TENTATIVE BIOLOGICAL CRITERIA
FOR ASSESSING POTENTIAL
HAZARDS FROM NUCLEAR EXPLOSIONS

Prepared by
Clayton S. White, M. D.

Technical Progress Report
on
Contract No. DA-49-146-XZ-055

The preparation of this document, undertaken as an aspect of investigations dealing with the biological effects of blast from bombs, was supported by the Defense Atomic Support Agency of the Department of Defense.

(Reproduction in whole or in part is permitted for any purpose of the United States Government.)

Lovelace Foundation for Medical Education and Research
Albuquerque, New Mexico
December 1963
This report has been approved for open publication by The Office of the Assistant Secretary of Defense for Public Affairs.
Though the actual preparation of this manuscript was undertaken for the Defense Atomic Support Agency, most of the information contained herein has been the outcome of two investigative efforts; namely research on The Biological Effects of Blast from Bombs supported through the Office of the Surgeon, Defense Atomic Support Agency of the Department of Defense under Contract No. DA-49-146-XZ-055 and a program in Selected Aspects of Weapons Effects supported by the Civil Effects Branch of the Division of Biology and Medicine of the United States Atomic Energy Commission under Contract No. AT(29-1)-1242.
ABSTRACT

Available, but tentative and incomplete biological criteria of use in assessing human hazards from nuclear explosives were presented along with the source of data from which they were derived. The criteria were related to effects parameters employing free-field, some "geometric," and translational scaling to the end that areas at potential risk from nuclear detonations ranging in yield from one kt to 100 Mt could be estimated. The problems involved and many of the uncertainties due to lack of both physical and biological data as well as to the fact that the conditions of exposure represent a major factor in determining the environmental variations that challenge man and hence in controlling the incidence of casualties as well as survival were noted and briefly discussed. The utility of the range-yield-effects relationships set forth was emphasized as was the need for a continued collaborative effort between biologically and physically oriented personnel to improve understanding biological response on the one hand and basic effects phenomenology on the other.
TENTATIVE BIOLOGICAL CRITERIA FOR ASSESSING POTENTIAL HAZARDS FROM NUCLEAR EXPLOSIONS

Clayton S. White

I. INTRODUCTION

Prior discussions among individuals participating in the Sub-Group N and N-1 Panel of the Tripartite Technical Cooperation Program uncovered an interest in biological criteria that could be of value in assessing various levels of hazard from environmental variations associated with nuclear explosions. Since relevant studies have already called attention to the problem areas involved,1-4 set forth tentative though crude criteria,1-7 and pointed out one approach to applying these to nuclear detonations over a wide range in explosive yield,3-4 it was thought advisable to summarize the initial and exploratory work carried out to date in order that a common working base might be used as a foundation for planning any collaborative efforts judged desirable by tripartite personnel.

II. PROBLEM AREAS

There are several physical, biophysical and biomedical parameters which, if identified, quantitated and interrelated, offer a conceptual guide of potential value to those interested in weapons effects. These may be segregated into problem areas noted in Figures 1 and 24 and Table 1.3

It is helpful on the one hand to appreciate that very great differences may exist between exposures in the open for which free-field scaling is applicable and exposures in situations where free-field scaling is inappropriate to give the environmental parameters that may challenge man; i.e., "geometric" and "secondary-event" scaling is required as diagrammatically indicated in Figure 1. On the other hand, almost all biological criteria refer to a specified level of environmental variation measured very close to the biological target of interest; viz., not outdoors if the target is indoors, not on the top floor of a multistory building if the location of interest is the basement. Thus, biologically oriented investigators employ the "skin dose" concept and work in the problem areas depicted in Figure 2.

There are, however, grave difficulties in integrating the biological and physical parameters to the end that hazards assessment may be realistically related to a nuclear source, but appreciable progress has been made in developing some of the quantitative data needed to tie together the problem areas summarized in Table 1. Appropriate examples will appear in subsequent sections of the text.
Physically Oriented Problem Areas Relevant to Biological Effects of Nuclear Explosions

Figure 1
BIOPHYSICAL INTERACTION
(Energy Dissipation By or Within Biologic Media)

ETIOLOGIC MECHANISMS

BIOLGIC RESPONSE
(Major Medical Syndromes)
Isolated Individual Effects
and Combined Injury

BIOMEDICAL TASKS
(Casualty Care, Diagnosis,
Therapy, Rehabilitation)

HAZARDS ASSESSMENT
Prophylactic Measures and
Protective Procedures

Biomedically Oriented Problem Areas Relevant to Biological Effects of Nuclear Explosions

Figure 2
<table>
<thead>
<tr>
<th>Source</th>
<th>Design Yields</th>
<th>Free-field scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burst conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weather</td>
<td></td>
</tr>
</tbody>
</table>

Attenuation and Augmentation
- Modification of "free-field" phenomena by geometric conditions of exposure
- "Geometric" scaling

Physical Interaction
- Energy transfer to: Physical objects and biological material
- Secondary events

Biophysical Interaction
- Energy dissipation by or within biologic targets
- Etiologic mechanisms

Biologic Response
- Major medical syndromes
- Isolated individual effects and combined injury
- Hazards assessment

Biomedical Tasks
- Therapeutic and prophylactic measures
- Casualty care
- Rehabilitation
- Protective procedures
III. TENTATIVE BIOLOGICAL CRITERIA

Available animal and human data supplemented where required by best approximations have allowed tentative biological criteria to be set forth. These will be summarized below.

A. Blast

1. Primary Effects (Pressure)

It is now known that mammalian tolerance to pressure variations which follow explosive events is dependent upon the rate, magnitude and character of the pressure rise and fall as well as the size of the species of interest.\(^5, 6, 8, 9\) Too, it is clear that biological response to typical and near-typical wave forms is different than is the case for disturbed wave forms.\(^2, 6, 8, 9\) The former will be discussed first.

a. Classical or Near-Classical Wave Forms

For a given mammalian species, the response to "fast"-rising overpressures is determined by both the magnitude and duration of the pulse. Reasonably reliable estimates applicable to human adults are available for explosive yields down to at least one kt. The data are summarized in Table 2.\(^1, 3-6, 8-16\)

Thus far, no systematic study of tolerance in the very young and very old has been carried out, but there are a few data for rats indicating that the young are more susceptible than adults.\(^15\) Also, recent exploratory investigations in mice show that tolerance to overpressure is also a function of the ambient pressure at which exposure occurs;\(^17\) i.e., biological scaling to obtain figures applicable for exposure at different altitudes no doubt will come to be a future refinement in blast biology.

b. Disturbed Wave Forms

(1) Stepwise Increases in Overpressure

In some exposure situations, stepwise increases in overpressure may occur.\(^1, 8, 10\) This can involve the application of the incident, followed by the reflected pulse.\(^18-20\) An animal "appreciates" these biologically as a single rise in overpressure if the time interval is short; i.e., like 0.1 to 0.4 msec for small animals\(^6, 19, 20\) and 0.5 to 1.0 msec for the dog.\(^6\) For longer intervals of time, perhaps a few msec for animals as large as man, the organism "sees" the pressure as two separate pulses and tolerance rises by about a factor of two.

No more precise statement can be made at the present time, mainly because the area has been insufficiently investigated.
TABLE 2

TENTATIVE CRITERIA FOR PRIMARY BLAST EFFECTS

<table>
<thead>
<tr>
<th>Critical organ or event</th>
<th>Related max pressure, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incident</td>
</tr>
<tr>
<td>Lethality:†</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>30-42</td>
</tr>
<tr>
<td>50 percent</td>
<td>42-57</td>
</tr>
<tr>
<td>Near 100 percent</td>
<td>58-80</td>
</tr>
<tr>
<td>Eardrum failure:†</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>5</td>
</tr>
</tbody>
</table>

†Applies to "fast"-rising overpressures of "long" duration occurring at location of exposure.

Data from WT-1179, 8 TID-5764, 9 WT-1467, 10 WT-1470, 11 DASA 1242, 12 1335, 6 1246, 13 1271, 1 Zalewski 14 and Richmond, DASA Project - Unpublished, 15
Other Wave Forms

For smooth-rising wave forms and those increasing rapidly, but in small incremental steps, the mammal exhibits an increase in tolerance by factors of from 3 to 5 depending mostly upon the magnitude of the early fast components of the pulse. Here also, no more definitive statement is possible because critical studies have not yet been carried out. However, it is known that mammals weighing about 35-40 lbs and having a P_{50} of 50 psi from "fast"-rising, "long"-duration overpressures will tolerate well over 200 psi if the time to P_{max} is reached in 20 or more msec.

