NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
UNIVERSITY OF MARYLAND
WIND TUNNEL ENGINEERING REPORT NO. 62-1

SURVEY OF LOW-ASPECT-RATIO
CHARACTERISTICS USEFUL IN THE DESIGN OF
CONTROL SURFACES

Prepared by
Richard I. Windsor

Approved by:
Donald S. Gross
Director of Wind Tunnel

Performed under Bureau of Ships Contract No.
NObS - 84240. Index No. S-F013 02 05
Task No. 1979
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>SOURCES OF DATA</td>
<td>3</td>
</tr>
<tr>
<td>PRESENTATION OF DATA</td>
<td>4</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>12</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>14</td>
</tr>
<tr>
<td>TABLE</td>
<td>16</td>
</tr>
<tr>
<td>FIGURES</td>
<td>22</td>
</tr>
<tr>
<td>Fig. No.</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Coordinate Systems Showing Positive Direction of Forces, Moments and Angle of Attack</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of Half Model and Complete Model Test Arrangements</td>
</tr>
<tr>
<td>3</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = -3^\circ$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>4</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 0^\circ$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>5</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 11^\circ$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>6</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 22.5^\circ$, $\lambda = 0.45$, Square Tip</td>
</tr>
<tr>
<td>7</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 11^\circ$, $\lambda = 2.0$, Square Tips</td>
</tr>
<tr>
<td>8</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 0^\circ$, $\lambda = 1.0$, Square Tips</td>
</tr>
<tr>
<td>9</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 30^\circ$, $\lambda = 1.0$, Square Tips</td>
</tr>
<tr>
<td>10</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 60^\circ$, $\lambda = 1.0$</td>
</tr>
<tr>
<td>11</td>
<td>Aerodynamic Characteristics Versus Sweep Angle, $\lambda = 1.0$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>12</td>
<td>Aerodynamic Characteristics Versus Sweep Angle, $\lambda = 2.0$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>Aerodynamic Characteristics Versus Sweep Angle, $A = 3.0$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>14</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\Lambda = -8^\circ$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>15</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\Lambda = 0^\circ$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>16</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\Lambda = 11^\circ$, $\lambda = 0.45$, Square Tips</td>
</tr>
<tr>
<td>17</td>
<td>Aerodynamic Characteristics Versus Taper Ratio, $A = 2$, $\Lambda = 11^\circ$, Square Tips</td>
</tr>
<tr>
<td>18</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = -8^\circ$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>19</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 0^\circ$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>20</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 11^\circ$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>21</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 22.5^\circ$, $A = 2$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>22</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 11^\circ$, $A = 2$, Faired Tips</td>
</tr>
<tr>
<td>23</td>
<td>Aerodynamic Characteristics Versus Sweep Angle, $A = 1$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>24</td>
<td>Aerodynamic Characteristics Versus Sweep Angle, $A = 2$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>25</td>
<td>Aerodynamic Characteristics Versus Sweep Angle, $A = 3$, $\lambda = 0.45$, Faired Tips</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\Lambda = -8^\circ$, $\lambda = 0.45$, Fairied Tips</td>
</tr>
<tr>
<td>27</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\Lambda = 0^\circ$, $\lambda = 0.45$, Fairied Tips</td>
</tr>
<tr>
<td>28</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\Lambda = 11^\circ$, $\lambda = 0.45$, Fairied Tips</td>
</tr>
<tr>
<td>29</td>
<td>Aerodynamic Characteristics Versus Taper Ratio, $A = 2$, $\Lambda = 11^\circ$, Fairied Tips</td>
</tr>
<tr>
<td>30</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 60^\circ$, $\lambda = 1.0$, Square Tips</td>
</tr>
<tr>
<td>31</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $A = 1.33$, Square Tips</td>
</tr>
<tr>
<td>32</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\lambda = 0$</td>
</tr>
<tr>
<td>33</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 0^\circ$, $\lambda = 1.0$, Square Tips</td>
</tr>
<tr>
<td>34</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\lambda = 0.5$, Square Tip</td>
</tr>
<tr>
<td>35</td>
<td>Aerodynamic Characteristics Versus Aspect Ratio, $\lambda = 0$, $\Lambda = 60^\circ$</td>
</tr>
<tr>
<td>36</td>
<td>Aerodynamic Characteristics Versus Taper Ratio, $A = 1.33$, $\Lambda = 60^\circ$, Square Tip</td>
</tr>
<tr>
<td>37</td>
<td>Aerodynamic Characteristic Versus Angle of Attack, $\Lambda = 0^\circ$, $\lambda = 1.0$, Fairied Tips</td>
</tr>
<tr>
<td>38</td>
<td>Aerodynamic Characteristics Versus Angle of Attack, $\Lambda = 45^\circ$, $\lambda = 1.0$, Fairied Tips</td>
</tr>
</tbody>
</table>
INDEX OF FIGURES (cont.)

