NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; OCT 1963. Other requests shall be referred to Army Medical Research Lab., Fort Knox, KY.

AUTHORITY

Army Research Office memo dtd 15 Feb 1968
THE EFFECT OF EDTA ON THE EXTENT OF TISSUE DAMAGE CAUSED BY THE VENOMS OF BOTHROPS ATRIX (FER-DE-LANCE) AND AGKISTRODON PICTIVORUS (COTTONMOUTH MOCASSIN)

Capt. Herschel H. Flowers, VC
Charles R. Goucher, Ph.D.

3 October 1963
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Report Submitted 23 September 1963

Authors

Capt Herschel H. Flowers, VC (DVM) Pathology Division

Charles R. Goucher, Ph. D. Chief, Enzymology Branch
Biochemistry Division

The animals used in this study were handled in accordance with the "Principles of Laboratory Animal Care" established by the National Society for Medical Research.

Qualified requestors may obtain copies of this report from DDC.

Foreign announcement and dissemination of this report by DDC is limited.
REPORT NO. 596

THE EFFECT OF EDTA ON THE EXTENT OF TISSUE DAMAGE CAUSED BY THE VENOMS OF BOTHROPS ATROX (FER-DE-LANCE) AND AGKISTRODON PSEIVORUS (COTTONMOUTH MOCASIN)

Capt Herschel H. Flowers, VC
Charles R. Goucher, Ph.D.

Pathology Division
US ARMY MEDICAL RESEARCH LABORATORY
Fort Knox, Kentucky

3 October 1963

In-House Laboratory Initiated Research and Development
DA Project No. 3A013001A814
ABSTRACT

THE EFFECT OF EDTA ON THE EXTENT OF TISSUE DAMAGE CAUSED BY THE VENOMS OF BOTHROPS ATROX (FER-DE-LANCE) AND AGKISTRODON PISCIVORUS (COTTONMOUTH MOCCASIN)

OBJECT

To determine the effect of EDTA on the extent of tissue damage caused by the venoms of Bothrops atrox (fer-de-lance) and Agkistrodon piscivorus (cottonmouth moccasin).

RESULTS

The chelating agent EDTA injected immediately following and in the area of envenomation greatly minimizes hemorrhage and necrosis which are characteristics of these particular venoms.

CONCLUSIONS

The highest therapeutic value of EDTA is derived by immediate subcutaneous infiltration of this chemical directly into the area of envenomation. The dosage administered depends upon the tissue structure to be infiltrated. EDTA affects the local activity of venom and appears to be a useful adjunct to specific antivenin therapy.
THE EFFECT OF EDTA ON THE EXTENT OF TISSUE DAMAGE
CAUSED BY THE VENOMS OF BOTHROPS ATROX
(FER-DE-LANCE) AND AGKISTRODON PISCIVORUS
(COTTONMOUTH MOCCASIN)

I. INTRODUCTION

Envenomation by the Crotalidae of Central and North America
results in fulminating necrotising wounds, the vast majority of which
are inflicted subcutaneously. Extensive hemorrhage and tissue loss
are suffered in regions joined by lymphatics to the point of envenoma-
tion as well as in areas surrounding that point.

The initially confined and superficial character of the snakebite
wound has suggested the use of "incision and suction" for the removal
of venom from tissue or the inactivation of venom by the use of rea-
gents deleterious to tissue as well as to venom.

The present paper reports a study of the effect of ethylenediaminetetraacetic acid (EDTA) on the course of tissue damage which
followed the subcutaneous injection of Bothrops atrox and Agkistrodon
piscivorus venom in the rabbit and in the chimpanzee. Evidence is
presented here that infusion of an innocuous quantity of EDTA in the
vicinity of envenomation dramatically diminished the hemorrhage and
necrosis caused by these venoms.

II. MATERIALS AND METHODS

The Agkistrodon piscivorus venom used was part of a pooled
sample obtained from reptiles in the serpentarium of this laboratory.
The venom was extracted into a container at ice bath temperatures.
It was then frozen with a dry ice-acetone mixture and lyopholized.
The lyopholized material was pooled with other venom collected over
the course of two years in the same manner. Bothrops atrox venom
was obtained commercially and it was collected and treated in es-
sentially the same way as the cottonmouth moccasin venom. The
venoms were dissolved in physiological saline and immediately in-
jected.

For injection, the disodium salt of EDTA was used. These so-
lutions were adjusted to pH 7.4 with concentrated NaOH.