2. Secondary Blast Effects (Missiles)

Debris (missiles) energized by blast overpressures, winds, ground shock and gravity may or may not pose a hazard, depending mostly upon the kind, character, mass and velocity of the missile; the angle of impact; the area and organ of the body involved; and whether or not penetration or perforation occurs. Though the situation is admittedly complex, crude and incomplete but useful biological criteria are available to help assess possible hazards from secondary missiles. These are shown in Tables 3 and 4.

3. Tertiary Blast Effects (Displacement)

Dynamic accelerative and decelerative events which may be associated with gross bodily displacement by blast pressures, winds, ground shock and gravity may pose serious problems depending mostly upon the magnitude of the accelerative or decelerative forces involved; the time, distance and angle over which they are applied; the character of the contact surface concerned, and the area of the body involved.

Because the accelerative experience from aerodynamic factors that are in themselves non-hazardous can result in highly challenging translational velocities if impact with a hard surface occurs, tentative biological criteria were developed in terms of impact velocity. These are set forth in Table 5. Even though crude and incomplete, the criteria are helpful in assessing not only the various levels of decelerative injury that may follow translation, but in evaluating some of the possible hazards from accelerative loading that can occur in shelters responding to ground-shock phenomena.

To date, no useful biological criteria are available for deceleration by tumbling over hard or other types of surfaces. Some work, however, has been done on the physics of the tumbling process.

4. Miscellaneous Blast Effects

Numbered among miscellaneous blast effects are possible hazards from exposure to dust, blast-induced fires and non-line-of-site thermal burns. Even though crude and incomplete, the criteria are helpful in assessing not only the various levels of decelerative injury that may follow translation, but in evaluating some of the possible hazards from accelerative loading that can occur in shelters responding to ground-shock phenomena.
<table>
<thead>
<tr>
<th>Critical organ or event</th>
<th>Related velocity for 10-gm glass fragment ft/sec^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin laceration:</td>
<td>50</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
</tr>
<tr>
<td>Serious wounds:*</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>100</td>
</tr>
<tr>
<td>50 percent</td>
<td>180</td>
</tr>
<tr>
<td>Near 100 percent</td>
<td>300</td>
</tr>
</tbody>
</table>

*Data from AECU-335023 and WT-1470,11
+Figures represent impact velocities with unclothed biological target.
<table>
<thead>
<tr>
<th>Critical organ or event</th>
<th>Related impact velocity for 10-lb object ft/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebral concussion:</td>
<td></td>
</tr>
<tr>
<td>Mostly "safe"</td>
<td>10</td>
</tr>
<tr>
<td>Threshold</td>
<td>15</td>
</tr>
<tr>
<td>Skull fracture:*</td>
<td></td>
</tr>
<tr>
<td>Mostly "safe"</td>
<td>10</td>
</tr>
<tr>
<td>Threshold</td>
<td>15</td>
</tr>
<tr>
<td>Near 100 percent</td>
<td>23</td>
</tr>
</tbody>
</table>

*Data from Lissner and Evans;24 Zuckerman and Black;25 Gurdjian, Webster and Lissner.26
TABLE 5

TENTATIVE CRITERIA FOR TERTIARY BLAST EFFECTS

| Critical organ or event | Related impact velocity ft/sec *
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total body:</td>
<td></td>
</tr>
<tr>
<td>Mostly "safe"</td>
<td>10</td>
</tr>
<tr>
<td>Lethality threshold</td>
<td>20</td>
</tr>
<tr>
<td>Lethality 50 percent</td>
<td>26</td>
</tr>
<tr>
<td>Lethality near 100 percent</td>
<td>30</td>
</tr>
<tr>
<td>Skull fracture:</td>
<td></td>
</tr>
<tr>
<td>Mostly "safe"</td>
<td>10</td>
</tr>
<tr>
<td>Threshold</td>
<td>13</td>
</tr>
<tr>
<td>50 percent</td>
<td>18</td>
</tr>
<tr>
<td>Near 100 percent</td>
<td>23</td>
</tr>
</tbody>
</table>

Note: Fractures of the feet, ankles and lower limbs occur at impact velocities above 12 ft/sec where cadavers with knees locked are dropped feet first onto a hard, flat surface.

Applies to uncontrolled impact with a hard, flat surface.

Data from DASA 1245; 27 Swearingen, McFadden, Garner and Blethrow; 28 Zuckerman and Black; 25 and Gurdjian, Webster and Lissner.

-10-
Unfortunately, no meaningful biological criteria are at hand for assessing the hazard from hot dust-laden air and debris.4 Similarly, the interplay of thermal, blast and environmental phenomena responsible for the non-line-of-site thermal burns observed at the Nevada Test Site is not well understood. Even so, it is quite possible that these and related phenomena may very well represent one of the major causes of casualties among individuals exposed in conventional buildings and other open structures, particularly for nuclear explosions of high yield.

B. Thermal Radiation

Biological response to direct thermal radiation or to flame generally depends upon the magnitude of the thermal energy involved, the rate and time of its application, the amount and color of skin pigment, the part of the covered and uncovered portion of the body exposed, the character of the clothing, if any, and the per cent of the total surface area involved.

Useful tentative biological criteria were developed, as shown in Table67 using data from Glasstone32 and Oughterson and Warren.33 The upper portion of the table notes the cal/cm2 required at different yields to produce first and second degree burns of bare white skin. The lower portion of Table6 shows, in the 20 kt column, data scaled for the survival curve for clothed individuals exposed in the open at Hiroshima. Attention is directed to the curve of Figure3 which notes free-field values for thermal energy estimated by the scaling laws32 for the ranges associated with 50 per cent and "low" and "high" levels of survival for persons exposed in Hiroshima. Thus, the lower three numbers of 5, 9 and 20 cal/cm2 under the 20 kt column for various levels of lethality in Table6 represent arbitrary, tentative, but conservative criteria based on human experience in Japan. The numbers to the right of these in Table6 are scaled "equivalent" values for the higher yield. The values for the threshold of injury and those associated with few if any injuries also represent arbitrarily chosen figures which, however, bear a common-sense relation to the data given by Glasstone32 for first and second degree burns.

Since the individuals exposed in the open in Japan were clothed, it is well to point out that two of the problem areas mentioned earlier are involved. First, there is the matter of "geometric" scaling, for if the clothing does not ignite, it acts as an attenuating factor to protect the skin. Second, if it does catch fire, then this secondary event produces a hazard in its own right above and beyond that from direct thermal radiation. Finally, it is helpful to recognize that (a) most if not all of the survivors exposed in the open at Hiroshima had much less than 50 per cent of the body surface burned, (b) many individuals survived exposures well above 20 cal/cm2, (c) the cal/cm2 needed to ignite many fabrics fall within or above the range of numbers associated with various levels of lethality in Table6, (d) even the lightest clothing gives protection by a factor of 2 and in a few cases, by factors of about 4 and (e) the "behavior" of clothing worn by exposed individuals is not easy to assess.

Even though the situation is admittedly complex and bothersome unknowns are involved and more than a few will regard the thermal criteria with skepticism, perhaps many more will accept them as a beginning - arbitrary, flimsy and crude as they are - knowing that "something" is better than nothing and that the uncertainties involved are no greater in magnitude than a host of
TABLE 6
TENTATIVE BIOLOGICAL CRITERIA FOR THERMAL RADIATION*

<table>
<thead>
<tr>
<th>Critical event</th>
<th>Thermal radiation in cal/cm²² for indicated explosive yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 kt</td>
</tr>
<tr>
<td>First degree burn</td>
<td>2.5</td>
</tr>
<tr>
<td>Second degree burn</td>
<td>4.5</td>
</tr>
<tr>
<td>Lightly clothed (summer)</td>
<td></td>
</tr>
<tr>
<td>Few if any injuries</td>
<td>2.5</td>
</tr>
<tr>
<td>Significant injury threshold</td>
<td>4</td>
</tr>
<tr>
<td>Lethality</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>5</td>
</tr>
<tr>
<td>Near 50 per cent</td>
<td>9</td>
</tr>
<tr>
<td>Near 100 per cent</td>
<td>20</td>
</tr>
<tr>
<td>Burns due to hot debris and hot, dust-laden air.</td>
<td>No biological criteria available, but probably a serious problem for large-yield explosions.</td>
</tr>
</tbody>
</table>

*ENW, 1962; Oughterson and Warren, 1956; Project Harbor. ²

Note: Immediate survival in some Japanese buildings was near 90 per cent even though the outdoor, free-field thermal flux ranged from 50-100 cal/cm²².
others applicable to the physical and biological facets of weapons effects.