39 Aerodynamic Characteristics Versus Angle of Attack, $\alpha = 45^\circ$, Faired Tips 218

40 Aerodynamic Characteristics Versus Angle of Attack, $\alpha = 60^\circ$, $\lambda = 1.0$, Faired Tips 223

41 Aerodynamic Characteristics Versus Angle of Attack, $A = 5.0$, $\lambda = .5$, Faired Tips 228

42 Aerodynamic Characteristics Versus Sweep Angle, $\lambda = 1.0$, $A = 1.34$, Faired Tips 233

43 Aerodynamic Characteristics Versus Sweep Angle, $A = 2.61$, $\lambda = 1.0$, Faired Tips 238

44 Aerodynamic Characteristics Versus Sweep Angle, $A = 5.16$, $\lambda = 1.0$, Faired Tips 243

45 Aerodynamic Characteristics Versus Aspect Ratio, $\lambda = 0^\circ$, $\lambda = 1.0$, Faired Tips 248

46 Aerodynamic Characteristics Versus Aspect Ratio, $\lambda = 45^\circ$, $\lambda = 1.0$, Faired Tips 253

47 Aerodynamic Characteristics Versus Aspect Ratio, $\lambda = 60^\circ$, $\lambda = 1.0$, Faired Tips 258

48 Aerodynamic Characteristics Versus Taper Ratio, $A = 2.61$, $\lambda = 45^\circ$, Faired Tips 263

NACA 64A010 Section Curves

49 Aerodynamic Characteristics Versus Angle of Attack, $\lambda = 0^\circ$, $\lambda = 1.0$, Faired Tips 268

50 Aerodynamic Characteristics Versus Aspect Ratio, $\lambda = 1.0$, $\lambda = 0^\circ$, Faired Tips 273
SUMMARY

This report presents a compilation of characteristics obtained from subsonic experimental data for many different plan forms of low-aspect-ratio surfaces. The purpose of this compilation is to provide information for the design of ship and submarine control surfaces.

The work presented in this report was sponsored by the Bureau of Ships under Contract No. NObs - 84240. The opinions and conclusions presented are those of the contractor and not necessarily those of the Department of the Navy.
INTRODUCTION

Information presented in this report is the result of a survey of literature of wind tunnel tests pertaining to low-aspect-ratio characteristics which are of importance in the design of control surfaces for maneuvering a vessel. During the survey emphasis was placed on low-subsonic-flow experimental data of symmetrical surfaces having the following characteristics:

1. Aspect ratio of 4 or less
2. Sweepback of 30° or less
3. Maximum thickness to chord length ratio between 9 and 18 percent
4. Reynolds number greater than \(2 \times 10^6\)

While emphasis has been placed on the above characteristics, some data is presented which fall outside of these limitations.

Data obtained during the survey are presented as graphs for use by the design engineer. These curves show the variation of the force coefficients, chordwise center of pressure and spanwise center of pressure (where available) with angle of attack, aspect ratio, sweep angle and taper ratio.
SOURCES OF DATA

The primary sources of information presented in this report were David Taylor Model Basin Report 933 (Reference 1) and various NACA reports. A large number of the reports dealing with experimental results listed in the bibliography of Reference 2 were investigated. Although there are numerous publications listed in Reference 2, most of them do not fall within the limitations of this data search.

Data from David Taylor Model Basin Report 933 supplemented by tests conducted under the present contract for the Bureau of Ships at this installation (Reference 3) were the most uniform, systematic, and complete available. These reports produced practically all of the data presented on the NACA 0015 airfoil section control surfaces. Numerous planforms covering various sweep angles, aspect ratios, and taper ratios were investigated in a systematic manner in these tests.

Aside from the NACA 0015 airfoil section, the only other section on which any appreciable amount of data could be found was the NACA 0012. Most of this information was obtained from various NACA reports. While there were data available on other airfoil sections, they were not sufficient to produce the crossplots desired except for a limited amount available on the NACA 64A010 airfoil section.

Considerable experimental low-aspect-ratio data were available in the NACA literature. But, large quantities of the data were for
asymmetrical airfoil sections and thin sections which fell outside the scope of this study. Data for wing-body combinations were also excluded from this report. When the other limitations stated in the introduction were imposed, the reports available were quite limited. Among the remaining reports were some that had to be discarded because the experimental data were not complete. That is, in some cases drag data were not available or the model support corrections were not determined during the test. The fact that the drag data were not available eliminated the possibility of computing the chordwise center of pressure. Since this was of primary interest, reports not containing drag data were rejected. Reports where support corrections were not determined or accounted for were also rejected for this information could not be compared directly with fully corrected data.

A summary of the various planforms for which information was obtained and the sources of this information is presented in Table I.

PRESENTATION OF DATA

NACA 0015 AIRFOIL SECTION

The data for the NACA 0015 airfoil section planforms are presented in two sets. The first set of data presented in Figures 3-17 are for the planforms having square tips, whereas, the second set of data, Figures 18-29 are for planforms having faired tips. Figures 3-10 for the square tips and Figures 18-22 for the faired tips present curves of lift coefficient, drag coefficient, normal force coefficient, resultant force coefficient, chordwise center of pressure and spanwise center of pressure versus angle of attack for each individual planform. The remaining figures of these sets are crossplots of the forces and centers of pressure with taper ratio, aspect ratio and quarter chord sweep as variables.
NACA 0012 AIRFOIL SECTION

Data for the NACA 0012 airfoil section planforms are presented in Figures 30 - 48. As in the case of the NACA 0015 airfoil section, these data appear in two sets. The first set presented in Figures 30 - 36 is for the planforms having square tips. The second set is for planforms with faired tips and is presented in Figures 37 - 48.

Spanwise center of pressure data are not presented for the 0012 section planforms. The data available in the reports for these planforms were insufficient for the computation of spanwise center of pressure. Lift coefficient, drag coefficient, normal force coefficient, resultant force coefficient, and chordwise center of pressure are plotted against angle of attack for the individual planforms in Figures 30 - 34 for the square tips and Figures 37 - 41 for the faired tips. This information is then crossplotted with taper ratio, aspect ratio and quarter chord sweep as variables in Figures 35 and 36 for square tips and Figures 42 - 48 for faired tips.

