increasing carbon pick-up, the onset of the α-β-phase reaction is gradually shifted towards higher temperatures and, after sixteen runs, has almost disappeared. The carbon concentration of the alloy obtained by a subsequent
Table 7: Reported Temperatures for the α-β-Transformation in Hafnium*

<table>
<thead>
<tr>
<th>Author</th>
<th>Ref.</th>
<th>Transf. Temp. °C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwikker, 1926</td>
<td>23</td>
<td>1327 to 1527</td>
<td></td>
</tr>
<tr>
<td>Duwez, 1951</td>
<td>24</td>
<td>1310*</td>
<td></td>
</tr>
<tr>
<td>Fast, 1952</td>
<td>25</td>
<td>1950*</td>
<td>extrapolated to 100% Hf</td>
</tr>
<tr>
<td>Taylor & Doyle, 1960,</td>
<td>21</td>
<td>1950*</td>
<td>4.41 At% Zr</td>
</tr>
<tr>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant & Giessen, 1960</td>
<td>26</td>
<td>1840*</td>
<td>4.41 At% Zr</td>
</tr>
<tr>
<td>Ross & Hume-Rothery, 1963</td>
<td>22</td>
<td>1995 ± 70*</td>
<td>extrapolated to 100% Hf</td>
</tr>
<tr>
<td>N. H. Krikorian, 1963</td>
<td>27</td>
<td>1750 ± 20*</td>
<td></td>
</tr>
<tr>
<td>D. K. Deardorff & H. Kato, 1958</td>
<td>20</td>
<td>1760 ± 35*</td>
<td>extrapolated to 100% Hf</td>
</tr>
<tr>
<td>Present Investigation</td>
<td></td>
<td>1795 ± 35*</td>
<td>extrapolated to 100% Hf</td>
</tr>
</tbody>
</table>

*In the meantime a publication by P. A. Romans, O. G. Pasche, and H. Kato (J. Less Common Metals 8 (1965), 213) became available. They report a transformation temperature of 1770°C for pure hafnium.
Figure 5. DTA-Thermograms (Heating) of Hafnium After Repeated Exposure to Graphite

(Note: The alloy was equilibrated for 1 minute at 2160°C prior to each subsequent run)

chemical analysis was 1.9 At%. In DTA-runs performed on alloys with carbon concentrations of 3, 5, 10, and 15 At% C, no deviations from the normal course of the base line, which could be related to heat-effects associated with the α-β-phase reaction, were detected.
Figure 6. DTA-Thermograms (Cooling) of Hafnium After Repeated Exposure to Graphite.

(Note: The alloy was held for 1 minute at 2160°C prior to each subsequent run)

A similar trend of the (bivariant) reaction temperatures is observed in the corresponding thermograms obtained on the cooling cycle (Figure 6). The relatively wide temperature gap between the heating and cooling cycle is further indicative of the steep increase of the temperature range of the transformation reaction upon small carbon additions.

In order to differentiate between the various reaction types possible in the very metal-rich region of the system (c.f. peritectic...
Figure 7: DTA-Thermograms (Heating) of Hafnium in Contact with Graphite.

(The time and temperature figures indicated on each curve refer to the equilibration treatment in the previous run).

decomposition of the β-modification; possible formation of a eutectic between the α- and β-modification) a series of analogous experiments as described before, but with the temperature range of the runs extended
to the liquidus region, were performed. The results (Figure 7) are clearly in favor of a eutectic type of reaction. The existence of a eutectic reaction isotherm was also independently verified by melting point determinations on low-carbon alloys, (Figure 8 and Table 5).

Figure 8. Melting Temperatures of Hafnium-Carbon Alloys

Metallographic examination of low carbon alloys revealed evidence of the α-β-transformation only in alloys with less than three atomic percent carbon (Figure 9), whereas at higher carbon concentrations only the α-phase is observed (Figure 10).
Table 8: Melting Temperatures of Hafnium-Carbon Alloys

