DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Protection Afforded by Experimental XXCC3-Impregnated Navy Work/Combat Clothing Worn by Men Exposed to Mustard Vapor

by

Fred W. Oberst
Nelson P. Musseiman
Clyde H. Graf
George A. Trapp
Paul B. Dawson

February 1965
Defense Documentation Center Availability Notice

Qualified requesters may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314
PROTECTION AFFORDED BY EXPERIMENTAL XXCC3 IMPREGNATED NAVY WORK/COMBAT CLOTHING WORN BY MEN EXPOSED TO MUSTARD VAPOR

by

Fred W. Oberst
Nelson P. Musselman
Clyde H. Graf
George J. Trapp
Paul B. Dawson

Toxicology Division
Directorate of Medical Research

February 1965
FOREWORD

This work was authorized under Project IC622401A097, Medical Defense Aspects of Chemical Agents (UI), Task IC622401A0970, investigation and Evaluation of Protective Equipment, conducted under Directorate of Medical Research approved Research Plan 5043. Work was funded in part by the US Naval Supply Research and Development Facility, Navy Supply Center, Bayonne, N. J., Bureau of Supplies and Accounts, Department of the Navy, subtask 80-C-001-002-1-1-1-3, MPR 920-7215164, 2 March 1964. The work was started in June 1964 and completed in August 1964. The experimental data are contained in notebook IC622-401 A097.

Acknowledgments

The authors acknowledge the cooperation of Lt Col Nicholas Bottiglieri and Mr. Carl Stearn from Clinical Research Division in providing the volunteers, the volunteers for their service, Mr. Marshall F. Gilchrist, Mr. John Deppeisch, S/Sgt Arne Rossquist, Spc Walter Hunt, Mr. Thomas Mitchell, and Pfc William Konzal, from Physical Protection Division, for suggestions offered and for the proper fitting of protective masks and clothing on the subjects. The technical assistance of Pfc Donald Swan from Vapor Toxicity Branch in the analysis of mustard vapor is acknowledged. The authors are also grateful to Mr. Elmo Maiolatesi for fabrication of the mustard-evaporation bubbler, to Dr. Harold Averill, Coordinator of Research and Protection, Directorate of Medical Research, and to Mr. Maurice Weeks, Vapor Toxicity Branch, and Mr. Edward Cherowierie, of the US Naval Supply Research and Development Facility, for helpful suggestions.

Notices

Reproduction of this document in whole or in part is prohibited except with permission of US Army Edgewood Arsenal Chemical Research and Development Laboratories, however, DDC is authorized to reproduce the document for United States Government purposes.

The information in this report has not been cleared for release to the general public.

Disclaimer

The findings in this report are not to be construed as an official department of the Army position, unless so designated by other authorized documents.

Disposition

When this report has served its purpose, DESTROY it. DO NOT return the document to US Army Edgewood Arsenal Chemical Research and Development Laboratories.
DIGEST

The effectiveness of Navy protective clothing (single-layer type) impregnated with XXCC3 against mustard vapor (20 mg/cu m) was tested by 10 men. Two men serving as controls in the standard Army two-layer XXCC3-treated protective clothing and were exposed with the group. When mustard vapor penetrated the Navy clothing, erythema developed at the site of penetration within 24 hr after exposure. When this occurred, the affected subject was withdrawn from further exposure tests. The men were exposed for 15 min on the first day, 30 min on the second day, and 1 hr on each of the following 8 days. Erythema was produced on 9 of the 10 men wearing Navy clothing exposed in the cumulative Ct range of 3,306 to 10,054 mg min/cu m, with corresponding cumulative exposure times varying between 2.75 and 8.35 hr. Most of the erythema occurred in the abdominal area. The one remaining Navy suit and the two control Army suits did not break during the 10 exposures, which totaled cumulative Ct's of 10,500 mg min/cu m and 8.75 hr.

Considerable care in size selection and adjustment of the Navy clothing outfit on the wearers was necessary to assure the absence of gaps in protection over the forearms and around the waist.