Temporary and permanent loss of vision from light fluxes and focusing of thermal energy on the retina can range from bothersome transitory to serious hazards; the latter are limited mostly to looking directly at the fireball.

Though some applicable biological data are at hand, they are not noted here. Of course, it is important that the population learn not to look at bright luminous objects in the sky.

C. Nuclear Radiation

Biological response to ionizing radiation varies with the type and energy of the radiations, the total dose, the rate at which the dose is accumulated, the species and the portion of the body involved. Only penetrating radiations will be considered here, making no distinction between either neutrons or gamma rays - the RBE is taken as one - or the energies of each.

Table 7 shows tentative biological criteria for immediate nuclear radiations relating whole body dose to various levels of human response.7, 34, 35 Criteria in two other areas are not discussed here; namely, (1) the situation for protracted exposure to radiations which is complex, controversial and involves the matter of equivalent residual dose (ERD) discussed in a recent report of the National Committee of Radiation Protection and Measurements34 and (2) the estimates for performance decrement covered by Alpen at the Washington meeting of the Tripartite Technical Cooperation Program, Panel N-1, Sub-Group N.36

D. Combined Injury

Unfortunately, only a few studies have been carried out in which the synergistic or combined biological effects of more than one environmental variation have been studied. This, without question, is an area that deserves attention in the future.4

IV. RELATING BIOLOGICAL CRITERIA TO NUCLEAR EXPLOSIONS

A. The Range-Yield-Effect Relationships (General)

One means of relating the tentative biological criteria to nuclear explosions over a wide range of yield is to employ free-field scaling,3, 4, 28, 32 some "geometric" scaling (viz., for maximal pressure reflections) and "secondary-event" or translational scaling37, 38 to estimate the ranges inside which the potential exists for producing the specified biological effect or response.

1. Blast

Range-yield-effect relationships can be developed from such an exercise. Examples, using the blast criteria, are shown in Figures 4, 5 and 6 for surface bursts at sea level having yields ranging from 1 kt to
TABLE 7
TENTATIVE BIOLOGICAL CRITERIA
FOR PENETRATING NUCLEAR RADIATIONS*

<table>
<thead>
<tr>
<th>Critical event</th>
<th>Dose in rads for whole body exposure**</th>
</tr>
</thead>
<tbody>
<tr>
<td>No discernable immediate effects</td>
<td>50</td>
</tr>
<tr>
<td>Sickness dose:</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>100</td>
</tr>
<tr>
<td>Acceptable "emergency" dose</td>
<td>200+</td>
</tr>
<tr>
<td>Lethality:</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>200+</td>
</tr>
<tr>
<td>Near 50 per cent</td>
<td>450</td>
</tr>
<tr>
<td>Near 100 per cent</td>
<td>1000</td>
</tr>
</tbody>
</table>

*National Committee on Radiation Protection and Measurements Report No. 29, August 1962.34
**The figures apply to doses accumulated from immediate exposures of a few seconds to brief ones of up to four days.
†If the exposure is protracted, longer than four days, this figure may be taken as 250 r.

Note: The equivalent residual dose (ERD) is uncertain in man and if recovery occurs at all, it is clear that the process is prolonged and for planning purposes, it is best to ignore the recovery process for doses in excess of 250 r.
RANGE-YIELD RELATIONSHIP for INDICATED PRIMARY BLAST DAMAGE, SEA-LEVEL SURFACE BURSTS

Applies to Fast-rising Overpressures with Ideal or Near-ideal Wave Forms

Figure 4
RANGE-YIELD RELATIONSHIP for INDICATED SECONDARY BLAST DAMAGE from
10-gm WINDOW-GLASS FRAGMENTS* for SEA-LEVEL SURFACE BURSTS

Applies to ideal or near-ideal wave forms

Skin lacerations, threshold
Serious wounds, threshold
Serious wounds, near 100 percent

50 ft/sec*
100*
300*

Computed for 10-gm fragments of double-
strength window glass, $p_0=14.7$ psi, $c_0=1117$
ft/sec; acceleration coefficient=0.72 sq ft/lb
* when translational distance = 10 ft

Figure 5
RANGE-YIELD RELATIONSHIP for INDICATED TERTIARY BLAST DAMAGE to
165-lb AVERAGE MAN* for SEA-LEVEL SURFACE BURSTS

Applies to ideal or near-ideal wave forms

Impact injury*: absent or minimal
Impact injury*: lethality, threshold
Impact injury*: lethality, near 100 percent

10 ft/sec
20°
30°

Computed for 165-lb "average" man; acceleration coefficient = 0.3 sq ft/lb
* when translated distance = 10 ft
† for total body impact

Figure 6
100 Mt. Figure 7, also for sea-level surface bursts, but for yields from one up to only 20 Mt, is included to illustrate how the major effects comparatively change as functions of range and yield.

2. Thermal Radiation

In relating the criteria for thermal injury to the scaled thermal effects data, information in The Effects of Nuclear Weapons\(^3\) for 10-100 Mt visibility was chosen to prepare Figure 8. Values appearing for yields above 10 (for burns) and 20 Mt (for thermal energy) were arbitrary extrapolations.

Disturbing uncertainties that need attention in the future concern (a) the cal/cm^2 required to produce skin burns and ignition of various types of clothing as these vary with the shape of the thermal pulse, (b) the most realistic estimates of the configuration of the thermal-time pulse, particularly for large yield explosions and of the variations due to burst height (air density change) and (c) the basic characteristics of the atmosphere which innately involve large variations in transmissivity due to changes in weather and alterations associated with air pollution due to industry and other sources commonly associated with urban areas. Among other things these matters mean that biological criteria for surface bursts should be applied with great caution to situations involving air bursts.

3. Initial Nuclear Radiation

Free-field values for initial nuclear radiations were scaled from The Effects of Nuclear Weapons\(^3\) for surface bursts at sea level using an air density ratio of $\rho/\rho_0 = 1$ for neutrons and $\rho/\rho_0 = 0.9$ for gamma rays up to and including yields of 20 Mt. Above this yield, values were obtained by the same procedure except that the slope of the curve giving the increase in the scaling factor of W'/W with yield was "fixed" at 20 Mt and extrapolated as a straight line to compute figures for the higher yields. In addition, to calculate air-dose (free-field) figures for the surface burst, the air-burst values for gamma radiation were reduced by $1/3$.\(^3\)

Figure 9 was prepared by combining the biological criteria for initial radiations noted in Table 7 with the calculations discussed above to set forth the range-yield-effect relationships for estimating the maximal ranges of the different potential hazards from ionizing radiations.

Of major concern, especially in the case of high explosive yields, is the fact that initial nuclear radiations, by definition, include prompt neutron and gamma rays, and all other early and delayed radiations that occur during the first minute after detonation. Three points concerning the latter deserve speculation. First, the radiation induced in the air and soil should not be ignored. Second, since much of the delayed component of the immediate nuclear radiation is due to gamma rays from fission products in the fireball and the rising cloud, the relevant numerical values for dose are sensitive both to the fission-fusion ratio and to cloud height; thus, figures may vary widely on the one hand and on the other may or may not fall to insignificant values within one minute. Third, it is necessary to understand the
COMPARATIVE-EFFECTS DATA SHOWING RANGES INSIDE WHICH
INDICATED BIOLOGICAL RESPONSES MAY OCCUR FOR SEA-LEVEL SURFACE BURSTS

Applied to Ideal or Near-ideal Wave Forms

- Skin burns, 50-mi visibility: first degree, second degree
- Skin lacerations, threshold, from 10-gm glass fragments, 50ft/sec at 10ft of travel
- Impact velocity (total body), mostly "safe" for 165-lb man, 10ft/sec at 10ft of travel
- Range of "acceptable" emergency exposure dose of initial nuclear radiation
- Primary blast effects, with maximum pressure reflection:
 - Lung injury, threshold (6.4-psi maximum incident)
 - Lethality, threshold (12-psi maximum incident)

![Figure 7]
Figure 8

100 RANGE VERSUS YIELD FOR BIOLOGICAL EFFECTS
OF THERMAL RADIATION

Computed for surface bursts with 10-mile visibility.
Thermal radiation data from The Effects of Nuclear

1. Significant injury threshold
2. Lethality near 50 per cent
3. Lethality near 100 per cent

First degree burns
Few if any injuries

Range, mi.