NACA 64A010 AIRFOIL SECTION

A limited amount of data on NACA 64A010 airfoil section planforms are presented in Figures 49 and 50. Here again, the data available was insufficient for the computation of the spanwise center of pressure.

DISCUSSION OF RESULTS

Normal force coefficients and resultant force coefficients were computed for each planform from the lift and drag characteristics.
presented in the reports. The normal force coefficients were computed by use of the following equation:

\[C_N = C_L \cos \alpha + C_D \sin \alpha \]

The following relationship was used to compute resultant force coefficients:

\[C_R = \sqrt{C_L^2 + C_D^2} \]

When attempting to crossplot the data, it was noted that in a large percent of the cases, only three points were available for fairing a curve. Since many curves may be faired through three points, a problem arose as to the best method of fairing the data. The problem was especially serious in the case of the chordwise center of pressure where a high degree of accuracy was desired. In an attempt to solve this problem it was decided to use center of pressure curves obtained from theoretical methods as a guide for fairing the experimental data. Two methods were used to compute center of pressure data. The methods used are presented in References 1 and 4. Neither of the methods used proved satisfactory in predicting results that could be used as guides for fairing the experimental data. It was therefore necessary to fair curves through the experimental points in a manner that is reasonable and consistent with the data available.

NACA 0015 Airfoil Section

All of the data on the NACA 0015 airfoil section planforms except that presented in Figures 8 - 10 were obtained from tests run specifically for control surface studies. In these tests the models were mounted in the wind tunnel on a flat surface or ground board.
The model then becomes a half model of a symmetrical wing with the ground board or tunnel wall introduced as a reflection plane at the longitudinal plane of symmetry. The relationship between the half model and the complete model is shown in Figure 2.

Figures 8 - 10 were obtained from tests on complete wings. The information presented in these figures is not contained in any of the crossplots. When attempting to crossplot these data, it was found that only two points could be obtained on any particular crossplot. The curves of the forces and center of pressure versus angle of attack have been retained in the report in the event that data may become available in the future which will make this information of some value.

Original center of pressure data presented in Reference 1 were plotted to a scale that was difficult to read to the accuracy desired. In order to improve the accuracy of the chordwise center of pressure and spanwise center of pressure readings, copies of the original large scale plots of Figures 39 - 88 of Reference 1 were obtained from the David Taylor Model Basin. It is felt that these large scale plots greatly improved the quality of the spanwise and chordwise center of pressure data presented in this report for the NACA 0015 airfoil section planforms.

NACA 0012 AIRFOIL SECTION

Data for the NACA 0012 airfoil section planforms come from various sources. In most cases the information was obtained from wind tunnel tests of complete wings. These were not tests that were run specifically for control surface studies as was the case in most of the 0015 series tests. Therefore, the data presented are
not as systematic and uniform as the 0015 data. Also, spanwise
center of pressure data were not available in the complete wing tests.

Chordwise center of pressure data had to be computed from
the lift, drag and pitching moment characteristics presented in the
reports from the following equation:

\[(CP)_c = 0.25 - \frac{C_{m\alpha}}{4} \frac{C_m L \cos \alpha + C_D \sin \alpha}{C_L}\]

Reports not containing sufficient information for this computation
were rejected since chordwise center of pressure was a vital part of
the survey. Several reports containing information on families of
low-aspect-ratio wings were rejected because they lacked drag
coefficient data or the data was not fully corrected for support strut
tare and interference. These reports have been listed in the
bibliography for the benefit of those who may be interested.

Generally speaking, the information presented for the NACA
0012 airfoil section planforms was obtained at lower Reynolds numbers
than that presented for the 0015 planforms. In fact, most of the 0012
information is from tests conducted at Reynolds numbers lower than
the limitations of the survey. Information presented in Reference 1
indicate that Reynolds number has a considerable effect on \(C_{L,\text{max}}\) for
the higher aspect-ratio control surfaces but very little effect on control
surfaces where the aspect-ratio is less than 2. Chordwise center of
pressure is not effected appreciably by changes in Reynolds number
(See Figure 13 of Reference 1). Therefore, the data presented should
be reliable up to angles of attack approaching the stall angle.

Characteristics presented in Figures 33, 34, and 41 do not
appear in any crossplots. As was the case for some of the 0015 planforms, these curves have been retained in the report in the event that data may become available in the future which will make this information of some value.

NACA 64A010 AIRFOIL SECTION

Chordwise center of pressure values were computed for the NACA 64A010 airfoil section planforms in the same manner as they were for the NACA 0012 airfoil section planforms. Here again spanwise center of pressure could not be computed since the original tests were for complete wings.

BIBLIOGRAPHY

Reports which are felt to be very closely related to this study, but which for various reasons could not be included in this report, are listed in the Bibliography on pages 12 and 13.