<table>
<thead>
<tr>
<th>No</th>
<th>At% C</th>
<th>Melting Temperatures °C</th>
<th>Phases Present After Melting (X-Ray)</th>
<th>Melting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal</td>
<td>Incipient</td>
<td>Collapse</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.2</td>
<td>2200</td>
<td>2230 n.d.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>n.d.</td>
<td>2199</td>
<td>2219 n.d.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.4</td>
<td>2180</td>
<td>2195 Hf-ss</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>n.d.</td>
<td>2195</td>
<td>2290 Hf-ss</td>
</tr>
<tr>
<td>5</td>
<td>6.5</td>
<td>6.6</td>
<td>2280</td>
<td>2290 Hf-ss</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>n.d.</td>
<td>2390</td>
<td>2460 B1 + Hf-ss</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>n.d.</td>
<td>2420</td>
<td>2470 B1 + Hf-ss</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>n.d.</td>
<td>2487</td>
<td>2525 B1 + Hf-ss</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>30.7</td>
<td>2470</td>
<td>2680 B1 + Hf-ss</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>33.2</td>
<td>2370</td>
<td>3204 B1 + trace Hf-ss</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>33.9</td>
<td>2981</td>
<td>3540 B1 + trace Hf-ss</td>
</tr>
<tr>
<td>12</td>
<td>39</td>
<td>37.5</td>
<td>3467</td>
<td>3675 B1</td>
</tr>
<tr>
<td>13</td>
<td>41</td>
<td>38.8</td>
<td>3578</td>
<td>3635 B1</td>
</tr>
<tr>
<td>14</td>
<td>44</td>
<td>42.6</td>
<td>3644</td>
<td>3675 B1</td>
</tr>
<tr>
<td>15</td>
<td>47</td>
<td>45.3</td>
<td>3770</td>
<td>3790 B1</td>
</tr>
<tr>
<td>16</td>
<td>47</td>
<td>47.2</td>
<td>3896</td>
<td>3896 B1</td>
</tr>
<tr>
<td>17</td>
<td>49</td>
<td>48.5</td>
<td>3928</td>
<td>3928 B1</td>
</tr>
<tr>
<td>18</td>
<td>49</td>
<td>48.6</td>
<td>3921</td>
<td>3921 B1</td>
</tr>
<tr>
<td>19</td>
<td>50</td>
<td>49.2</td>
<td>3886</td>
<td>3886 B1</td>
</tr>
<tr>
<td>20</td>
<td>51</td>
<td>49.8</td>
<td>3871</td>
<td>3874 B1</td>
</tr>
<tr>
<td>21</td>
<td>51</td>
<td>49.9</td>
<td>3827</td>
<td>3827 B1</td>
</tr>
<tr>
<td>22</td>
<td>53</td>
<td>51.60</td>
<td>3630</td>
<td>3686 B1</td>
</tr>
<tr>
<td>23</td>
<td>55</td>
<td>52.40</td>
<td>3344</td>
<td>3344* B1</td>
</tr>
<tr>
<td>24</td>
<td>56</td>
<td>53.0</td>
<td>3300</td>
<td>3350* B1 + C</td>
</tr>
<tr>
<td>25</td>
<td>57</td>
<td>56.1</td>
<td>3210</td>
<td>3260 B1 + C</td>
</tr>
<tr>
<td>26</td>
<td>60</td>
<td>57.6</td>
<td>3214</td>
<td>3300 B1 + C</td>
</tr>
<tr>
<td>27</td>
<td>60</td>
<td>58.5</td>
<td>3180</td>
<td>3180 B1 + C</td>
</tr>
<tr>
<td>28</td>
<td>63</td>
<td>-</td>
<td>3195</td>
<td>3195 B1 + C</td>
</tr>
<tr>
<td>29</td>
<td>66</td>
<td>55.2</td>
<td>3177</td>
<td>3177 B1 + C</td>
</tr>
<tr>
<td>30</td>
<td>68</td>
<td>66.7</td>
<td>3183</td>
<td>3183 B1 + C</td>
</tr>
<tr>
<td>31</td>
<td>70</td>
<td>68.0</td>
<td>3188</td>
<td>3188 B1 + C</td>
</tr>
<tr>
<td>32</td>
<td>74</td>
<td>73.2</td>
<td>3193</td>
<td>3193 B1 + C</td>
</tr>
</tbody>
</table>

Legend to Table 8: *Samples sag gradually without detectable appearance of melt.
Figure 9. Hf-C (1.2 At% C), Rapidly Quenched from 2220°C. X500
β-Hf (Transformed) with Traces of α-Hf.

Figure 10. Hf-C (3.4 At% C), Rapidly Cooled from 2195°C. X250
α-(Hf,C) Solid Solution
4. **The Concentration Range from 5 to 34 At% C**

Melting of the alloys in this concentration range occurs extremely heterogeneously (Table 8), and incipient melting was very difficult to recognize; sample deformation, or any sign of melting usually could not be observed below approximately 2500°C. Due to this behavior, the melting temperatures of the alloys as determined by the DTA-technique (Figure 8) are therefore more accurate than the data obtained by the Pirani-method.