In this study, the rabbits employed were 3 to 4 kg New Zealand
males. The chimpanzee used was a 45-pound male, approximately
5 years old. Physical inspection of the chimpanzee revealed no abnormalities except an apparently congenital absence of the second toe of the right side.

Preliminary to inoculation with venom, the chimpanzee was captured in a net, covered with a sheet, and open drop ether was administered. After induction, which was accompanied by the usual violent struggle, the animal was placed in a supine position on a table and open drop ether was continued with the use of a mask.

The animal went into deep 4th plane anesthesia, and into a period of apnea. Immediate intratracheal catheterization, suction, and positive pressure artificial respiration were instituted. Normal respiration resumed after about 5 minutes. Cardiac rate and rhythm and the quality of the heart sounds and pulse were unaffected during the apneic interval. The animal did not become cyanotic. Recovery of consciousness was rapid. Fifteen hours after the administration of venom, the chimpanzee became apneic, and efforts at resuscitation failed.

III. RESULTS AND DISCUSSION

The ability of the Crotalidae venoms to produce tissue necrosis has been attributed in part to their content of proteolytic enzymes (1, 2). Deutsch and Diniz (3) reported that the digestion of hemoglobin by cottonmouth moccasin venom was inhibited completely by EDTA, and Philpot and Deutsch (4) stated that EDTA inhibition of venom proteases was partially reversed by phosphate and serum kochsoft. Philpot (5) reported that sodium bicarbonate reversed EDTA inhibition of venom proteases and that the treatment of venom with EDTA prior to intraperitoneal injection in the mouse did not alter its toxicity.

These reports appeared to have discouraged research on the usefulness of EDTA in snakebite therapy. However, in this laboratory, Goucher and Flowers (6) were not able to demonstrate a complete inhibition of protease activity by EDTA nor a diminution of EDTA inhibition by sodium bicarbonate. Furthermore, in the course of these studies (6) strong suggestive evidence was obtained that the venom constituent which caused visible and rapid tissue erosion could not be identified, as Ohsaka suggested (7), solely with the proteases investigated by Deutsch, Diniz, Philpot, and others. Therefore, a reappraisal was attempted of the value of EDTA as a possible therapeutic agent in the treatment of bites of Agkistrodon piscivorus, the cottonmouth moccasin, and Bothrops atrox, the fer-de-lance.
In contrast to the rabbit, the skin of the hands and feet of the chimpanzee is similar to the human in that it is firmly bound to muscle and to underlying tissue. Thus, it was felt that the effectiveness of EDTA in diminishing injury resulting from envenomation in the chimpanzee would parallel to a large extent the effectiveness of this chelate compound in the treatment of snakebite in man.

A chimpanzee was chosen for the experimentation and 5 mg (0.1 ml) of venom was injected into the pulp of the distal phalanx of both index fingers. The pulps of the distal, middle, and proximal phalanges were infused with approximately 1.0, 2.0, and 3.0 ml, respectively, of EDTA. The quantity of EDTA used was the maximum permitted by the anatomy of the structure and the underlying skin and tissue. An additional 4 - 5 ml of EDTA was infused in and around the first web space. The administration of EDTA was started immediately after envenomation and was completed within 5 minutes of that time. The left index finger was untreated and maintained as a control.

The feet of the chimpanzee were injected in essentially the same manner. Ten mg of venom (0.2 ml) was injected into the dorsal region of the first web space of each foot. The right foot was treated by infiltrating 35 ml of 0.1 M EDTA into the onvenomated area.

About 15 hours after the administration of venom, the chimpanzee died. Physical examination at that time revealed little apparent difference between the two hands. The pulp of the index fingers of both hands was distended and firm to the touch and quite dark in color.

The lower extremities were markedly different in external appearance. The left leg was edematous as far as the knee. The treated right leg showed no signs of swelling. The first web space of both feet showed moderate swelling which extended to the plantar surface of the web in each case.

After physical examination, the skin of the extremities was reflected back and the EDTA treated and control areas were examined and photographed. Even though few external differences distinguished the fingers and hand treated with EDTA from the non-treated, striking differences were evident after reflection of the skin (Figs. 3a and 3b). The untreated finger showed necrosis of the pulp of each phalanx. Hemorrhages were present along the tendon sheaths extending as far up as the carpus. Severe general hemorrhage and necrosis were present in the subcutaneous tissue in the dorsal metacarpal region extending upward to the carpus and distally into the first web space.
Hemorrhage extended up the arm along the path of the lymphatics to the axillary nodes. These glands were swollen and hemorrhagic. The treated finger demonstrated much less necrosis and hemorrhage. The pulp of the distal phalanx of the treated finger was dark red and hemorrhagic. However, the pulp of the middle phalanx showed little discoloration and the pulp of the proximal phalanx appeared normal. Slight hemorrhage appeared in the first web space and the subcutaneous tissue of the dorsal metacarpal area; this was minor compared with the control. A strip of hemorrhage extended up the arm following the path of the lymphatics (Fig. 3b). There was swelling and congestion of the axillary lymph glands.