CONCLUSION

This report presents the characteristics of low-aspect-ratio planforms obtained from a search of sub-sonic experimental literature. The literature search was restricted to configurations and information which could be used in the design of control surfaces for maneuvering a vessel. The information obtained from the search is presented as curves showing the variation of lift coefficient, drag coefficient, normal force coefficient, resultant force coefficient, spanwise center of pressure and chordwise center of pressure with angle of attack, aspect ratio, quarter-chord sweep angle and taper ratio.
REFERENCES

Date November, 1962

12. Windsor, R. I., "Lift Transducer on NACA 0012 Wing Panel", University of Maryland Wind Tunnel Test No. 170 (Unpublished)

BIBLIOGRAPHY

12. Jones, George W. Jr., "Investigation of the Effects of Variations in the Reynolds Number between 0.4 x 10^6 and 3.0 x 10^6 on the Low-Speed Aerodynamic Characteristics of Three Low-Aspect-Ratio Symmetrical Wings with Rectangular Plan Forms", NACA RM L52G18 (1952)

13. Kolbe, C. D. and Bandettini, A., "Investigation in the Ames 12-Foot Pressure Wind Tunnel of a Model Horizontal Tail of Aspect Ratio 3 and Taper Ratio 0.5 Having the Quarter-Chord Line Sweptback 45°", NACA RM A51D02 (June, 1951)

SYMBOLS

All data are presented in the form of nondimensional force and moment coefficients. The positive direction of the forces, moments, and angular displacements is shown in Figure 1. The coefficients and symbols are defined as follows:

- **A**
 - Effective aspect ratio, \(\frac{b^2}{S} \)

- **b**
 - Span, measured perpendicular to plane of root section (see Figure 1)

- **c**
 - Chord, measured parallel to plane of root section

- **\(\bar{c} \)**
 - Mean geometric chord, \(\frac{c_t + c_r}{2} \)

- **\(C_D \)**
 - Drag coefficient, \(\frac{\text{Drag}}{q S} \)

- **\(C_L \)**
 - Lift coefficient, \(\frac{\text{Lift}}{q S} \)

- **\(C_{M\bar{c}}/4 \)**
 - Pitching moment coefficient about quarter-chord point of mean geometric chord, \(\frac{\text{pitching moment}}{q S \bar{c}} \)

- **\(C_n \)**
 - Yawing moment coefficient, \(\frac{\text{yawing moment}}{q S b/2} \)

- **\(C_N \)**
 - Normal force coefficient, \(C_L \cos \alpha + C_D \sin \alpha \)

- **\(C_R \)**
 - Resultant force coefficient, \(\sqrt{C_L^2 + C_D^2} \)

- **\((CP)_{\bar{c}} \)**
 - Chordwise center of pressure measured from leading edge at mean geometric chord in percent of the mean geometric chord,

\[
(\text{CP})_{\bar{c}} = 0.25 - \frac{C_{M\bar{c}}/4}{C_L \cos \alpha + C_D \sin \alpha}
\]
Spanwise center of pressure measured from plane of root section in percent of semispan,

\[(CP)_s = \frac{C_l \cos \alpha - C_n \sin \alpha}{C_L \cos \alpha + C_D \sin \alpha}\]

* Dynamic pressure, \(1/2 \rho V^2\)

* Reynolds number, \(\rho V c / \mu\)

* Planform area

Subscripts:
- \(r\) root
- \(t\) tip

* Free-stream velocity

* Angle of attack

* Taper ratio, \(C_t / C_r\)

* Viscosity, lb. sec/ft²

* Mass density, lb sec²/ft⁴ (approx. 2.0 for sea water)

* Angle of sweep of quarter chord line
Table I

Summary of Planforms

<table>
<thead>
<tr>
<th>Type Test</th>
<th>(\alpha) Deg.</th>
<th>(\lambda)</th>
<th>(R)</th>
<th>Tip Shape</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-8</td>
<td>0.45</td>
<td>(2.25 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-8</td>
<td>0.45</td>
<td>(2.72 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-8</td>
<td>0.45</td>
<td>(2.26 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.45</td>
<td>(2.70 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.45</td>
<td>(2.72 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.45</td>
<td>(2.70 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0.45</td>
<td>(2.28 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0.45</td>
<td>(2.72 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0.45</td>
<td>(2.26 \times 10^6)</td>
<td>Square and Fair ed</td>
<td>1</td>
</tr>
</tbody>
</table>
Table I (cont.)

<table>
<thead>
<tr>
<th>Type Test</th>
<th>A</th>
<th>Λ Deg.</th>
<th>λ</th>
<th>R</th>
<th>Tip Shape</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>11</td>
<td>0.80</td>
<td>3.0×10^6</td>
<td>Square and Fair</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11</td>
<td>0.60</td>
<td>3.0×10^6</td>
<td>Square and Fair</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11</td>
<td>0.20</td>
<td>3.0×10^6</td>
<td>Square and Fair</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22.5</td>
<td>0.45</td>
<td>3.0×10^6</td>
<td>Square</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>1.0</td>
<td>0.6×10^6</td>
<td>Square</td>
<td>5 and 6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>1.0</td>
<td>0.6×10^6</td>
<td>Square</td>
<td>5 and 6</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>30</td>
<td>1.0</td>
<td>0.7×10^6</td>
<td>Square</td>
<td>5 and 6</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>30</td>
<td>1.0</td>
<td>0.7×10^6</td>
<td>Square</td>
<td>5 and 6</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>60</td>
<td>1.0</td>
<td>1.2×10^6</td>
<td>Square</td>
<td>5 and 6</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>60</td>
<td>1.0</td>
<td>1.2×10^6</td>
<td>Square</td>
<td>5 and 6</td>
</tr>
</tbody>
</table>
Table I (cont.)