DTA-runs performed on electron-beam melted as well as hot-pressed and sintered samples (Figures 11 through 15) revealed an average equilibrium temperature for the peritectic reaction

\[P + B\text{I} \rightarrow \alpha\text{-Hf-ss} \]

of 2360 ± 30°C. The peritectic reaction at 2360°C can still be traced in alloys with 30 and 33 atomic percent carbon, as evidenced by the slight endotherms on the corresponding DTA-thermograms in Figures 14 and 15. However, the incipient melting temperatures rise rapidly, as the carbon concentration exceeds 34 atomic percent (Figure 16).

Metallographic analysis was performed on a large portion of the sample material in order to obtain independent confirmation of the results. Arc melting with subsequent equilibration treatment at the desired temperature as a method for preparing the sample material was discarded, since physical separation (floating) of the carbide on the metal-melt occurred, and no defined alloy material could be prepared. In view of these difficulties, the alloys for the metallographic examinations were
Heating Rate: 6 °C·sec⁻¹
Cooling Rate: 6 °C·sec⁻¹

Figure 11. DTA-Thermogram of a Hf-C Alloy with 6 Atomic Percent Carbon, prepared by melting and subsequent equilibration of the prehomogenized alloys in the Pirani-furnace. Following this procedure, well-defined alloy material was obtained, yielding consistent results.
Heating Rate: 4°C·sec⁻¹
Cooling Rate: 14°C·sec⁻¹

TEMPERATURE, °C

Figure 12. DTA-Thermogram of a Hf-C Alloy with 15 Atomic Percent Carbon.

Heating Rate: 4°C·sec⁻¹
Cooling Rate: 4°C·sec⁻¹

TEMPERATURE, °C

Figure 13. DTA-Thermogram of a Hf-C Alloy with 18 Atomic Percent Carbon.
Figure 14. DTA-Thermogram of a Hf-C Alloy with 30 Atomic Percent Carbon.
Heating Rate: 2°C sec\(^{-1}\)
Cooling Rate: 4°C sec\(^{-1}\)

Figure 15. DTA-Thermogram of a Hf-C Alloy with 33 Atomic Percent Carbon.

Heating Rates: 4°C sec\(^{-1}\)

1st run

2nd run

3rd run

Figure 16. DTA-Thermograms (Heating) of a Hf-C Alloy with 34 Atomic Percent Carbon.

(Carbon Content After 3rd Run: 34.7 At%)
The results of the metallographic examination of metal-rich alloys are summarized in Figure 17, and are in general confirmation of the findings obtained by differential thermal analysis. Alloys equilibrated and quenched from above the peritectic line were two-phased, containing monocarbide and metal-rich melt (Figure 18a and 19d), whereas complete or partial dissolution of the monocarbide occurs upon reannealing of the alloys at temperatures below the peritectic (Figures 18b, 19b, 20b, and 20c).

Figure 17. Metal-Rich Portion of the System Hafnium-Carbon: Qualitative Results of the Metallographic Examinations of Equilibrated and Quenched Alloys.
Figure 18a. Hf-C (7 At% C) Quenched from 2400°C. Monocarbide (Dark) in Matrix of α-Hf (Light with Localized Precipitations of Monocarbide)

X100

Figure 18b. Hf-C (7 At% C) Sample from Figure 18a, Re-equilibrated for 15 Minutes at 2150°C (Slowly Cooled).

α-Hf-Solid Solution with Localized Precipitations of Monocarbide.

X250
Figure 19a. Hf-C (13 At% C), Quenched from 2450°C. X100
Monocarbide (Dark, with Metal Precipitations), in a Matrix of Metal-Rich Melt (α-Hf with Carbide Precipitations).