It is concluded that the experimental XXCC3-impregnated Navy work/combat clothing can be worn by men in mustard vapor for a cumulative Ct of 7,000 mg min/cu m (total time 6 hr) without incapacitating effects.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>II.</td>
<td>EXPERIMENTATION</td>
<td>7</td>
</tr>
<tr>
<td>A.</td>
<td>Materials and Equipment</td>
<td>7</td>
</tr>
<tr>
<td>B.</td>
<td>Procedures for Chamber Operation and Analysis of Mustard-Vapor</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>Subjects</td>
<td>12</td>
</tr>
<tr>
<td>D.</td>
<td>Mustard-Vapor-Penetration Tests</td>
<td>15</td>
</tr>
<tr>
<td>III.</td>
<td>RESULTS</td>
<td>16</td>
</tr>
<tr>
<td>IV.</td>
<td>DISCUSSION</td>
<td>20</td>
</tr>
<tr>
<td>V.</td>
<td>CONCLUSION</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>LITERATURE CITED</td>
<td>23</td>
</tr>
</tbody>
</table>

PRECEDEDING PAGE BLANK
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Subjects Wearing Navy Unimpregnated T-Shirt and Shorts (Left) and Army Impregnated Long Underwear (Right)</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Navy Trousers, Socks, and Shoes Donned</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Navy Jacket Worn Over T-Shirt</td>
<td>9</td>
</tr>
<tr>
<td>4.</td>
<td>Navy Gloves Donned, Hood Slung Around Neck Prior to Fitting</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Navy Gas Mask Donned, Front and Back Bib of Hood in Place</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td>Front View of Completely Dressed Subjects</td>
<td>10</td>
</tr>
<tr>
<td>7.</td>
<td>Rear View of Completely Dressed Subjects</td>
<td>11</td>
</tr>
<tr>
<td>8.</td>
<td>Subjects Leaving Gassing Chamber</td>
<td>11</td>
</tr>
<tr>
<td>9.</td>
<td>Equipment for Dispersing Mustard Vapor</td>
<td>13</td>
</tr>
<tr>
<td>10.</td>
<td>Examination of Skin by Physician Prior to Exposure</td>
<td>14</td>
</tr>
<tr>
<td>11.</td>
<td>Endpoint of Clothing Protection Resulting in Erythema in Subjects Exposed to Mustard Vapor</td>
<td>21</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Daily Exposure Times and Cumulative Ct's Received by Subjects Wearing Test Clothing in Mustard Vapor</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>Number of Exposures to Mustard Vapor and Cumulative Ct's Prior to Clothing Break, as Indicated by Occurrence of Erythema</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>Laboratory Evaluation of Navy Protective Clothing Before and After Clothing Was Exposed to Mustard Vapor in Wearing Trials</td>
<td>19</td>
</tr>
</tbody>
</table>
PROTECTION AFFORDED BY EXPERIMENTAL XXCC3-IMPREGNATED NAVY WORK/COMBAT CLOTHING WORN BY MEN EXPOSED TO MUSTARD VAPOR

I. INTRODUCTION.

The US Army Edgewood Arsenal Chemical Research and Development Laboratories were requested to furnish the necessary services, personnel, facilities, and supplies required for the evaluation of experimental XXCC3-impregnated Navy work/combat clothing. The purpose of this evaluation was to determine whether these garments fulfill the requirements as protective suits against chemical agents. The garments were evaluated by exposing volunteers to mustard vapor in a chamber.

II. EXPERIMENTATION.

A. Materials and Equipment.

Chloropicrin was utilized in the leak testing of the protective masks worn by the volunteers. The mustard was plant-distilled and its purity reported to be from 95% to 98%.

The clothing was supplied by the US Naval Supply Research and Development Facility, Navy Supply Center, Bayonne, N. J. The complete protective outfit consisted of a shirt, trousers, hood, socks, cotton gloves, plastic booties, and plastic gloves. All of the items of clothing except the plastic gloves and booties were impregnated with XXCC3. The shirts were fabricated from 6.2-oz nylon-cotton poplin and were of a pullover type. They were worn on the outside of the trousers and were drawn tight at the bottom with a drawcord. The trousers and hood were made from 8.8-oz nylon-cotton sateen. The socks and cotton gloves were standard items and were worn over the trouser legs and shirt sleeves. The hood had a front and back bib and an inner circular protective flap attached to the neckline. It had two drawstring adjustments, one at the forehead and another on the inner cheek flap, to prevent vapor entrance. The bib was designed to cover the front opening of the shirt. To complete the Navy outfit, each man wore the Mk V gas mask.