NACA 0012 Airfoil Section Planforms

<table>
<thead>
<tr>
<th>Type Test</th>
<th>A</th>
<th>(\Lambda) Deg.</th>
<th>(\lambda)</th>
<th>(R)</th>
<th>Tip Shape</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\triangle)</td>
<td>1.49</td>
<td>60</td>
<td>1.0</td>
<td>(1.2 \times 10^6)</td>
<td>Square</td>
<td>6</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>2.62</td>
<td>60</td>
<td>1.0</td>
<td>(1.1 \times 10^6)</td>
<td>Square</td>
<td>6 and 7</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>3.14</td>
<td>60</td>
<td>1.0</td>
<td>(1.2 \times 10^6)</td>
<td>Square</td>
<td>6</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>1.33</td>
<td>66.0</td>
<td>0</td>
<td>(1.5 \times 10^6)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>1.33</td>
<td>60.2</td>
<td>0.125</td>
<td>(1.5 \times 10^6)</td>
<td>Square</td>
<td>9</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>1.33</td>
<td>53.5</td>
<td>0.25</td>
<td>(1.5 \times 10^6)</td>
<td>Square</td>
<td>9</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>1.33</td>
<td>36.9</td>
<td>0.50</td>
<td>(1.5 \times 10^6)</td>
<td>Square</td>
<td>9</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>1.00</td>
<td>71.6</td>
<td>0</td>
<td>(1.5 \times 10^6)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>2.00</td>
<td>56.3</td>
<td>0</td>
<td>(1.5 \times 10^6)</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Table I (cont.)

<table>
<thead>
<tr>
<th>Type Test</th>
<th>A</th>
<th>λ Deg.</th>
<th>λ</th>
<th>R</th>
<th>Tip Shape</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.00</td>
<td>0</td>
<td>1.0</td>
<td>0.6×10^6</td>
<td>Square</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>0</td>
<td>1.0</td>
<td>0.6×10^6</td>
<td>Square</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>6.34</td>
<td>0.5</td>
<td>0.7×10^6</td>
<td>Square</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td>0</td>
<td>1.0</td>
<td>1.58×10^6</td>
<td>Fairied</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.61</td>
<td>0</td>
<td>1.0</td>
<td>1.1×10^6</td>
<td>Fairied</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4.57</td>
<td>0</td>
<td>1.0</td>
<td>2.0×10^6</td>
<td>Fairied</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>5.16</td>
<td>0</td>
<td>1.0</td>
<td>0.99×10^6</td>
<td>Fairied</td>
<td>7 and 11</td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td>45</td>
<td>1.0</td>
<td>1.56×10^6</td>
<td>Fairied</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.61</td>
<td>45</td>
<td>1.0</td>
<td>1.4×10^6</td>
<td>Fairied</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.61</td>
<td>45</td>
<td>1.0</td>
<td>1.1×10^6</td>
<td>Fairied</td>
<td>7 and 13</td>
</tr>
</tbody>
</table>
Table I (cont.)

<table>
<thead>
<tr>
<th>Type Test</th>
<th>λ</th>
<th>λ Deg.</th>
<th>λ</th>
<th>R</th>
<th>Tip Shape</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.16</td>
<td>45</td>
<td>1.0</td>
<td>0.77×10^6</td>
<td>Faired</td>
<td>7 and 11</td>
</tr>
<tr>
<td>A</td>
<td>2.61</td>
<td>45</td>
<td>0.5</td>
<td>1.2×10^6</td>
<td>Faired</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>2.61</td>
<td>45</td>
<td>0.25</td>
<td>1.2×10^6</td>
<td>Faired</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>3.00</td>
<td>45</td>
<td>0</td>
<td>1.5×10^6</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>1.34</td>
<td>60</td>
<td>1.0</td>
<td>1.98×10^6</td>
<td>Faired</td>
<td>7 and 11</td>
</tr>
<tr>
<td>A</td>
<td>2.61</td>
<td>60</td>
<td>1.0</td>
<td>1.1×10^6</td>
<td>Faired</td>
<td>6 and 7</td>
</tr>
<tr>
<td>A</td>
<td>5.16</td>
<td>60</td>
<td>1.0</td>
<td>0.76×10^6</td>
<td>Faired</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>0</td>
<td>0.5</td>
<td>1.0×10^6</td>
<td>Fained</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>35</td>
<td>0.5</td>
<td>1.0×10^6</td>
<td>Fained</td>
<td>14</td>
</tr>
<tr>
<td>Type Test</td>
<td>A</td>
<td>(\alpha) Deg.</td>
<td>(\lambda)</td>
<td>R</td>
<td>Tip Shape</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>1.13</td>
<td>0</td>
<td>1.0</td>
<td>(4.4 \times 10^6)</td>
<td>Faired</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.13</td>
<td>0</td>
<td>1.0</td>
<td>(3.1 \times 10^6)</td>
<td>Faired</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.13</td>
<td>0</td>
<td>1.0</td>
<td>(2.2 \times 10^6)</td>
<td>Faired</td>
<td>15</td>
</tr>
</tbody>
</table>
Fig. 1. Coordinate Systems Showing Positive Direction of Forces, Moments and Angle of Attack
a. Panel or Half Model in Tunnel of Width w.

b. Complete Wing in Tunnel of Width $2w$.