Upon reflection of the skin, the difference between the EDTA treated and non-treated lower limbs was revealed to be greater than the difference between the upper extremities (Figs. 4a and 4b). In physical examination, as noted above, the control foot and leg were considerably swollen. Reflection of the skin showed that this swelling resulted from massive subcutaneous hemorrhage and edema. Necrosis extended above the knee and along the medial surface of the thigh. The inguinal lymph nodes were entirely necrotized and little normal tissue structure appeared to remain. Hemorrhage was present in the abdominal cavity adjacent to the inguinal area. The mesenteric lymph glands were involved but to a lesser extent than the inguinal lymph glands.

The EDTA treated limb was affected by the venom only slightly in comparison with the control. A hemorrhagic area was apparent at the site of venom injection. Hemorrhage was present along the lymphatics of the lower leg. Several hemorrhagic areas were present in the lymphatics of the thigh. The inguinal lymph nodes and adjacent tissues in the abdominal cavity were normal.

In evaluating the use of EDTA it must be recognized that, in addition to locally toxic components, these crotalid venoms also contain systemically toxic components which are not inactivated by EDTA and for which the indications for antivenins remain unaltered whether or not EDTA is used to minimize local effects.

It is apparent that EDTA will be most effective when used against those crotalid venoms which have locally necrotising components (enzymes) which are inactivated by direct contact with EDTA. The results of this study suggest that the prompt local use of EDTA is helpful in diminishing local edema, hemorrhage, and necrosis following cotton-mouth and fer-de-lance envenomation.
IV. REFERENCES

ARMED FORCES

DISTRIBUTION

Armed Forces Institute of Pathology, Washington, D. C.

Army Attaché, Fleet Post Office Box 79, Navy 100, New York, N. Y.

Chief, Life Sciences Division, Office of the Commanding General, Washington, D. C.

Chief, Medical Gen Lab, 403, Japan, US Army Med Csd, APO 343, San Francisco, Calif.

Chief, Preventive Med Div, Directorate of Professional Serv, SOC, Washington, D. C.

Chief, Research and Development Command, Scientific Information Br, Washington, D. C.

Chief, Brooks Army Medical Center, Med Field Svc School, Ft. Sam Houston, Tex.

CC, 1 Corps Group, APO 355, San Francisco, Calif.

CC, 7th Logistical Command, APO 612, San Francisco, Calif.

CC, US Army Europe, APO 403, New York, N. Y.

CC, US Army Materiel Resarch Lab, Biomechanical Lab, SOC, Washington, D. C.

CC, US Army Medical Research and Development Command, Washington, D. C.

CC, US Army Munitions Command, CBR, Edgewood, Md.

CC, Brooke Army Medical Center, Surgeon Research Unit, Ft. Sam Houston, Tex.

CC, Chemical Corps, Biological Documents Laboratory, Ft. Detrick, Md.

CC, Medical Technical Library, Fitzsimmons General Hospital, Denver, Colo.

CC, Picatinny Arsenal, Dover, N. J.

CC, Quartermaster M&E, USA, Ann Arbor, Mich.

CC, US Army RIC, Washington, D.C.

CC, Missouri Army Medical Research Unit, US Army Aviation Center, Ft. Rocker, Ala.

CC, Mo Army Combat Development Command, Materiel Sec, Ft. Sam Houston, Tex.

CC, US Army Command & General Staff College Library, Ft. Leavenworth, Kan.
ARMED FORCES Cont.

DISTRIBUTION

CO. US Army Environmental Hygiene Agency, Edgewood Arsenal, Md.
CO. US Army Medical Research Unit, Ft. Clayton, Canal Zone.
CO. US Army Medical Research Unit, Inst for Medical Research Kuala Lumpur, Malaysia.
CO. US Army Medical Research Unit, Ft. Patrick, Md.
CO. US Army Medical Research Unit, No. 1, APO 100, New York, N. Y.
CO. US Army Research Inst of Environmental Medicine, Natick Labs, Natick, Mass.
CO. US Army Tropical Research, APO 531, New York, N. Y.