These Laboratories supplied unimpregnated shorts, T-shirts, and untreated leather Army combat boots. The two control subjects wore the standard US Army two-layer XXCC3-impregnated clothing for comparison. Figures 1 to 8 illustrate the Navy and Army clothing used in these tests in different stages of dressing.
FIGURE 1

SUBJECTS WEARING NAVY UNIMPREGNATED T-SHIRT AND SHORTS (LEFT) AND ARMY IMPREGNATED LONG UNDERWEAR (RIGHT)

FIGURE 2

NAVY TROUSERS, SOCKS, AND SHOES DONNED
FIGURE 3

NAVY JACKET WORN OVER T-SHIRT

FIGURE 4

NAVY GLOVES DONNED, HOOD SLUNG AROUND NECK PRIOR TO FITTING
FIGURE 5

NAVY GAS MASK DONNED, FRONT AND BACK BIB OF HOOD IN PLACE

FIGURE 6

FRONT VIEW OF COMPLETELY DRESSED SUBJECTS

Left - Arrt. clothing
Right - Navy clothing including plastic booties over boots
FIGURE 7

FAR VIEW OF COMPLETELY DRESSED SUBJECTS
Left - Army clothing
Right - Navy clothing

FIGURE 8

SUBJECTS LEAVING GASSING CHAMBER
(Last individual is wearing Army clothing as control)
B. Procedures for Chamber Operation and Analysis of Mustard-Vapor Concentration.

A 20-cu m dynamic gassing chamber was used in the mustard tests. The airflow was 5,000 l/min. Dry nitrogen was passed through the liquid mustard at 114°C in a specially designed bubbler (figure 9) at a rate of approximately 2 l/min to give a chamber concentration of 20 mg/cu m.

The mustard concentration in the chamber was determined on samples of chamber air by a bromine titration method using the modified Northrup manual electrolytic titrimeter. A sample was collected and analyzed every 3 min. The cumulative CIs were determined during the progress of an exposure.

Subjects.

1. Selection and Use.

The volunteers selected for this study were made available by the Clinical Research Division. They were divided into two groups (A and B) of six men each, five wearing the Navy clothing and one wearing the Army control clothing. For the first eight exposures, group A was exposed in the morning and group B in the afternoon. In the ninth and tenth exposures the men from both groups who had not developed erythema (totaling five men in this instance) were exposed as one group. No exposures were made on Saturdays or Sundays. Each subject had previously been examined by a physician (figure 10) for skin rash and other dermatological conditions that might mask the mustard effect if a clothing break and erythema were to occur.

2. Dressing and Preparation of Subjects for Mustard Test.

The subjects were dressed by clothing specialists to assure proper wearing of the clothing and proper fitting of the protective mask and hood. Amyl acetate vapor from a bottle of the liquid was applied to the periphery of the mask to check for gross leaks. A further mask leakage test was made by exposing the men to chloropicrin in a gassing chamber. In the chamber a series of physical exercises was performed for 5 min to ascertain that the mask was properly fitted and would not leak while being worn in mustard vapor.
FIGURE 9

BUDDLER FOR DISPERSING MUSTARD Vapor
FIGURE 10

EXAMINATION OF SKIN BY PHYSICIAN PRIOR TO EXPOSURE
3. Exposure of Subjects to Mustard.

The procedure for exposure to mustard vapor is similar to that previously described. After the chlorine rinse test, the men entered the mustard chamber and remained for a period of 15 to 60 min. The men were exposed daily to mustard vapor at increasing Ct's ($C = 20 \text{ mg/cu m}, t = 15$ to 60 min), but not exceeding $1,218 \text{ mg min/cu m}$ any one day. No man received more than 10 exposures or a maximum cumulative Ct of $10,500 \text{ mg min/cu m}$. The men were instructed to leave the chamber if they detected, or thought they detected, an odor of mustard. During the exposure, each man was in full view of the observers and in contact with them by an intercommunication system. The temperature of the exposure chamber was 24° to 27°C (average 25°C), and the relative humidity was 58% to 70% (average 65%). The men were allowed freedom of movement during exposure, but they were requested not to sit down or lean against the chamber walls. During the final 15 min of the last eight exposures, the men were directed to walk in a circle and to step on and off an 8-in. high concrete block approximately twice per minute to flex the clothing further.