Figure 2. Comparison of Half Model and Complete Model Test Arrangements.
SECTION NACA 0015
TIPT SHAPE SQUARE

\[\lambda = -8^\circ \]
\[\lambda = 45^\circ \]

-2 4 8 12 16 20 24 28 32 36 40

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 20

Section: High Contour
Location: Square

\[\lambda = 0.5 \]

\[\gamma = 8 \]

Angle of Attack, \(\alpha \) Degrees
FIGURE 4

SECTION NACA 0015
TIP SHAPE SQUARE

\[\lambda \quad 0^\circ \]
\[\lambda \quad 45^\circ \]

LIFT COEFFICIENT, CL

ANGLE OF ATTACK, \(\delta \) DEGREES
FIGURE 6A

Section Mass Coefficient

Tapered Square

\[\Lambda = 22.5 \]

\[\Lambda = 2 \]

\[\Lambda = 1.5 \]

Drag Coefficient, \(C_D \)

\(-4\) \(\quad 0 \quad 4 \quad 8 \quad 12 \quad 16 \quad 20 \quad 24 \quad 28 \quad 32 \quad 36 \quad 40\]

Angle of Attack, \(\alpha \) Degrees
Figure 6.1D

Section Mach 0.15
Tie-Shape Square

\[\Lambda = 22.5 \]

\[A = 2 \]

\[\lambda = 0.45 \]
Figure 7

Section NACA 0015
Tip Shape Square
A 11
B 2

λ

80
60
45
20

Angle of Attack, 0° to 40°
Figure 7A

Section NACA 0015
Tri-Half Square

\[\Lambda = \frac{1}{2} \]

\[\lambda = \]

\[0^0 \]
\[10^0 \]
\[15^0 \]
\[20^0 \]

Drag Coefficient, CD

Angle of Attack, \(\alpha \) Degrees
Figure 8A

Section Mach 1.5

Tip Shape Smooth

\(\lambda = 0 \)

\(\lambda = 1.0 \)

\(A \)

\(2 \)

\(3 \)

\(4 \)

Angle of Attack, \(\alpha \) Degrees
Figure 30

Section: NACA 0015
Tip Shape: Square

$\frac{A}{\lambda} = 10$

Normal Force Coefficient, Cn

Angle of Attack, α (Degrees)
Figure 9A

Section NACA 0015
Tip Shape Square

Λ 30
λ 1.0

Al

Az
Figure 9C

SECTION NACA 0012
TIP SHAPE SQUARE

Λ 30°

λ 1.0

4.5

5.2

Relevant Force Coefficient C_f

Angle of Attack, α Degrees
Figure 16A

Section Area Coefficient

<table>
<thead>
<tr>
<th>Λ</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1.0</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

-4 -4 12 16 20 24 28 32 36 40

Angle of Attack, ° and Degrees
Figure 10.8

Section NACA 0018
Tip Shape Square

\[\theta \]
\[\lambda \]

\[\theta \]
\[\lambda \]

\[1.5 \]
\[3.0 \]

Normal Force Coefficient, \(C_n \)

Angle of Attack, \(\alpha \) Degrees
Figure 10C

Section Near Cone
Tip Shape Square

\[
t = 50
\]
\[
\lambda = 1.0
\]

\[
A = 15
\]
\[
3.0
\]
Figure 12

Section NACA 0015
Tip Shape Square

A = 2
λ = 45
Figure 13B

Section NACA 0015
Tip Shape Square
A: 3
λ: 1.5
Figure 18.8

Section IIACA 0615
Tip Shape Fairied

\[\lambda = 8 \]
\[\lambda = 45 \]

Normal Force Coefficient, C_n

-2 4 8 12 16 20 24 28 32 36 40

Angle of Attack, \(\alpha \) Degrees
Figure 198

Section NACA 0015
Tip Shape Fair Ed
\[\lambda = 0 \]
\[\alpha = 45 \]

Normal Force Coefficient, \(C_n \)

Angle of Attack, \(\alpha \) Degrees
Figure 19c

Section NACA 0015
Tip Shape Fairing
Δ 0
λ 45

Resultant Force Coefficient, Cr

Angle of Attack, α Degrees
Figure 20

Section: Nacrot
Tip Shape Factor

λ

A

1
2
3

Angle of Attack, 0 to 40 degrees
Figure 205

NACA 0015 Tip Shape, Faired

\[\frac{\lambda}{\lambda_{.45}} = 11 \]

A

Resistant Force, \(\text{in-\text{lb}} \)

12

10

8

6

4

2

Angle of Attack in Degrees

-4

4

8

12

16

20

24

28

32

36

40
FIGURE 21A

SECTION: NACA 6015
Tip Shape Forward
\[\lambda = 22.5 \]
\[\Delta = 2 \]
\[\lambda = 45 \]
Figure 21.13

Section Macao II
Tip Shape Failed

$\lambda = 22.5$

$\lambda = 2$

$\lambda = 10.5$

Angle of Attack Observed
Figure 216

Section NURSELT
Tip Shape PAIRED

Δ	2.25
Δ1	2
Λ	45

Reversal Force Characteristic

Angle of NURSELT, in Degrees
Figure 21D

Section High Cell
View: Front

A = 22.5
A = 2
A = 45

Pressure at various load conditions.
Figure 22a

Section NACA 0015
Tip Shape Fairing

\[\lambda \]

\[\theta \]

\[\beta \]

\[\phi \]

Diag. Coordinate, x

Angle of attack, \(\alpha \) degrees
Figure 22.6

Section Inch Out
Tip Shape Flared
\[\lambda \]
\[A = 1 \]
\[A = 2 \]

\[40 \]
\[60 \]
\[85 \]

Angle of Ferrocon 12 degrees
FIGURE 22 D
SECTION NACA 0015
TIP SHAPE FAIRED
\[\gamma = 11^\circ \]
\[\lambda = 45 \]
\[\phi = 60 \]
\[\theta = 80 \]

CHORDWISE CENTER OF PRESSURE
PERCENT OF CHORD (CP)

SPANWISE CENTER OF PRESSURE
PERCENT OF SPAN (CP)²

ANGLE OF ATTACK \(\alpha \) DEGREES
Figure 30.13
SECTION NACA 0012
TIP SHAPE SQUARE

\[\Delta = 60 \]

\[\lambda = 1.0 \]

\[\Delta \]