Yield, kton

0.1
10
100
1000
10,000
RANGE VERSUS YIELD FOR BIOLOGICAL EFFECTS
OF INITIAL NUCLEAR RADIATION

Computed for surface bursts, $\rho/\rho_o = 1.0$ for neutrons, $\rho/\rho_o = 0.9$ for gamma rays. Nuclear radiation data from The Effects of Nuclear Weapons, 1962 Edition.

- 50 rems No discernable immediate effects
- 100 rems Threshold sickness dose
- 200 rems Acceptable "emergency" dose, threshold lethality
- 1000 rems Lethality near 100% cent
- 4500 rems Lethality near 50% cent

Figure 9
The interplay of the factors just mentioned with the rate of travel, the magnitude and the time history of the pressure variations associated with the blast wave.

B. The Range-Yield-Effect Relationships (Specific)

1. Hiroshima and Nagasaki

Figures 10-13, taken from a recent study, exemplify the applications of the biological criteria for various blast effects, to the Hiroshima and Nagasaki explosions. Free-field, geometrical and secondary-event scaling were employed assuming that 20 kt was a representative yield for each city and that the burst heights were 606 and 480 meters for Hiroshima and Nagasaki, respectively.

Range-effects charts for Hiroshima and Nagasaki containing scaled information for all the major physical parameters are shown in Figures 14 and 15. Though such diagrams are somewhat involved, they are most useful, for with knowledge of biological criteria referable to blast, thermal and initial nuclear radiations, one may note all the potential hazards which challenge man either at ground zero or any other range of interest. Even so, it is necessary to point out that a reasonable amount of caution needs to be used in interpreting such data in terms of any "real" situation.

For example, consider Figure 16, germane to the Hiroshima explosion, showing survival curves for individuals exposed in the open, in school houses, in concrete buildings (20-day figures) and for the overall average for the city. The data, among several things discussed in other studies, show that the conditions (geometry) of exposure are major factors determining survival; they therefore deserve critical consideration by those who would assess the biological effects of nuclear war.

2. High Yield Explosions

Using the scaling procedures described above, range-effects charts were prepared for yields of 1, 10, 20 and 100 Mt for two burst conditions; namely (a) surface bursts at sea level and (b) air bursts with the burst height chosen to maximize the ground range of each overpressure shown down to 1 psi. Figures 17-24 show the comparative data.

Using the biological criteria and the information in Figure 21 for the 20 Mt surface burst, Table 8 was assembled to show the range order, starting at ground zero, for each of the several levels of the different biological effects. The table allows one to appreciate the comparative relationships between the major effects and gives the ranges inside which the potential exists for producing each of the hazards specified.
RANGE-EFFECT RELATIONSHIP FOR INDICATED PRIMARY BLAST DAMAGE

20-KT YIELD AT HIROSHIMA BURST HEIGHT OF 1988 FT (606 METERS) ABOVE SEA-LEVEL TERRAIN

Applies to "Fast"-Rising Overpressures With Ideal or Near-Ideal Wave Forms

- Lethality 100 per cent: 58 - 80 psi
- Lethality 50 per cent: 42 - 58 psi
- Lethality Threshold: 30 - 42 psi
- Lung Damage Threshold: 15 psi
- Eardrum Failure Threshold: 5 psi

Read Range at Arrows Pointing Left and Down for Effect Without and With Maximal Pressure Reflection, Respectively

Ground Range, mi.

Figure 10
THE VELOCITY-RANGE RELATIONSHIP FOR TRANSLATIONAL EFFECTS
20-KT YIELD AT HIROSHIMA BURST HEIGHT OF 1988FT (606 METERS)

Note 1. Glass data computed assuming maximal
reflection of free-field incident overpres-
sure. See Bowen et al., WT-1468
2. Also see Bowen et al., CEX-58.9
and WT-1168

Figure 11
RANGE-EFFECT RELATIONSHIP FOR INDICATED PRIMARY BLAST DAMAGE-20-KT YIELD AT NAGASAKI BURST HEIGHT OF 1575 FT. (480 METERS) ABOVE SEA-LEVEL TERRAIN

Applies to "Fast" Rising Overpressures With Ideal or Near-Ideal Wave Forms

Lethality 100 per cent 58-80 psi
Lethality 50 per cent 42-58 psi
Lethality threshold 30-42 psi

Lung Damage Threshold - 15 psi

Eardrum Failure Threshold - 5 psi

Read Range at Arrows Pointing Left and Down for Effect Without and With Maximal Pressure Reflection, Respectively

Ground Range, mi.

Figure 12
COMPARATIVE RANGE-EFFECTS RELATIONSHIPS FOR HIROSHIMA —
20-KT BURST AT 1988ft (606m) ABOVE SEA-LEVEL TERRAIN

Figure 14
COMPARATIVE RANGE-EFFECTS RELATIONSHIPS FOR NAGASAKI –
20-KT BURST AT 1575ft (480m) ABOVE SEA-LEVEL TERRAIN

Figure 15
PERCENTAGE OF SURVIVORS AS A FUNCTION OF RANGE FROM GROUND ZERO (HIROSHIMA)

REF JOINT COMMISSION REPORT, VOL VI DOCUMENT N° 3041

JOINT COMMISSION DATA FOR OVERALL SURVIVAL

- "UNSHIELDED" SCHOOL PERSONNEL
- "SHELD" SCHOOL PERSONNEL
- EXPOSED INSIDE CONCRETE BUILDINGS

POINT BUILDING NO. INDIVIDUALS NO. DESIGNATION EXPOSED

2 TELEGRAPH OFFICE 301
3 TELEPHONE OFFICE 474
4 CITY HALL 216
5 COMMUNICATIONS OFFICE 682
6 BRANCH POST OFFICE 346
7 P.O. SAVINGS OFFICE 750

Figure 16
Comparative Range-Effects Relationships for 1Mt Surface Burst at Sea Level

\(P_{\text{I}} \) = Maximum incident overpressure

\(P_{\text{r}} \) = Maximum reflected overpressure

\(V_{\text{m}} \) = Maximum translational velocity

\(V_{\text{IO}} \) = Velocity after 10ft of travel

Scaling follows: Effects of Nuclear Weapons (1962), CEX58.9, and SC-4918 (RR)

\[P_{\text{r}} = 10 \] for Neutrons

\[P_{\text{r}} = 0.9 \] for Gammas
Comparative Range-Effects Relationships for 1Mt Burst at Heights above Sea Level Terrain to Maximize the Ranges of the overpressures shown

\[P_1 = \text{Maximum incident overpressure} \]
\[P_r = \text{Maximum reflected overpressure} \]
\[V_m = \text{Maximum translational velocity} \]
\[V_{10} = \text{Velocity after 10ft of travel} \]

Scaling follows: Effects of Nuclear Weapons (1962) and CEX58.9
Figure 19

Comparative Range-Effects Relationships for 10 Mt Surface Burst at Sea Level

- P_i = Maximum incident over-pressure
- P_r = Maximum reflected over-pressure
- V_m = Maximum translational velocity
- V_0 = Velocity after 10 ft of travel

Scaling follows: Effects of Nuclear Weapons (1962), CEX 58.9, and SC-4918 (RR)

- $P_i = 1.0$ for Neutrons
- $P_i = 0.9$ for Gammas

Legend:
- Window Glass (10 gms, $\sigma = 0.72 \text{ft}^2/\text{lb}$)
- Man (165 lbs, $a = 0.03 \text{ft}^2/\text{lb}$)

- Thermal Radiation
 - 50-mi visibility
 - 10-mi visibility
Comparative Range-Effects Relationships for 10Mt Burst at
Heights above Sea Level Terrain to Maximize the Ranges
of the Overpressures Shown

- $\Pi = \text{Maximum incident overpressure}$
- $\Pi_r = \text{Maximum reflected overpressure}$
- $V_m = \text{Maximum translational velocity}$
- $V_{0r} = \text{Velocity after 10ft of travel}$

Scaling follows: Effects of
Nuclear Weapons (1962) and
CEX 58.9
Comparative Range-Effects Relationships for 20 Mt Surface Burst at Sea Level

- P_i: Maximum incident overpressure
- P_r: Maximum reflected overpressure
- V_m: Maximum translational velocity
- V_{10}: Velocity after 10 ft of travel