Director of Research, US Army Leadership Human Res Unit Library, Presidio of Monterey, Calif.
Director, US Army-SEATO, Med Research Laboratory, APO 146, San Francisco, Calif.
Director, Walter Reed Army Inst of Res, Walter Reed Army Med Center, Washington, D. C.
Historical Unit, US Army Med Sec, Walter Army Med Center, Washington, D. C.
Office of the Chief Psych & Neuro Consultant, HSO, Washington, D. C.
Office of the Dir, Division of Neuropath, Walter Reed Army Inst of Res, Washington, D. C.
Senior Medical Advisor, Hq HQAC, APO 105, San Francisco, Calif.
Walter Reed Army Inst of Res, Dept of Atomic Casualty Studies, Washington, D. C.

HOSPITALS

CG. Brooks General Hospital Medical Library, Ft. Sam Houston, Tex.
CG. Letterman General Hospital, Presidio of San Francisco, Calif.
CG. Madigan General Hospital, Tacoma, Washington.
CO. Bennett Army Hospital, Ft. Johnson Ft Worth, Fairbanks, Alaska.
CO. DeWitt Army Hospital, Ft. Belvoir, Va.
CO. Doheny Army Hospital, Carlisle Barracks, Pa.
<table>
<thead>
<tr>
<th>CO.</th>
<th>Hospital Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO.</td>
<td>Ireland Army Hospital, Ft. Knox, Ky.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Irvine Army Hospital, Ft. Riley, Kau.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Keesler Army Hospital, Ft. Lee, Va.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Kimbrough Army Hospital, Ft. George C. Wood, Md.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Kirk Army Hospital, Aberdeen Proving Ground, Md.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>McDonald Army Hospital, Ft. Eustis, Va.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Martin Army Hospital, Ft. Benning, Ga.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Maxwell Army Hospital, Ft. Leavenworth, Kau.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Noble Army Hospital, Ft. McClellan, Ala.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Patterson Army Hospital, Ft. Monmouth, N.J.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Wadsworth Army Hospital, Ft. Dux, N.J.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Walter Reed General Hospital, Washington, D.C.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>Womack Army Hospital, Ft. Bragg, N.C.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Benjamin Harrison, Indianapolis, Ind.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Campbell, Ky.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Carson, Colorado.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Dix, N.J.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Hood, Tex.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Jackson, S.C.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Jay, N.Y.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Leonard Wood, Mo.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. MacArthur, Calif.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Monroe, Va.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Ord, Calif.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Polk, La.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Rucker, Ala.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Still, Okla.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Ft. Stewart, Ga.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Camp Lejeune, New Bern, N.C.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Dugway Proving Ground, Utah.</td>
<td></td>
</tr>
<tr>
<td>CO.</td>
<td>US Army Hospital, Redstone Arsenal, Ala.</td>
<td></td>
</tr>
</tbody>
</table>
ARMED FORCES-HOSPITALS Cont.

DISTRIBUTION
CO, US Army Hospital, Sierra Army Depot, Herlong, Calif.
CO, US Army Hospital, White Sands Missile Range, N. Mex.

NAVY
Aviation Medical Acceleration Lab, US Naval Air Development Cent, Johnsville, Pa.
Aviation Psychol Laboratory, US Naval School of Aviation Medicine, Pensacola, Fla.
Bureau of Naval Weapons, Washington, D. C.
Chief, Bureau of Yards and Docks, Washington, D. C.
Chief of Naval Air Technical Training, Glenside, Pa.
Chief of Naval Air Technical Training, US Naval Air Station (75), Memphis, Tenn.
Commander, Naval Missile Center. Technical Library, Point Mugu, Calif.
CO, US Naval Civil Engineer Lab, Port Hueneme, Calif.
CO, US Naval Medical Field Research Lab, Library, Camp Lejeune, N. C.
CO, US Naval Ordnance Test Sta, Station Hospital, China Lake, Calif.
Director, Aerospace Crew Equipment Lab, Naval Air Eng Center, Philadelphia, Pa.
Director Research Division (71) Bureau of Medicine & Surgery, Washington, D. C.
Director, US Naval Research Laboratory, Code 2027, Washington, D. C.
Director of Laboratories NMS, National Naval Medical Center, Bethesda, Md.
Office of Naval Rep Br, Document & Tech Info, Box 29, Navy 100, Fleet PO, New York, N. Y.
Office of Naval Research, Code 345, Washington, D. C.
Office in Charge, Operations Evaluation Group, Washington, D. C.
Special Assistant, Medical Allied Sciences, Washington, D. C.
Technical Reference Library, Naval Med Res Inst, Naval Medical Center, Bethesda, Md.
US Naval Supply Instr & Development Facility, Clothing Textile Div, Brooklyn, N. Y.
US Naval Training Device Center, Code 34, Port Washington, N. Y.
US Navy Medical Neurophysiologic Research Unit, San Diego, Calif.