1.49

2.62

3.14

NORMAL FORCE COEFFICIENT, \(C_v \)

\(-B \) \(-4 \) \(4 \) \(8 \) \(12 \) \(16 \) \(20 \) \(24 \) \(28 \) \(32 \) \(36 \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 30 C

SECTIONS NACA 0012
TIP SHAPE SQUARE

\[\alpha = 60 \]

\[\lambda = 1.0 \]

A

1.49

2.62

3.14

RESEDANT FORCE COEFFICIENT, \(C_F \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 30-D

Section: NACA 0012
Tip Shape: SQUARE

Λ
λ
A

1.49
2.62
3.14

Angle of Attack, α, Degrees

--

Re: Report No. ER 62-1

Page 177
FIGURE 31

SECTION NACA 66-032
1/16 SQUARE

\[
\lambda = \frac{1}{\text{AoA}}
\]

\begin{align*}
0 & \quad 66.0 \\
1.25 & \quad 66.2 \\
1.25 & \quad 59.5 \\
1.50 & \quad 56.9
\end{align*}

Lift Coefficient, \(C_l \)

-8 -4 0 3 12 16 20 24 28 32 36

Angle of Attack \(\alpha \) Degrees
FIGURE 31 A

SECTION NACA 0012

TIP SHAPE SQUARE

A 1.35

\[\lambda \]

0 66.0°

125 60.0°

25 53.5°

50 36.9°

DRAG COEFFICIENT, \(C_D \)

ANGLE OF ATTACK, \(\theta \) DEGREES
Figure 31D

Section 116 A 0012

Tie Point Square

<table>
<thead>
<tr>
<th>Λ</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66.0</td>
</tr>
<tr>
<td>25</td>
<td>60.2</td>
</tr>
<tr>
<td>50</td>
<td>53.5</td>
</tr>
<tr>
<td>75</td>
<td>26.9</td>
</tr>
</tbody>
</table>

Distance on Square Code

Angle of Attack, ° in Degrees
Figure 32A

Section NACA 6012
Tapered Square

\[\lambda = 0 \]

\[
\begin{array}{c|c|c}
A & \Delta \lambda \\
1.00 & 1.16 & \\
1.88 & 6.6 & \\
2.00 & 563 & \\
\end{array}
\]

Angle of Attack, \(\theta \) Degrees
Figure 32C
SECTION NACA 0012
TIP SHAPE SQUARE

\[\lambda = 0 \]

\[A \]

\begin{array}{c|c}
\lambda & C_f \\
\hline
1.00 & 7.6 \\
1.33 & 6.0 \\
2.00 & 5.3 \\
\end{array}

RESULTANT FORCE COEFFICIENT, \(C_f \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 88

Section: NACA 6012
Tip Shape: Square

\[
\begin{array}{ccc}
\phi & 0.4 & 1.0 \\
\lambda & 3.0 & 6.0 \\
\end{array}
\]

\[\text{Angle of Attack, } \alpha \text{ Degrees}\]
Figure 33A

Section: NACA 0012
Tip Shape: SQUARE

\[\lambda \]

\[\Lambda \] = 0°
\[\lambda \] = 10°

A
3.0
6.0

Angle of Attack, deg
-8 -4 0 4 8 12 16 20 24
Figure 33D

Section: HCH 0012
Tip Shape: Square

\[\theta = 0^\circ \]
\[\lambda = 1.0 \]

\[\Delta \]
\[3.0 \]
\[6.0 \]

Percentage of chord, chord

\[\begin{align*}
& 10 \quad 20 \quad 30 \quad 40 \\
& -8 \quad 0 \quad 4 \quad 8 \quad 12 \quad 16 \quad 20 \quad 24
\end{align*} \]

Angle of Attack in Degrees
Figure 34A

Section NACA 0012
Tip Shape Square

\[\Delta \]

1.33 36.9
300 634

Drag Coefficient, C_d

Angle of Attack, \(\alpha\) Degrees
Figure 34C

Section: NASA 0012
Tip Shape: Square

λ

<table>
<thead>
<tr>
<th>A</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>36.9</td>
</tr>
<tr>
<td>3.00</td>
<td>63.4</td>
</tr>
</tbody>
</table>

Resistance Force Coefficient C

-5 -4 4 5 10 14 20 24 28 32 36

Angle of Attack, ° Degrees
Figure 34D

Section NACA 0012
Tip Shape Square

\[\lambda = \frac{A}{\Delta} \]

1.33 36.9
3.00 43.4

\begin{align*}
\text{Pressure at Center of Circle} \\
10 \\
20 \\
30 \\
40 \\
\end{align*}

\begin{align*}
\text{Angle of Attack, } \alpha \text{ in Degrees} \\
-5 \quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \\
\end{align*}
Figure 37C

SECTION NACA 0012

TIP SHAPE SQUARE

\[\lambda = 0 \]

\[\Delta \Delta \]

\[1.0 \quad 71.6 \]

\[1.53 \quad 66.6 \]

\[2.0 \quad 56.3 \]
Figure 350

SECTION NACA 0012
TIP SHAPE SQUARE
λ = 0

A	Λ
1.0 | 71.6
1.33 | 66.0
2.0 | 51.3
SECTION NACA 0012
TIP SHAPE SQUARE
A 133

λ

0 66.0
125 66.2
25 13.5

LIFT COEFFICIENT, Cl
Figure 37

Section MACAOOG
Tip Shape Fairing

\[\lambda = 1.0 \]