Scaling follows: Effects of Nuclear Weapons (1962), CEX58.9 and SC-4918 (RR)
Figure 22

Comparative Range-Effects Relationships for 20Mt Burst at Heights above Sea Level Terrain to Maximize the Ranges of the overpressures Shown

- P_i = Maximum incident over-pressure
- P_r = Maximum reflected over-pressure
- V_m = Maximum translational velocity
- V_{10} = Velocity after 10ft of travel

Scaling follows: Effects of Nuclear Weapons (1962) and CEX58.9
Figure 34

Comparative Range-Effects Relationships for 100-Mt Surface Burst at Sea Level

- $P_i =$ Maximum incident overpressure
- $P_r =$ Maximum reflected overpressure
- $V_m =$ Maximum translational velocity
- $V_0 =$ Velocity after 100 ft of travel

Scaling follows Effects of Nuclear Weapons 1962, CEX58.9 and SC-4918 (RR)
Comparative Range-Effects Relationships for 100Mt Burst at Heights above Sea Level Terrain to Maximize the Range of the Overpressure Shown

$P_i =$ Maximum incident overpressure
$P_r =$ Maximum reflected overpressure
$V_m =$ Maximum translational velocity
$V_0 =$ Velocity after 10 ft of travel
Scaling follows: Effects of Nuclear Weapons and CEX 58.9
<table>
<thead>
<tr>
<th>Biological event or effect</th>
<th>Range mi</th>
<th>Maximum incident overpressure psi</th>
<th>Initial nuclear radiation* rems</th>
<th>Thermal radiation 50-mile visibility cal/cm²</th>
<th>10-mile visibility cal/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crater: inside radius, dry soil</td>
<td>.33</td>
<td>> 200</td>
<td>> 10^7</td>
<td>> 10^5</td>
<td>> 10^5</td>
</tr>
<tr>
<td>Crater: outside radius dry soil</td>
<td>.65</td>
<td>> 200</td>
<td>> 10^7</td>
<td>32,000</td>
<td>29,000</td>
</tr>
<tr>
<td>Nuclear radiation: lethality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near 100 per cent</td>
<td>2.2</td>
<td>59</td>
<td>1000</td>
<td>2400</td>
<td>2000</td>
</tr>
<tr>
<td>Near 50 per cent</td>
<td>2.4</td>
<td>49</td>
<td>450</td>
<td>2000</td>
<td>1600</td>
</tr>
<tr>
<td>Threshold</td>
<td>2.5</td>
<td>44</td>
<td>200</td>
<td>1800</td>
<td>1500</td>
</tr>
<tr>
<td>Nuclear radiation: acceptable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"emergency" dose</td>
<td>2.5</td>
<td>44</td>
<td>200</td>
<td>1800</td>
<td>1500</td>
</tr>
<tr>
<td>Initial nuclear radiation: injury, threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>41</td>
<td>100</td>
<td>1700</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Fireball radius, maximum</td>
<td>2.6</td>
<td>41</td>
<td>100</td>
<td>1700</td>
<td>1400</td>
</tr>
<tr>
<td>Nuclear radiation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No discernable effect</td>
<td>2.7</td>
<td>38</td>
<td>50</td>
<td>1600</td>
<td>1300</td>
</tr>
<tr>
<td>Primary blast: lethality, threshold — without pressure reflection</td>
<td>3.0</td>
<td>30</td>
<td>11.0</td>
<td>1200</td>
<td>1000</td>
</tr>
<tr>
<td>Lung damage, threshold — without pressure reflection</td>
<td>4.2</td>
<td>15</td>
<td>< 1</td>
<td>600</td>
<td>470</td>
</tr>
<tr>
<td>Primary blast: lethality, threshold — maximum pressure reflection</td>
<td>4.7</td>
<td>12</td>
<td>< 1</td>
<td>480</td>
<td>360</td>
</tr>
<tr>
<td>Lung damage, threshold — maximum pressure reflection</td>
<td>6.6</td>
<td>6.4</td>
<td>< 1</td>
<td>230</td>
<td>160</td>
</tr>
<tr>
<td>Eardrum failure, threshold — without pressure reflection</td>
<td>7.5</td>
<td>5.0</td>
<td>< 1</td>
<td>170</td>
<td>120</td>
</tr>
</tbody>
</table>

*Computed for an air-density ratio, $\rho/\rho_o = 1.0$ for neutrons; $\rho/\rho_o = 0.9$ for gamma rays.
<table>
<thead>
<tr>
<th>Biological event or effect</th>
<th>Range mi</th>
<th>Maximum incident overpressure psi</th>
<th>Initial nuclear radiation* rems</th>
<th>Thermal radiation 50-mile visibility cal/cm²</th>
<th>10-mile visibility cal/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact injury: lethality,</td>
<td>9.6</td>
<td>3.3</td>
<td>< 1</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>threshold†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eardrum failure, thresh-</td>
<td>12</td>
<td>2.3</td>
<td>< 1</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>old — maximum pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact injury: skull fra-</td>
<td>12</td>
<td>2.3</td>
<td>< 1</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>cture, threshold†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious wounds from 10-gm</td>
<td>12</td>
<td>2.3</td>
<td>< 1</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>glass fragments, threshold†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal radiation: lethality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near 100 per cent</td>
<td>12</td>
<td>2.3</td>
<td>< 1</td>
<td>---</td>
<td>42</td>
</tr>
<tr>
<td>Impact injury, threshold†</td>
<td>14</td>
<td>1.8</td>
<td>< 1</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>Thermal radiation: lethality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near 50 per cent</td>
<td>16</td>
<td>1.4</td>
<td>< 1</td>
<td>---</td>
<td>20</td>
</tr>
<tr>
<td>Threshold</td>
<td>20</td>
<td>1.0</td>
<td>< 1</td>
<td>---</td>
<td>11</td>
</tr>
<tr>
<td>Thermal radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin lacerations from 10-gm</td>
<td>20</td>
<td>1.0</td>
<td>< 1</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>glass fragments, threshold†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin burns — second degree,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-mi visibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal radiation, thresh-</td>
<td>22</td>
<td>0.88</td>
<td>< 1</td>
<td>---</td>
<td>9.5</td>
</tr>
<tr>
<td>old — second degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin burns — second degree,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-mi visibility</td>
<td>27</td>
<td>0.66</td>
<td>< 1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Thermal radiation, thresh-</td>
<td>28</td>
<td>0.62</td>
<td>< 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>old — first degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin burns — first degree,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-mi visibility</td>
<td>39</td>
<td>0.40</td>
<td>< 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Thermal radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin burns — first degree,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-mi visibility</td>
<td>130</td>
<td>0.1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Window glass fails</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Computed for an air-density ratio, \(\rho / \rho_o = 1.0 \) for neutrons; \(\rho / \rho_o = 0.9 \) for gamma rays.
†After 10 ft of travel.
Figure 25, illustrating the computed velocity-displacement-overpressure relationship for a 20-Mt burst at sea level, is included to emphasize the great magnitude of the translational velocities and distances of travel required to reach maximal velocities that can result from exposure to large yield explosions. Few appreciate that velocities up to near 500 ft/sec may be involved and displacement distances (if there is no obstruction) of 100 to 1000 ft may occur at overpressures ranging from 1.5 to 25 psi.

Also, to emphasize the importance of the translational problem as well as the significance of burst height, Table 9 was prepared for a 20-Mt yield to show the differences in the ranges predicted for tertiary blast effects when the explosion occurs at sea level and at a height chosen to maximize the range of the hazard specified.

V. DISCUSSION

Of course, any attempt to integrate appropriate biological and physical parameters to help assess the biomedical effects of nuclear weapons will have an overall reliability that depends critically upon the validity of the biological criteria, the scaling procedures, and the numerical data employed. Because experience with large-yield explosions is meager indeed, all the predictions concerning multimegaton detonations needs be regarded with considerable skepticism. This is particularly the case for effects associated with thermal and initial nuclear radiation. Understanding of blast phenomenology appears to be more advanced except perhaps where cratering and ground shock is involved.

Even though there no doubt will be future advances in "the state of the art" and all biological and physical factors will become better defined and more thoroughly investigated, the analytical approach described in previous sections of this report seems significant for several reasons. Among them are the following. First, there is the fact that a conceptual fabric is now at hand to guide thinking and planning empirical and theoretical work.