Figure 19b. Hf-C (13 At% C) Sample from Figure 19a, Re-equilibrated at 2300°C and Quenched.
α-Hf-Solid Solution with Oriented Precipitation of Monocarbide Formed During Cooling.
Precipitation of monocarbide from the α-Hf-solid solution occurs extremely fast and partial dissolution of the alloys upon cooling could not be prevented. Nevertheless, a differentiation between primary and secondary alloy constituents can be achieved fairly easily metallographically from the observed physical distribution of the phases after the equilibration and quenching treatments. The precipitation of the monocarbide occurs preferentially on selected crystal planes of the α-Hf-phase. (Presumably growth of the (111) plane of the cubic (B1) monocarbide phase on the 10̅10̅ plane of the hexagonal close-packed α-Hf-phase)

Figure 20a. Hf-C (14.9 At% C), Quenched from 2450°C. X150
Monocarbide (Grey) in Matrix of Metal-Rich α-Hf Solid Solution (Light Phase, with Precipitations of Monocarbide)
Figure 20b. Hf-C (14.9 At% C). Sample from Figure 20a X450
Re-equilibrated for 15 Minutes at 2300°C.
Carbide Phase in Process of Dissolution

Figure 20c. Hf-C (14.9 At% C) Sample from Figure 20a X500
Re-equilibrated for 1 Hour at 2300°C.
α-Hf-Solid Solution with Oriented Precipitations of Monocarbide Within the Grains and Small Amounts of Excess Monocarbide Distributed Along the Grain Boundaries.
While in alloys with total carbon concentration of up to 14 At% the dis-
solutioning reaction proceeds to completion, i.e. the alloys are single
phase α-Hf-ss upon heat-treatment slightly below the peritectic line, the
appearance of small amounts of monocarbide as second phase was noticed
in the alloy with 14.9 atomic percent (Figure 20c). The amount of excess
monocarbide increases upon further addition of carbon (Figure 21 and 22).
Based on the metallographic evidence, the homogeneity limit of the α-Hf-
phase at the peritectic temperature was placed at 14 At% C.

X-ray examination was performed on all alloy
material from this concentration range. Due to the rapid precipitation of
monocarbide from the α-(Hf, C)- solid solution, the lattice parameter of
the terminal solid solution at the peritectic temperature could not be deter-
mined with certainty. The largest parameters, \(a = 3.221 \text{ Å} \), \(c = 5.151 \text{ Å} \),
were obtained from an alloy with 25 At% C after rapid quenching (tin) from
2300°C. This is significantly higher than the parameters of the starting
material (\(a = 3.196 \text{ Å} \), \(c = 5.05, \text{ Å} \)), although post-quenching metallo-
graphic examination showed, that considerable amounts of monocarbide
had precipitated from the α-phase. Slower cooling (8 to 16 °C·sec\(^{-1}\)) result-
ed in alloys with parameters for the α-phase varying between \(a = 3.202 \) to
3.207 Å, and \(c = 5.100 \) to 5.107 Å.

The lattice expansion of the α-Hf-phase due incorpora-
tion of carbon atoms is apparently much larger than in the corresponding
system with oxygen\(^{29}\), where the parameters at the homogeneity limit
(20.5 At% O) are \(a = 3.214 \text{ Å} \) and \(c = 5.101 \text{ Å} \), respectively.
Figure 21. Hf-C (16 At% C), Equilibrated at 2310°C, and Quenched.
\[\alpha\text{-Hf-Solid Solution and Excess Monocarbide.}\]

Figure 22. Hf-C (19 At% C), Equilibrated at 2310°C, and Quenched.
\[\alpha\text{-Hf-Solid Solution with Monocarbide Precipitation, and Monocarbide (Shaded, with Localized Metal Precipitations).}\]
Similarly as experienced with hafnium-oxygen alloys\(^{(29)}\), the incorporation of carbon atoms into the hexagonal close-packed \(\alpha\)-hafnium lattice causes a severe embrittlement and increase of hardness of the metal phase: Alloys with carbon concentrations higher than approximately 7 to 8 atomic percent can be crushed and powdered without any difficulty and apparent deformation of the parent lattice. At the low carbon concentration of the peritectic (~ 5 At% C) the metal phase at this composition still exhibits a certain amount of ductility, and it was interesting to note, that two-phase (Hf + HfC) alloys, quenched from temperatures above 2360°C, were quite tough, while reannealing of the alloys at sub-peritectic temperatures resulted in brittle bodies (formation of the \(\alpha\)-(Hf,C) solid solution).

Alloys with 25, 32.8, and 33.2 At% C are two-phased, consisting of monocarbide and metal (Figure 23a, 23b, and 23c), while an alloy with 34.3 At% C shows the monocarbide phase only (Figure 24).

5. The Monocarbide Phase

The incipient melting temperatures of the alloys increase steeply as the carbon concentration is raised above 34 At% (Figure 16, Table 8). Congruent melting was observed at a carbon concentration of 48.5 At% and a temperature of 2338°C. Comparatively rapid precipitation of metal from the monocarbide phase was encountered up to total carbon concentrations of 37 atomic percent; at still higher concentrations quenching was not necessary to retain the metal in solution.