To assure the safety of the subjects, a physician was in attendance. After the mustard exposure, the men remained in the anteroom 4 min to aerate their clothing. They were then escorted outside for an additional 20 min aeration. They were assisted by clothing experts in removing their contaminated clothing. The clothing was hung in a well-ventilated room until the next exposure day. After a shower, observation, and a discussion of the day's proceedings, the men were dismissed.

Twenty-four hours after each exposure, a physician carefully examined the subject for mustard effects. If erythema was seen, the subject was withdrawn from further exposures, and the cumulative Ct was considered the breaking point for that particular garment.

D. Mustard-Vapor-Penetration Tests.

Samples of cloth were cut from the Navy protective clothing before and after the clothing was exposed to mustard vapor in the wearing trials. These samples were tested for concentration of chloramide as free chlorine and for mustard penetration (μg/sq cm) under standard conditions by the Dawson Agent Test apparatus.* The results were compared with those for the Army 8.5-oz, one-layer, XXC3-impregnated sateen fabric.

The general procedure for the mustard-penetration test is as follows: Mustard vapor (20 to 25 mg/cu m at 80% relative humidity, dry-bulb temperature 90°F) is drawn through test fabric at a velocity of 10 cm/min for 6 hr, with intermittent penetration samples being collected in bubblers at 0 to 2 hr and 2 to 6 hr. The effluent mustard concentration is analyzed by the DB3 method and expressed as micrograms per square centimeter for the collection time indicated.

III. RESULTS.

Table 1 shows the daily exposure time and the cumulative Ct for each of the two groups of subjects. The longest cumulative exposure time was 8.75 hr, with an average cumulative Ct exposure of 10,500 mg min/cu m. Table 2 gives the number of exposure to mustard vapor and the cumulative Ct exposure values for clothing breaks after which erythema was observed.

No erythema was seen in either of the two subjects wearing the standard Army impregnated ensemble or in one subject wearing the impregnated Navy clothing for 10 days, the duration of the test. Nine Navy suits broke between cumulative Ct’s of 3,300 and 10,000 mg min/cu m. The first one broke after the fourth exposure. Another broke on the fifth day, three on the seventh day, two on the eighth day, and two on the tenth day.

The erythema usually was present on the abdominal or chest area close to the waistline. In one man it was present on the scrotum, and in two men it was present about the groin and trigonal area.

Table 3 shows average values for samples from Navy unexposed and exposed clothing items evaluated in the laboratory for chloramide content and mustard-vapor penetration. The mustard tests did not appreciably deplete the chloramide content of the fabric, and the penetration of mustard through the fabric was not appreciably altered by the wearing trials. Laboratory tests showed that the nylon-cotton Navy and Army sateen fabrics are comparable in chloramide content and in protection provided.

TABLE 1

DAILY EXPOSURE TIMES AND CUMULATIVE Ct'S RECEIVED BY
SUBJECTS WEARING TEST CLOTHING IN MUSTARD VAPOR

<table>
<thead>
<tr>
<th>Exposure day</th>
<th>Group A (morning)</th>
<th>Group B (afternoon)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposure time</td>
<td>Ct</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>mg min/cu m</td>
</tr>
<tr>
<td>1st</td>
<td>15 294</td>
<td>294</td>
</tr>
<tr>
<td>2nd</td>
<td>30 606</td>
<td>900</td>
</tr>
<tr>
<td>3rd</td>
<td>60 1,206</td>
<td>2,106</td>
</tr>
<tr>
<td>4th</td>
<td>60 1,200</td>
<td>3,306</td>
</tr>
<tr>
<td>5th</td>
<td>60 1,218</td>
<td>4,524</td>
</tr>
<tr>
<td>6th</td>
<td>60 1,200</td>
<td>5,724</td>
</tr>
<tr>
<td>7th</td>
<td>60 1,200</td>
<td>6,924</td>
</tr>
<tr>
<td>8th</td>
<td>60 1,200</td>
<td>8,124</td>
</tr>
<tr>
<td>9th</td>
<td>60 1,188</td>
<td>9,312</td>
</tr>
<tr>
<td>10th</td>
<td>60 1,194</td>
<td>10,506</td>
</tr>
<tr>
<td>Total</td>
<td>8.75 hr</td>
<td>8.75 hr</td>
</tr>
</tbody>
</table>
TABLE 2

NUMBER OF EXPOSURES TO MU 증 ARD VAPOR AND CUMULATIVE Ct'S PRIOR TO CLOTHING BREAK, AS INDICATED BY OCCURRENCE OF ERYTHEMA