Second, it is possible, on a relative basis at least, to specify the ranges and areas placed at risk by the several major environmental variations produced by nuclear explosions of stated yield.

Third, given a yield and specific targets - cities or otherwise - it is also feasible to state the number of individuals placed at risk if appropriate population density figures are properly employed.

Fourth, using the areas and number of people at risk, a reasonably sound base is at hand for attempting to assess various approaches to total defense (military and civil) including various levels of protective procedures and construction.

Fifth, the approach taken in applying or relating biological criteria to nuclear effects parameters using the scaling exercises employed makes it clear that it is very difficult, if not impossible, to make reliable estimates of casualties that might occur from nuclear detonations over unprepared populated areas.
<table>
<thead>
<tr>
<th>Event Description</th>
<th>Maximizing Surface Burst Height (mi)</th>
<th>Maximizing Surface Burst Height (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact injury mostly "safe"</td>
<td>25 mi</td>
<td>14 mi</td>
</tr>
<tr>
<td>Skull fracture threshold</td>
<td>21 mi</td>
<td>12 mi</td>
</tr>
<tr>
<td>Skull fracture near 50 per cent</td>
<td>17 mi</td>
<td>10 mi</td>
</tr>
<tr>
<td>Impact lethality threshold (whole body)</td>
<td>16 mi</td>
<td>9.6 mi</td>
</tr>
<tr>
<td>Skull fracture near 100 per cent</td>
<td>15 mi</td>
<td>9.0 mi</td>
</tr>
<tr>
<td>Impact lethality near 50 per cent (whole body)</td>
<td>14 mi</td>
<td>8.4 mi</td>
</tr>
<tr>
<td>Impact lethality near 100 per cent (whole body)</td>
<td>12 mi</td>
<td>7.8 mi</td>
</tr>
</tbody>
</table>

Data taken from DASA 1341\(^3\) and from Figures 21 and 22 combined with the translational criteria for tertiary blast hazards.
Finally, those interested in specific conditions of exposure – houses, shelters, vehicles, field fortifications, gun emplacements, etc. – can now assess the adequacy as well as the shortcomings of the biological criteria that have been defined. If they are judged deficient, definitive measurements of the environmental parameters of interest can be taken to guide the future work of biomedical personnel in assessing human hazards from all explosive sources be they conventional or nuclear or simply the failure of high pressure vessels and the detonation of explosive fuels, cryogenic or otherwise.

VI. SUMMARY

1. The physically and biologically oriented problem areas of concern to those who would assess and refine understanding the biomedical effects of nuclear weapons were defined.

2. Tentative, though incomplete, biological criteria useful in assessing hazards from blast phenomena and from thermal and initial nuclear radiations were set forth.

3. Range-yield-effects relationships were developed by combining the tentative biological criteria with physical-effects parameters obtained using free-field, some 'geometric,' and translational scaling over a wide range of explosive yields; viz, from 1 kt to 100 Mt. The criteria were also applied specifically to the Hiroshima and Nagasaki explosions.

4. Comparative range-effects diagrams, using appropriate scaling procedures and extrapolations where necessary, were prepared for the following yields and burst conditions: (a) 20 kt detonated at Hiroshima and Nagasaki burst heights and (b) 1, 10, 20 and 100 Mt burst at a sea-level surface and at burst heights above sea-level terrain chosen to maximize the ranges of local static overpressures from 1 to 200 psi.

5. The significance of employing biological criteria along with comparative range-effects data to estimate the ranges inside which and the areas over which the potential exists for producing specified biological hazards from nuclear explosions was emphasized.

6. Also, attention was directed to the apparent soundness of properly combining population density figures with computed hazard areas to estimate the number of persons who might be placed at risk from nuclear explosions of specific yield and under specified burst conditions.

7. In contrast, data were cited to show that the conditions of exposure undoubtedly represent major factors in determining survival, and it was noted that any current attempt to estimate the number of casualties that might occur to an unprepared population from nuclear explosions, particularly those of large yield, was fraught with considerable if not insurmountable uncertainties.

8. The deficiencies of biological and physical data along with information needed to improve and advance knowledge of biological effects of nuclear explosions were briefly noted in appropriate portions of the material presented.
9. Critical assessment of the tentative biological criteria set forth and adequate definition of the environmental variations as they might apply to a variety of exposure conditions by interested civilian and military personnel were suggested as a desirable means of accelerating the periodic and progressive liaison between biological and physical scientists considered essential to maximize progress in environmental medicine as it applies to all sources of explosive phenomena, nuclear or otherwise.
REFERENCES

15. Richmond, D. R., DASA Project, Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico, unpublished data.

17. Damon, E. G., DASA Project, Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico, unpublished data.

29. Fletcher, E. R., DASA Project, Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico, unpublished data.

35. "Radiologic Aspects of Disaster Planning," sponsored by the American College of Radiology, the American Roentgen Ray Society, the Radiological Society of North America, with the cooperation of the Division of Health Mobilization of the Public Health Service, prepared by the ACR Committee in Radiologic Aspects of Disaster Planning, undated. [1963?], 16 p.

DISTRIBUTION

Deputy Chief of Staff for Military Operations, Department of the Army, ATTN: Dir of SW&R, Washington, D. C. 20301 (1 copy)
Chief of Research & Development, Department of the Army, ATTN: Atomic Division, Washington, D. C. 20301 (1 copy)
Deputy Chief of Staff Intelligence, Department of the Army, Washington, D. C. (1 copy)
Chief of Engineers, Department of the Army, ATTN: ENGB, Washington, D. C. 20315 (1 copy)
Chief of Engineers, Department of the Army, ATTN: ENGB, Washington, D. C. 20315 (1 copy)
Chief of Engineers, Department of the Army, ATTN: ENGB, Washington, D. C. 20315 (1 copy)
Chief of Ordnance, Department of the Army, ATTN: OORDTN, Washington, D. C., 20315 (2 copies)
Chief Signal Officer, Comb Dev & Ops Div, ATTN: SIGCO-4, Washington, D. C., 20330 (1 copy)
Director of Special Weapons, Development Office, HQ CONARC, ATTN: Capt Chester I. Peterson, Fort Bliss, Texas 79906 (1 copy)
President, U. S. Army Artillery Board, Fort Sill, Oklahoma 73503 (1 copy)
President, U. S. Army Aviation Board, ATTN: ATBG-DO, Fort Rucker, Alabama 36362 (1 copy)
Commandant, U. S. Army C&WS College, ATTN: Archives, Fort Leavenworth, Kansas 66027 (1 copy)
Commandant, U. S. Army Air Defense School, ATTN: Command & Staff Dept, Fort Bliss, Texas 79906 (1 copy)
Commandant, U. S. Army Armored School, Fort Knox, Kentucky 40120 (1 copy)
Commandant, U. S. Army Arty & Missile School, ATTN: Combat Dev Dept, Fort Sill, Oklahoma 73503 (1 copy)
Commandant, U. S. Army Infantry School, ATTN: C.D.S., Fort Benning, Georgia 31905 (1 copy)
Commandant, Quartermaster School, U. S. Army, ATTN: Ch, QM Library, Fort Lee, Virginia 23801 (1 copy)
Commanding General, Chemical Corps Training Command, Fort McClellan, Alabama 36205 (1 copy)
Commandant, U. S. Army Chemical Corps CBR, Weapons School, Dugway Proving Ground, Dugway, Utah 84022 (1 copy)
Commandant, U. S. Army Signal School, Fort Monmouth, New Jersey 07703 (1 copy)