Metallographic examination of the alloys revealed homogeneity to compositions very close to stoichiometry (Figures 25a through 25d). The average bound carbon content in alloys quenched in the
Figure 23. Micrographs of Hf-C Alloys Equilibrated at 2400°C
Structure Constituents: Monocarbide and α-Hf-Phase

Figure 24. Hf-C (34.3 At% C, Quenched from 2400°C, X190
Single Phase Hafnium Monocarbide, and Pores (Black)
temperature range from 2300 to 3800°C varied between 49.8 to 49.5 At%, i.e. the carbon-rich boundary over the entire temperature range is located very closely to 50 At% and retracts only at temperatures above 3800°C to 48.5 At%, the congruently melting composition. The lattice parameters of the monocarbide phase over the homogeneity range were determined on two alloy series, which were equilibrated at 1600°C, and 2200 - 2320°C, respectively (Figure 26), and show a nearly linear variation from \(a = 4.608 \, \text{Å} \) at \(\sim 34 \, \text{At\% C} \) (4.619 Å at 38 At\% C, the low carbon boundary at 1600°C), to \(a = 4.640 \, \text{Å} \) at the monocarbide-graphite boundary (49.5 to 49.0 At\% C). It is interesting to note, that the largest parameter
Figure 25 c. 47.2 At% C, 3896°C ↓

Figure 25 d. 49 At% C, 3800°C ↓

Figure 25 a - d: Single Phase Hafnium-Monocarbide Alloys
\[a = 4.643 \text{ Å}, \] was measured in alloys with an analyzed carbon content of approximately 49 At%, quenched from the molten state (3890°C). Excess carbon containing alloys, quenched from temperatures above the Hf-C eutectic line, invariably showed smaller parameters \((a = 4.637 \text{ to } a = 4.639 \text{ Å})\). Apparently the same phenomenon, whose origin is not yet fully understood, had been observed by R.V. Sara and C.E. Lowell\(^{(28)}\) on zirconium monocarbide; it is thinkable, that partial interchanges between the metal and the semi-metal lattice may take place at temperatures close to melting, or may occur as the result of non-equilibrium crystallization, and are frozen-in in the quenching process. The smaller parameters found for excess carbon containing alloys

![Figure 26. HfC\(_x\): Variation of the Lattice Parameter with the Carbon Concentration.](image-url)
Figure 27. DTA-Thermogram of a Hafnium-Carbon Alloy with 66 Atomic Percent Carbon.

(The gradual endotherm above 2800°C on the heating cycle indicates higher vaporization rates \((C + Hf)\) from the porous test sample as compared to the graphite reference sample).

would then be explainable by metal vacancies or carbon-occupied sites in the metal parent lattice. In this connection, it is noteworthy, that the lattice defects heal out upon annealing at lower temperatures, i.e. the
Figure 28a. Hf-C (56.1 At% C), Quenched from 3500°C. X500

Figure 28b. Hf-C (39.5 At% C), Quenched from 3500°C. X1000
Figure 28c. Hf-C (60.3 At% C), Quenched from 3300°C.

Figure 28a - 28c: Hf-C Alloys from the Concentration Range 56 to 61 At% C, Quenched from Temperatures Above the Eutectic Line.

Structure Constituents: Primary Crystallized Monocarbide in HfC + C Eutectic Matrix.

6. The Concentration Range Monocarbide-Graphite

Formation of liquid in alloys with carbon concentrations slightly above 50 atomic percent was difficult to observe, and noted with certainty only at temperatures far in excess of the eutectic line (Table 8, Figure 8). Melting occurred practically isothermally in the alloys having carbon concentrations between 58.5 and 73 At% C. A eutectic
Figure 29. Hf-C (65.2 At% C), Quenched from 3200°C.

HfC + C Eutectic

Figure 30. Hf-C (73.2 At% C), Rapidly Cooled

(∼ 40°C sec) from 3400°C.

Primary Crystallized, Platelet-Shaped Graphite
in a Matrix of HfC + C Eutectic.
Figure 31. Hf-C (82 At% C), Rapidly Cooled from 3700°C. X100

Primary Graphite and HfC + C Eutectic

temperature of 3180°C was derived from the measurements (Table 8). This result was independently confirmed by differential thermal analysis (Figure 27).