<table>
<thead>
<tr>
<th>Subject number</th>
<th>Number of exposures</th>
<th>Cumulative exposure time</th>
<th>Cumulative Ct</th>
<th>Report of physician's examination 24 hr after last exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hr</td>
<td>mg min/ cu m</td>
<td></td>
</tr>
<tr>
<td>A. Army Clothing (Controls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>10</td>
<td>8.75</td>
<td>10,506</td>
<td>No erythema</td>
</tr>
<tr>
<td>6B</td>
<td>10</td>
<td>8.75</td>
<td>10,494</td>
<td>No erythema</td>
</tr>
<tr>
<td>B. Navy Clothing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>4</td>
<td>2.75</td>
<td>3,306</td>
<td>Erythema (4- X 8-in.) on midabdomen above umbilicus</td>
</tr>
<tr>
<td>4B</td>
<td>5</td>
<td>4.5</td>
<td>5,424</td>
<td>Mild erythema (3- X 3-in.) on upper chest about breast</td>
</tr>
<tr>
<td>1B</td>
<td>7</td>
<td>5.75</td>
<td>6,918</td>
<td>Moderate erythema at beltline</td>
</tr>
<tr>
<td>2B</td>
<td>7</td>
<td>5.75</td>
<td>6,918</td>
<td>Moderate erythema (8- X 8-in.) on anterior abdomen</td>
</tr>
<tr>
<td>7B</td>
<td>7</td>
<td>5.75</td>
<td>6,918</td>
<td>Moderate erythema in trigonal area and about beltline</td>
</tr>
<tr>
<td>1A</td>
<td>8</td>
<td>6.75</td>
<td>3,124</td>
<td>Erythema about groin</td>
</tr>
<tr>
<td>5A</td>
<td>8</td>
<td>6.75</td>
<td>3,124</td>
<td>Erythema on abdomen</td>
</tr>
<tr>
<td>2A</td>
<td>10</td>
<td>8.35</td>
<td>10,054</td>
<td>Erythema (8- X 12-in.) with one vesicle on abdomen, erythema under chin (approximately 1- X 2-in.)</td>
</tr>
<tr>
<td>3A</td>
<td>10</td>
<td>8.35</td>
<td>10,054</td>
<td>Moderate erythema on scrotum, with burning sensations</td>
</tr>
<tr>
<td>5B</td>
<td>10</td>
<td>8.75</td>
<td>10,494</td>
<td>No erythema</td>
</tr>
</tbody>
</table>
Table 3

Laboratory Evaluation of Navy Protective Clothing Before and After Clothing Was Exposed to Mustard Vapor in Wearing Trials

<table>
<thead>
<tr>
<th>Clothing Items Sampled</th>
<th>Chloramide Content as Free Chlorine (Average)</th>
<th>Mustard-Vapor Penetration of Fabric (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of samples</td>
<td>Unexposed clothing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hood</td>
<td>2</td>
<td>0.765</td>
</tr>
<tr>
<td>Jacket</td>
<td>2</td>
<td>0.460</td>
</tr>
<tr>
<td>Trousers</td>
<td>2</td>
<td>0.564</td>
</tr>
<tr>
<td>Army 8.5-oz treat. sateen</td>
<td>1</td>
<td>0.600</td>
</tr>
</tbody>
</table>

For each condition; i.e., unexposed and exposed clothing.
IV. DISCUSSION.

The type of protective clothing used in the Navy study was the so-called one-layer system. Only the outer layer was impregnated; the underwear was the standard unimpregnated T-shirt and shorts. In contrast, the Army clothing used as a control consisted of two layers of clothing; both the outer garment and the long-sleeved undershirt and long-legged underpants were impregnated. It would be unreasonable to expect a one-layer system to afford more protection than a two-layer system. Mustard vapor penetrates by slipping through the treated fabrics and through inadequacies of closures; i.e., cuffs, collar, etc.

Although the Navy one-layer suit was inferior to the Army two-layer suit in protection against mustard vapor, it was considered to be safe for a wearing period of at least 1-3/4 hr without resulting in burns. This represents a mustard vapor cumulative Ct of 2,100 mg min/cu m for three wearing trials. The erythema noted in the first individual occurred from a cumulative exposure above this Ct and below 3,306 mg min/cu m. The second person to receive a burn acquired it between cumulative exposures of 3,300 and 5,400 mg min/cu m. The burns in these two subjects were quite mild and were not incapacitating. Those burns merely indicate that an endpoint had been approached. In fact, one-half of the men (five) did not develop erythema until a Ct of 7,000 mg min/cu m or higher was reached. Figure 11 shows three subjects with burns on the abdomen.