(Cont'd on page 2)
Commandant, U. S. Army Transport School, ATTN: Security and Information Office, Fort Eustis, Virginia 79906 (1 copy)
Commanding General, The Engineer Center, ATTN: Asst Cdr Engineer School, Fort Belvoir, Virginia 22060 (1 copy)
Commanding General, Army Medical Service School, Brooke Army Medical Center, Fort Sam Houston, Texas 78234 (1 copy)
Commanding Officer, 9th Hospital Center, APO 180, ATTN: CO, US Army Nuclear Medicine Research Det, Europe, New York, New York (1 copy)
Director, Armed Forces Institute of Pathology, Walter Reed Army Medical Center, Washington, D. C. 20315 (1 copy)
Commanding Officer, Army Medical Research Laboratory, Fort Knox, Kentucky 40120 (1 copy)
Commandant, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, D. C. 20315 (1 copy)
Commanding General, QM R&D Comd, QM R&D Center, ATTN: CBR Liaison Officer, Natick, Massachusetts (1 copy)
Commanding General, QM Research & Engineering Command, USA, Natick, Massachusetts (For reports from Opn HARDTACK only) (1 copy)
Director, U. S. Army Research and Development Laboratory, ATTN: Chief, Technical Support Branch, Fort Belvoir, Virginia 22060 (1 copy)
Director, Waterways Experiment Station, U. S. Army Corp of Engineers, P. O. Box 631, ATTN: Library, Vicksburg, Mississippi (1 copy)
Director, U. S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland 21005 (2 copies)
Chief, Army Ballistic Missile Agency, ATTN: ORDAB-HT, Redstone Arsenal, Alabama 35808 (1 copy)
Commanding General, Army Electronic Proving Ground, ATTN: Tech Library, Fort Huachuca, Arizona 85613 (1 copy)
Director, Research Analysis Corporation, Waverly Bldg, 6935 Arlington Road, Bethesda 14, Maryland (1 copy)
Commanding General, Army Materiel Command, Washington, D. C. 20315 (2 copies)
Commanding Officer, U. S. Army Nuclear Defense Laboratory, ATTN: Librarian, Edgewood Arsenal, Maryland 21040 (1 copy)
Commanding General, Army Materiel Command, ATTN: EOD Division, Washington, D. C. 20315 (1 copy)

NAVY AGENCIES

Chief of Naval Operations, Navy Department, ATTN: OPO3EG, Washington, D. C. 20350 (1 copy)
Chief of Naval Operation, Navy Department, ATTN: OP-75, Washington, D. C. 20350 (1 copy)
Chief of Naval Operations, Navy Department, ATTN: OP-922G2, Washington, D. C. 20350 (1 copy)
Chief of Naval Operation, Navy Department, ATTN: OP-91, Washington, D. C. 20350 (1 copy)
(Cont'd on page 3)
Chief of Naval Personnel, Navy Department, Washington, D. C. 20350 (1 copy)
Chief of Naval Research, Navy Department, ATTN: Code 811, Washington, D. C. 20390 (2 copies)
Chief, Bureau of Medicine and Surgery, Navy Department, ATTN: Special Weapons Def Division, Washington, D. C. 20390 (1 copy)
Chief, Bureau of Ships, Navy Department, ATTN: Code 423, Washington, D. C. 20360 (1 copy)
Chief, Bureau of Yards and Docks, Navy Department, ATTN: D-440, Washington, D. C. 20370 (1 copy)
Director, U. S. Naval Research Laboratory, ATTN: Mrs. Katherine H. Cass, Washington, D. C. 20390 (1 copy)
Commander, U. S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland 20390 (2 copies)
Commander, U. S. Naval Material Laboratory (Code 900), New York Naval Shipyard, Brooklyn 1, New York (1 copy)
Commanding Officer, U. S. Naval Mine Defense Lab, Panama City, Florida (1 copy)
Commanding Officer and Director, U. S. Naval Radiological Defense Laboratory, ATTN: Tech Info Div, San Francisco 24, California (4 copies)
Commanding Officer, U. S. Naval Schools Command, U. S. Naval Station, Treasure Island, San Francisco, California (1 copy)
Superintendent, U. S. Naval Postgraduate School, Monterey, California (1 copy)
Commanding Officer, Naval Weapons Training Center, Atlantic, U. S. Naval Base, ATTN: Nuclear Warfare Department, Norfolk 11, Virginia (1 copy)
Commanding Officer, Nuclear Weapons Training Center, Pacific, U. S. Naval Air Station, North Island, San Diego 35, California (1 copy)
Commanding Officer, U. S. Naval Damage Control Training Center, Naval Base, ATTN: ABC Defense Course, Philadelphia 12, Pennsylvania (1 copy)
Commanding Officer, U. S. Naval Air Development Center, ATTN: NAS, Librarian, Johnsville, Pennsylvania (1 copy)
Commanding Officer, U. S. Naval Medical Research Institute, National Naval Medical Center, Bethesda, Maryland 20014 (1 copy)
Officer in Charge, U. S. Naval Supply Research and Development Facility, Naval Supply Center, Bayonne, New Jersey (1 copy)

AIR FORCE AGENCIES

HQ USAF (AFFAC) Wash DC 20330 (1 copy)
HQ USAF, ATTN: Operations Analysis Office, Vice Chief of Staff, Wash 25 DC (1 copy)
HQ USAF (APMN3), ATTN: ACS/1 (APOIN-3VI), Wash DC 20330 (2 copies)
Assistant Chief of Staff, Intelligence, HQ USAF, APO 633, ATTN: Directorate of Air Targets, New York, New York (1 copy)
HQ USAF (APRDB), ATTN: Guidance & Weapons Division, Wash DC 20330 (1 copy)
TAC, ATTN: Doc Security Branch, Langley AFB VA 23865 (1 copy)
The Surgeon General, HQ USAF, ATTN: Bio-Def Pre Med Div, Wash DC 20380 (1 copy)

(Cont'd on page 4)
TAC, ATTN: Doc Security Branch, Langley AFB Va 23365 (1 copy)
ADC, ATTN: Assistant for Atomic Energy, ADLDC-A, Bnt AFB Colo 80612 (1 copy)
AFSC, Andrews AFB, ATTN: RERWA, Wash DC 20331
DDC(TIOL), AF Unit Post Office, ATTN: WDSOT, Los Angeles, Calif 90045 (1 copy)
Commander-in-Chief, Pacific Air Forces, APO 988, ATTN: FFCIE-MB, Base
Recovery, San Francisco, Calif (1 copy)
AFRCR, L G Hanscom Fld, ATTN: CRQT-2, Bedford Mass 01731 (2 copies)
AFSWC, ATTN: Tech Info & Intel Div, Kirtland AFB NMex 87117 (5 copies)
AUL, Maxwell AFB Ala 36112 (2 copies)
Lowry AFB Colo, ATTN: Dept of Sp Wps Tag, 80230 (1 copy)
USAFSAM, Brooks AFB Tex 78235 (2 copies)
Commander, 100th Sp Wps Squadron, USAF, Wash DC (1 copy)
ASD, ATTN: WCOSI, Wright-Patterson AFB Ohio 45433 (2 copies)
Director, USAF Project RAND, VIA: US Air Force Liaison Office, The RAND
Corporation, 1700 Main Street, Santa Monica, California (2 copies)
Commander, Air Defense Systems Integration Division, L G Hanscom Fld,
ATTN: SIDE-S, Bedford Mass 01731 (1 copy)
Command, Air Technical Intelligence Center, USAF, ATTN: AFCIN-4B1A,
Library, Wright-Patterson AFB Ohio 45433 (1 copy)

OTHER AGENCIES

Director of Defense Research and Engineering, ATTN: Tech Library,
Washington, D. C. 20301 (1 copy)
Director, Weapons Systems Evaluation Group, Room 1E580, Washington,
D. C. 20301 (1 copy)
U. S. Documents Officer, Office of the United States National Military
Representative-SHAPE APO 55, New York, New York (1 copy)
Director, Defense Atomic Support Agency, ATTN: Document Library,
Washington, D. C. 20301 (4 copies) *Reduce to 3 cs for all FWE Rpts.
Commander, Field Command, Defense Atomic Support Agency, Albuquerque,
New Mexico 87115 (1 copy)
Commander, Field Command, Defense Atomic Support Agency, ATTN: FCWT,
Albuquerque, New Mexico 87115 (2 copies)
Commander, Field Command, Defense Atomic Support Agency, ATTN: FCOC,
Albuquerque, New Mexico 87115 (1 copy)
Director, National Aeronautics & Space Administration, 1520 H Street, N. W.,
Washington, D. C. 20546 (1 copy)
SAC ATTN: OAWS, Offutt AFB Neb 68113 (1 copy)
Commandant, U. S. Coast Guard, 1300 E. Street, N. W, ATTN: OIN,
Washington, D. C. (1 copy)
(Cont'd on page 5)
OTHER DISTRIBUTION

U. S. Atomic Energy Commission, Washington, D. C. 20545, ATTN:
Chief, Civil Effects Branch, Division of Biology and Medicine (450 copies)

Director, U. S. Army Ballistic Research Laboratories, ATTN: Terminal Ballistics,
Mr. Robert O. Clark, Physicist (1 copy); Mr. William J. Taylor, Physicist (1 copy)
Aberdeen Proving Ground, Maryland 20115