Angle of Attack, \(\alpha \) Degrees
FIGURE 37A

SECTION NACA 0012
TIP SHAPE FAIRED

λ 0° 10°

\[1.24 \]
\[2.61 \]
\[4.57 \]
\[5.16 \]

DRAG COEFFICIENT, C_d

ANGLE OF ATTACK, α DEGREES
Figure 37B

Section In troch. Tip Shape Fair'd

\[\lambda = 0 \]
\[\lambda = 1.0 \]

12
1.34
2.61
4.57
5.16

Normal Force Coefficient, Cn

Angle of Attack, \(\alpha \) Degrees

-6 0 3 12 16 20 24
Figure 37c

Section NACA 0012
Tip Shape Fairied

\[\lambda \]

\[\gamma \]

12

10

1.34

2.61

4.57

5.16

Electrostatic Coefficient \(C_e \)

\[\alpha \]

-2

-1

0

4

8

12

16

20

24

Angle of Attack, \(\alpha \) in Degrees
Figure 39

Section NACA 0012
Twinform Fairing

\[\Delta \lambda \]

\[
\begin{align*}
10 & \quad \Delta \\
0.0 & \quad 0 \\
261 & \quad 0.25 \\
261 & \quad 0.5 \\
261 & \quad 1.0 \\
\end{align*}
\]

Angle of Attack, \(\alpha \) Degrees
Figure 39-C

Section NACA 0012
Tip Shape Fairing
$\lambda = 45$

<table>
<thead>
<tr>
<th>λ</th>
<th>C_{D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Reynolds Force Coefficient, C_{D}

Angle of Attack, α Degrees
FIGURE 39 D

SECTION NACA 0012
TIP SHAPE FAIRED

\[
\alpha \quad \Lambda \\
3.00 \quad 0 \\
2.61 \quad 0.25 \\
2.61 \quad 0.50 \\
2.61 \quad 1.00
\]

CHORDWISE CENTER OF CHORD (\(c^\prime\))

PERCENT OF CHORD

-8 -4 4 12 16 20 24 28 32 36

ANGLE OF ATTACK \(\alpha\) DEGREES
Figure 40A

Section NACA 0012
TIP SHAPE FAIRED

\[
\begin{align*}
\lambda & = 60^\circ \\
\lambda & = 10
\end{align*}
\]

\[1.34 \quad 2.61 \quad 5.16\]

Angle of Attack, \(\alpha\) Degrees
Figure 4.0.4

SECTION NACA 0012
TIP SHAPE FAIRED

\[\Lambda \]
\[\lambda \]

16
14
12
10
8
6
4
2

RESULTANT FORCE COEFFICIENT, \(C_A \)

-8 -4 0 4 8 12 16 20 24 28 32 36

ANGLE OF ATTACK, \(\alpha \) DEGREES
SECTION NACA 0012
TIP SHAPE FAIRED

\[\Delta = 5.0 \]
\[\lambda = 5 \]

\[\Delta \]
\[\theta \]
\[35 \]

LIFT COEFFICIENT, \(C_L \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
FIGURE W1A
SECTION: NACA 0012
TIP SHAPE: FAIRED

\[
\begin{align*}
\Delta & = 5.0 \\
\lambda & = 5
\end{align*}
\]

\[
\begin{align*}
\theta & = 0 \\
\theta & = 35
\end{align*}
\]

DRAG COEFFICIENT, \(c_d \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 41B
SECTION NACA 0012
TIP SHAPE FAIRED

| \(A \) | 5.0 |
| \(\lambda \) | 0.5 |

NORMAL FORCE COEFFICIENT, \(C_n \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 4.1.d
SECTION NACA 0012
TIP SHAPE FAIRED

\[\begin{align*}
\Delta & = 5.0 \\
\lambda & = 5 \\
\Lambda & \\
0 & \\
35 &
\end{align*} \]

CHORDWISE CENTER OF PRESSURE (C.P.)

PERCENT OF CHORD, (C.P.)

ANGLE OF ATTACK, DEGREES
FIGURE 4.7

SECTION: NACA 64.A010
TIP SHAPE FAIRED

\(\lambda \quad 0^\circ \)
\(\lambda \quad 1.0 \)

10

12

LIFT COEFFICIENT, \(C_L \)

\(\alpha \quad 0^\circ \)
\(\alpha \quad 1.13 \)
\(\alpha \quad 2.13 \)
\(\alpha \quad 4.13 \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
FIGURE 49.8

SECTION NACA 64 A010
TIP SHAPE FAİRED

\[\Lambda \theta \]

\[\lambda \ 10 \]

\[A \]

\[1/3 \]

\[2/3 \]

\[4/3 \]

DRAG COEFFICIENT, \(c_d \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 49.8

SECTION NACA 64A010
TIP SHAPE FAIRED

\[\lambda \]
\[\Lambda \]

\[A \]

\[A \]

NORMAL FORCE COEFFICIENT, \(C_n \)

ANGLE OF ATTACK, \(\alpha \) DEGREES
Figure 4.46

SECTION NACA 64A010
TIP SHAPE FAIRED.

\[\lambda = 10 \]

\[\alpha = 0 \]

RESULTANT FORCE COEFFICIENT, \(C_x \)

ANGLE OF ATTACK, \(\alpha \) DEGREES

-4 8 12 16 20
Figure 29D

SECTION NACA 649010
TIP SHAPE FAIRED

A 0
λ 1.0

A

1.13
2.13
4.13

CHORDWISE CENTER OF CHORD, (CP)z

PERCENT OF CHORD

30
20
10

4 8 12 16 20

ANGLE OF ATTACK, ° DEGREES