Laboratory tests for chloramide content and mustard penetration of fabric suggest that the protection afforded by the suits did not deteriorate after mustard exposures, but that the resulting erythema was primarily a cumulative effect of the slight slipping that occurred over a period of time. No doubt, if another individual wore the same suit and were exposed, he would not develop erythema before the Ct that caused erythema in the previous wearer was reached.
FIGURE 11

ENDPOINT OF CLOTHING PROTECTION RESULTING IN ER THEMA IN SUBJECTS EXPOSED TO MUSTARD VAPOR

(Top, subject 4A; bottom left 2A; bottom right, 1A)
Several comments may be made as to the fitting of the clothing, although this probably had no bearing on the mustard burns. Attempt was made to fit the proper-sized uniform to the man according to his height and weight, as indicated on Army TECOM 8-4-6230 ("R" Sizing and Fitting Worksheet). Some suits, which should have been satisfactory according to the labeled size and the worksheet, were much too small, and it was necessary to substitute a larger suit. In particular, the sleeves were very short and the cuff closing gapped (figure 3), making it difficult to seal. The long white protective gloves were intended to cover the gap in the sleeves. When this was impossible, a shirt with longer sleeves was substituted. In all cases it was necessary to pin the glove cuff to the sleeve above the gap. The neck portion of the hood also was very tight and tended to pull the mask off the face when the subject pushed his head forward. The inner circular protective flap on the underside of the hood was considered unnecessary in a test of this nature. The flap was not placed under the shirt as designed (figures 5 and 6).

V. CONCLUSION.

It is concluded that the experimental XXCC3-impregnated Navy work/combat clothing can be worn by men in mustard vapor for a cumulative Ct of 7,000 mg min/cu m (total time 6 hr) without incapacitating effects.
LITERATURE CITED

PROTECTION AFFORDED BY EXPERIMENTAL XXCC3-IMPREGNATED NAVY WORK-COMBAT CLOTHING WORN BY "EN EXPOSED TO MUSTARD VAPOR

The work was started in June and completed in August 1964

Oberst, Fred W Musselman, Nelson P Graf, Glydor J
Trapp, George A Dawson, Paul B

February 1965

10 AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314

11 SUPPLIES-LIMITED NOTES

Med cal-defense aspects of chemical agents

12 SPONSORING MILITARY ACTIVITY

None

The protective effectiveness of Navy protective clothing (single-layer type) impregnated with XXCC3 was tested by exposure. 10 men wearing the outfit in an atmosphere of mustard vapor (10 mg/cu m). Two men serving as controls wore the standard Army two-layer XXCC3-treated protective clothing and were exposed with the group. The men were exposed for 15 min on the first day, 70 min on the second day, after which the daily exposure time was 1 hr on the following 6 days. When mustard vapor penetrated the Navy clothing, erythema developed at the site of penetration within 24 hr after exposure. When this occurred the affected subject was withdrawn from further exposure tests. Erythema was produced on nine of the ten men wearing Navy clothing exposed in the cumulative Ct range of 3,306 to 10,054 mg/min cu m with corresponding cumulative exposure times varying between 2 hr and 8 hr. Most of the erythema occurred in the abdominal areas. The remaining one Navy suit and the two control Army suits did not break during the 10 exposures totaling cumulative Cts of 10,054 mg/min cu m and 8 hr. The Navy clothing outfit required considerable care in wore selection and adjustment on the weares to assure the absence of gaps in protection over the forearms and around the waist. It is concluded that the experimental XXCC3-impregnated Navy work/combat clothing can be worn by men in mustard vapor for a cumulative Ct of 7,000 mg/min cu m (total time 6 hr) without incapacitating effects.