Airborne Instruments Laboratory, Department of Medicine and Biological
Physics, Deer Park, Long Island, New York, ATTN: Mr. W. J. Carberry (1 copy)

AFSC, ATTN: SOC, Andrews AFB Wash DC 20381 (1 copy)

AirResearch Manufacturing Company, 9881-9981 Sepulveda Blvd, Los Angeles 26,
California, ATTN: Mr. Frederick H. Green, Assistant Chief, Preliminary
Design (1 copy); Dr. Names N. Waggener, Medical Director (1 copy)

AerResearch Manufacturing Company, Sky Harbor Airport, 402 South 36th Street,
Phoenix, Arizona, ATTN: Delano Debaryshe (1 copy); Leighton S. King (1 copy)

American Airlines, Inc., La Guardia Airport Station, Flushing 71, New York,
ATTN: Medical Director (1 copy)

USAFSAM, ATTN: Maj Gen Theodore C. Bedwell, Jr., Commandant (1 copy);
Col Paul A. Campbell, Chief, Space Medicine (1 copy); Dr. Hubertus
Strughold, Advisor for Research & Professor of Space Medicine (1 copy)

Boeing Company, Aero Space Division, 7755 E Marginal Way, Seattle 24, Washington
ATTN: Dr. Thrift O. Hanks, Director of Health & Safety (1 copy); Dr. Romney
H. Lowry, Manager, Space Medicine Branch (1 copy); Dr. F. Werner, Jr.,
Space Medicine Section (1 copy)

Chance Vought Astronautics, P. O. Box 5907, Dallas 22, Texas, ATTN: Life
Sciences Section (6 copies)

Commanding Officer, U. S. Army Chemical Research & Development Laboratories,
ATTN: Dr. Fred W. Stealer (1 copy); Dr. R. S. Anderson (1 copy),
Edgewood Arsenal, Maryland 21040

Civil Aeromedical Research Institute, Oklahoma City, Oklahoma, ATTN:
Director of Research (1 copy)

Convair Division, General Dynamics Corp, Fort Worth, Texas, ATTN:
Mr. H. A. Bodely (1 copy); Mr. Schrubes (1 copy)

Convair, General Dynamics Corporation, Mail Zone 1-713, P. O. Box 1950,
San Diego 12, California, ATTN: Dr. R. C. Armstrong, Chief Physician;
Dr. J. C. Clark, Assistant to Vice-President Engineering; Mr. James
Demsey; Dr. L. L. Lowry, Chief Staff Systems Evaluation Group; Mr. M.
H. Thiel, Design Specialist; Dr. E. A. Nau (Mail Zone 8-104);
Mr. W. F. Rector, III (Mail Zone 880-40); P. O. Box 1128; Mr. R. C. Sebold,
Vice-President Engineering, Convair General Offices, (6 copies)

Commander, Field Command, Defense Atomic Support Agency, Sandia Base,
ATTN: Col F. Neumann, Surgeon, Albuquerque, New Mexico 87115 (1 copy)

Department of National Defense, Defense Research Board, Suffield Experimental
Station, Ralston, Alberta, Canada, ATTN: Physiology Section (2 copies)

The Dikewood Corporation, 4805 Menaul Blvd., N. E., Albuquerque, New
Mexico (1 copy)

Douglas Aircraft Company, Inc., El Segundo Division, El Segundo, California,
ATTN: Mr. Harvey Glassner (1 copy); Dr. E. B. Konecki (1 copy)

(Cont'd on page 6)
Federal Aviation Agency, 1711 New York Avenue N. W., Washington, D. C.
20553, ATTN: Dr. James L. Goddard, Civil Air Surgeon (1 copy)
Goodyear Aircraft Corporation, Department 475, Plant H, 1210 Massillon
Road, Akron 15, Ohio, ATTN: Dr. A. J. Cacioppo (1 copy)
Harvard School of Public Health, Harvard University, 695 Huntington
Avenue, Boston 15, Massachusetts, ATTN: Dr. Ross A. McFarland,
Associate Professor of Industrial Hygiene (1 copy)
Mr. Kenneth Kaplan, Physicist, Broadview Research Corporation,
1811 Trousdale Drive, Burlingame, California, (1 copy)
Lockheed Aircraft Company, Suite 302, First National Bank Bldg, Burbank,
California, ATTN: Dr. Charles Barron (1 copy)
Lockheed Missile and Space Company, Space Physics Department (53-23),
Sunnyvale, California, ATTN: Scientific Assistant to Director of
Research (3 copies)
Lockheed Missile and Space Company, 1122 Jagels Road, Palo Alto, California,
ATTN: Missile Systems Director (1 copy)
Lovelace Foundation for Medical Education and Research, 4800 Gibson Blvd,S.E.,
Albuquerque, New Mexico, ATTN: Dr. Clayton S. White, Director of
Research (50 copies)
The Martin Company, Denver, Colorado, ATTN: Chief, Space Medicine (1 copy)
McDonnell Aircraft Company, Lambert Field, Saint Louis, Missouri, ATTN:
Chief Airborne Equipment Systems Engineer (1 copy)
National Aeronautics and Space Administration, 1520 H. Street, N. W.,
Washington D. C. 20546, ATTN: Director, Life Sciences Program (1 copy)
Naval Medical Research Institute, Bethesda, Maryland 20315, ATTN: Dr. David E.
Goldman, MSC, Commander (1 copy)
Chief, Bureau of Medicine & Surgery, Navy Department, ATTN: Director,
Submarine Medical Division, Washington, D. C. 20390 (1 copy)
North American Aviation, International Airport, Los Angeles 45, California,
ATTN: Scott Crossfield; Dr. Toby Freedman, Flight Surgeon; Mr. Fred A.
Payne, Manager Space Planning, Development Planning; Mr. Harrison A.
Storms (4 copies)
Chief of Defense Research & Engineering, ATTN: Chief, Medical Services
Division, Office of Science, Washington, D. C. 20301 (1 copy)
The Ohio State University, 410 West 10th Avenue, Columbus 10, Ohio, ATTN:
Dr. William F. Ashe, Chairman, Department of Preventive Medicine;
Dean Richard L. Meiling (2 copies)
Director, The RAND Corporation, 1700 Main Street, Santa Monica, California,
ATTN: Dr. H. H. Mitchell, Physics Division; Dr. Harold L. Brode (2 copies)
Republic Aviation Corporation, Applied Research & Development, Farmingdale,
Long Island, New York, ATTN: Life Sciences Division (3 copies)
President, Sandia Corporation, Sandia Base, Albuquerque, New Mexico 87115,
ATTN: Director of Research (5 copies)
System Development Corporation, Santa Monica, California, ATTN: Dr. C. J.
Roach (1 copy)
United Aircraft Company, Denver, Colorado, ATTN: Medical Director (1 copy)
(Cont'd on page 7)
Laboratory of Nuclear Medicine & Radiation Biology, School of Medicine, University of California, Los Angeles, 900 Veteran Avenue, Los Angeles 24, California, ATTN: Dr. G. M. McDonnel, Associate Professor; Dr. Benedict Cassen (2 copies)
University of Illinois, Chicago Professional Colleges, 840 Wood Street, Chicago 12, Illinois, ATTN: Director, Aeromedical Laboratory (1 copy)
University of Kentucky, School of Medicine, Lexington, Kentucky, ATTN: Dr. Loren D. Carlson, Professor of Physiology & Biophysics (1 copy)
University of New Mexico, Albuquerque, New Mexico, ATTN: Library (1 copy)
U. S. Naval Ordnance Laboratory, ATTN: Capt Richard H. Lee, MSC; Mr. James F. Moulton, White Oak, Maryland 20390 (2 copies)
U. S. Naval School of Aviation Medicine, U. S. Naval Aviation Medical Center, ATTN: Director of Research, Pensacola, Florida (1 copy)
Dr. Shields Warren, Cancer Research Institute, New England Deaconess Hospital, 194 Pilgrim Road, Boston 15, Massachusetts (1 copy)
ASD, ATTN: Commanding Officer; Chief, Bioacoustics Laboratory, Wright-Patterson AFB Ohio 45433 (2 copies)
Dr. Eugene Zoyer, Director, Shock Tube Laboratory, P. O. Box 188, University Station, Albuquerque, New Mexico (1 copy)
DDC, Cameron Station, Alexandria, Va 22314 (20 copies)
Western Development Laboratories, Philco Corporation, Palo Alto, California, ATTN: Chief, Bioastronautics (1 copy)