Metallographic analysis showed alloys from the concentration range 50 to 63 At% C to be two-phased, containing primary crystal-lized monocarbide in a matrix of HfC-C eutectic (Figures 28 through 28c).

An alloy with an analyzed carbon content of 65.2 At% C was purely eutectic (Figure 29), and specimens with carbon concentrations above 66 At% C show increasing amounts of primary crystal-lized graphite (in platelet-shaped form) in a eutectic matrix (Figures 30 and 31).
The results of the experimental investigations have been combined to develop the phase diagram shown in Figure 1.

IV. DISCUSSION

The newly established phase diagram follows in its basic layout the system presented by R. G. Avarbe, et al.\(^\text{(18)}\). Our findings, however, are more in favor of the existence of an eutectic reaction isotherm between the \(\alpha\)- and \(\beta\)-Hf solid solution, rather than a peritectic decomposition of the \(\beta\)-phase, as suggested by these authors. Also, their temperature for the peritectoid decomposition of the \(\alpha\)-(Hf, C)-solid solution \(2820^\circ\text{C}\), Figure 3) is certainly too high. An explanation for these deviations may possibly be sought in the extreme heterogeneous melting (compare the liquidus curve in Figure 1) of the alloys in this concentration range, which makes the direct pyrometric observation of incipient melting rather difficult. Oxygen contamination as the possible error source, as suggested by R. V. Sara and C. E. Lowell\(^\text{(8)}\) is to be excluded, since the corresponding alloys are lower-melting\(^\text{(29)}\).

The metal-rich boundaries of the monocarbide are in good agreement with previous determinations at the respective equilibrium temperatures\(^\text{(8, 9, 10, 16, 18)}\). The carbon-rich phase boundary found by us is in substantial agreement with the observations by R. V. Sara and C. E. Lowell. It should be kept in mind, however, that the 49.5 At% C \(2000 - 2500^\circ\text{C}\), given by us refer to the firmly established lower limit. Analysis data on a number of alloy specimens indicated bound carbon contents as high as 49.9 At%. These results, however, showed poor reproductibility, and were therefore not considered in the final data evaluation.
A comparison of the melting temperatures of the monocarbide phase reveals, that the measurements by C. Agte and H. Alterthum\(^{(14)}\), made over 30 years ago, still appear as the most accurate to date, whereas, with the exception of the data by R. P. Adams and R. A. Beall\(^{(15)}\) (Table 3), more recent investigations yielded values, which are too low\(^{(8,16)}\). The most likely error source will probably have to be sought in employing inadequate techniques for the measurements. Thus, one would suspect that rapid carbon exchange reactions, taking place between hafnium-carbon alloys and the tantalum carbide containers, used in the method by R. V. Sara and C. E. Lowell\(^{(8)}\), may have changed the effective composition of the test samples and resulted in too low values.

Our determination of the eutectic point HfC + C, (65 At% C, 3180°C,) is in confirmation of the data by R. V. Sara and C. E. Lowell\(^{(8)}\) (66 At% C, 3150°C), R. P. Adams and R. A. Beall\(^{(15)}\) (~3220°C), K. I. Portnoi, et al.\(^{(17)}\) (3250 ± 50°C). The value of 2915°C, determined by N. H. Krikorian\(^{(7)}\) at the Los Alamos Scientific Laboratory, as well as the earlier reported temperature of 2800°C by Cotter and Cohn\(^{(5)}\) for this reaction isotherm appear as somewhat low.
REFERENCES

1. C. Agte and K. Moers: Z. anorg. Chem. 198 (1931), 236
2. K. Moers: Z. anorg. Chem. 198 (1931), 243; ibid. 262
13. Compare also the data compilation in R. Kieffer and F. Benesovsky, "Hartstoffe" (Wien, Springer, 1963)
References (continued)

23. C. Zwikker: Physica 6 (1926), 361
25. J.D. Fast: J. Appl. Phys. 23 (1952), 350
10. ABSTRACT

The alloy system hafnium-carbon was investigated by means of X-ray, DTA, and melting point techniques on chemically analyzed alloys, and a complete phase diagram was established.

The results are discussed and compared with previously reported data.
<table>
<thead>
<tr>
<th>Key Words</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Equilibria</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with applicable security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

4. DESCRIPTIVE NOTE: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year, if more than one date appears on the report, use date of public issue.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures. Include the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number if the contract or grant under which the report was written.

8b. dc. & ed. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S EFFECT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (other by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcee and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through..."

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through..."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through..."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (1) (2) (3) (C) or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of links, rules, and weights is optional.