13 KEYWORDS

XXCC3 Exposures Impregnated clothing, Ct capped
Armed trials Mustard vapor Work-combat clothing, Must chamber
Navy clothing Incapacitation Chloroamide-stored
Penetration Concentration Sing-layer ch., t. e
Cumulative Ct Combat-work clothing
Years' time Protective clothing
Incineration Clothing trials

14 DOCUMENT CONTROL DATA - R&D

(Security classification of this body of abstract and indexing information must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (corporate office)
US Army Edgewood Arsenal Chemical Research and Development Laboratories, Edgewood Arsenal, Maryland 21010
Toxicology, Clinical Research, and Physical Protection Divisions

20 REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

21 GROUP

26 DESCRIPTIONS (Type of report and inclusive dates)
The work was started in June and completed in August 1964

5 AUTHORS (Last name that name initial)
Oberst, Fred W Musselman, Nelson P Graf, Glydor J
Trapp, George A Dawson, Paul B

9 TOTAL NO OF PAGES
25

10 OTHER REPORT NO(3) (Any other numbers relate to assigned DRS report)
N/A

3 TOTAL NO OF REPS
5

10 PROJECT NO
1CD22401A097

4 OTHER REPORT NO(4) (Any other numbers relate to assigned DRS report)

5 UNCLASSIFIED
PROTECTION AFFORDED BY EXPERIMENTAL XXCC3-DEPOLARIZED NAVY WORK.

CABIN CLOTHING YEAR BY SAE ENRICHED BY HOSTA J VAPOR

US ARMY EDGEMUND ARSENAL

CHEMICAL RESEARCH AND DEVELOPMENT LABORATORIES

Technical Report CEMLA 325

February 1955

DISTRIBUTION STATE

Defense Documentation Center for Scientific and Technical Information (DDC)
Arlington Hall, Station Arlington, Virginia (23)
Chief, Bureau of Supplies and Accounts (WL), Navy Department, Washington, D. C. 20360 (2)
Chief of Naval Operations (OP-0716), Navy Department, Washington, D. C. 20360 (1)
Chief of Naval Research (ORC), Navy Department, Washington, D. C. 20360 (1)
Chief, Bureau of Naval Weapons (MN-735), Navy Department, Washington, D. C. 20360 (2)
Chief, Bureau of Medicine and Surgery (OM), Navy Department, Washington, D. C. 20360 (1)
Chief, Bureau of Yards and Docks (OM-76), Navy Department, Washington, D. C. 20360 (1)
Commandant of the Marine Corps (OM-34), Headquarters, U. S. Marine Corps, Navy Department, Washington, D. C. 20350 (1)
Commanding Officer, U. S. Naval Air Engineering Center, Philadelphia, Pa. (1)
Director U. S. Naval Research Laboratory (DRNL), Navy Department, Washington, D. C. 20360 (1)
Commanding Officer and Director, U.S. Naval Applied Science Laboratory, U.S. Naval Base, Brooklyn, N. Y. 11231 (1)
Commanding Officer, Office of Naval Research Branch Office, 207 W. 24th St., New York 11, N. Y., Attn: Patent Branch (1)
Commanding General, U. S. Naval Medical Laboratories, Natick, Mass., Attn: Technical Library (1)
Commanding Officer, U. S. Army Chemical Proving Ground, Dugway Proving Ground, Dugway, Utah, Attn: Director, Technical Operations (1)
Commanding Officer, U. S. Army Biological Laboratories, Fort Detrick, Frederick, Md., Attn: Physical Defense Division (1)
Commander, Aeronautical Systems Division, Air Force Systems Command, Wright Patterson AFB, Dayton, Ohio Attn: Technical Library (1)
Commanding General, Army Chemical Research and Development Laboratories, Edgewood Arsenal, Md., Attn: Technical Library (1)
Commanding General, Letterkenny Arsenal, Fort Douglas, Salt Lake City, Utah (1)
Commanding General, U.S. Army Materiel Command, Washington, D. C., Attn: Director for Research and Development (1)
Commanding Officer, U. S. Naval Weapons Laboratory (WNL), Dahlgren, Va. 23648 (1)
Defence Research Establishment Canada, St. Marys, Ont., 00175 Massachusetts Ave., W. Washington, D. C. (1)
Superintendent, U. S. Naval Observatory, Scientific & Technical Information Center, 34th St. N. & Massachusetts Ave. N.W., Washington, D. C. 20316 (1)
Defence Research Establishment British Joint Staff, V. shington, D. C. (1)
Commander, U. S. Naval Weapons Laboratory (WNL), Dahlgren, Va. 23648 (1)
Defence Research Establishment Canada, St. Marys, Ont., 00175 Massachusetts Ave., W. Washington, D. C. (1)