US AIR FORCE
Air Defense Cen, Ent Air Force Bse, Colo.
Cnds, Rome Air Development Center, Griffiss AFB, N. Y.
Cnds, 6570 ANGAL (NRAD) Wright-Patterson AFB, Ohio
Cnds, 6570 ANGAL (NRAD) Wright-Patterson AFB, Ohio
Cnds, 6570 ANGAL (NRAD) Wright-Patterson AFB, Ohio
Cnds, Wilford Hall, US Air Force Hospital, Lackland AFB, Tex.
ARMED FORCES - US AIR Force

DISTRIBUTION
Hq-AF Office of Scientific Rea. (Tempo Bldg D) Washington, D. C.
Office of the Surgeon, Air Tog Command, Randolph AFB, Tex.
Office of the Surgeon, Hq Strategic Air Command, Offutt AFB, Neb.
School of Aerospace Medicine, Aeronomedical Library, Brooks AFB, Tex.
6571st Aeronomedical Research Laboratory Library, Balcones AFB, N. Mex.

GOVERNMENTAL AGENCIES
Argonne National Laboratory, Technical Information Div, Argonne, Ill.
Armed Forces Radiobiology Res Inst, National Naval Medical Center, Bethesda, Md.
Brookhaven National Lab, Associated Universities Inc. Library, Upton, L. I., N. Y.
Chief, Radiation Br, National Cancer Institute, Bethesda, Md.
Civil Aeronomedical Research Inst, Federal Aviation Agency, Oklahoma City, Okla.
Defense Documentation Center Hq, Cameron Station, Alexandria, Va.
Division of Biology & Medicine, US Atomic Energy Commision. Washington, D. C.
Division of Medical Sciences, National Research Council, Washington, D. C.
Executive Secretary, Committee of Visits, Nat'1 Res Council, Washington, D. C.
National Aeronautics & Space Administration, Washington, D. C.
National Institute of Health, Division of Research Grants, Bethesda, Md.
National Library of Medicine, Bethesda, Md.
Office of Civil Defense, Technical Research Laboratory, Battle Creek, Mich.

OTHER AGENCIES
American Machine Foundry Co, New York, N. Y.
Arctic Health Research Center Library, Anchorage, Alaska.
Central Medical Library, 11-42, The Boeing Co, Seattle, Wash.
Chief, Bioscience Section, Aerospace Division, The Boeing Co, Seattle, Wash.
General Electric Co, Advanced Electric Center Library, Schenectady, N. Y.
General Electric Co, Tempo Library, Santa Barbara, Calif.
OTHER AGENCIES

DISTRIBUTION

IBM Research Center, Engr Science Dept 475, Yorktown Heights, N. Y.
ITT Federal Laboratories, Kemen Factors Group, Nutley, N. J.
King County Hospital, Department of Anesthesiology Library, Brooklyn, N. Y.
Mayo Clinic, Director of Biophysics Division, Rochester, Minn.
McDonnell Aircraft Corp, St. Louis, Mo.
Psychological Abstracts, Washington, D. C.
Rand Corporation, Library, Santa Monica, California.
Rhoen Califoee Corporatoin, Los Angeles, Calif.
Space Tech Laboratories, Subcommittee on Noise, Los Angeles, Calif.
The Boeing Company Library, Military Aircraft Systems Div, Wichita, Kan.
The John Crear Library, Chicago, Ill.
The Research Analysis Corp Library, Bethesda, Md.
Yerkes Laboratories of Primate Biology, Orange Park, Fla.

MEDICAL COLLEGE/SCHOOL LIBRARIES AND DEPTS

Albany Medical College Library, Albany, N. Y.
Boseen Gray School of Medicine, Library, Winston-Salem, N. C.
Brown Univ, Psychology Dept, Consultans, Providence, R. I.
College of Medical Evangelists, Vernier Redcliff Memorial Library, Lone Linda, Calif.
Columbia Univ, Dept of Psychology, New York, N. Y.
Columbia Univ, Medical Library, New York, N. Y.
Cornell Univ, Central Serial Record Department, Ithaca, N. Y.
Cornell Univ, Medical Library, New York, N. Y.
Creston Univ, Medical Pharmacy Library, Omaha, Neb.
Dartmouth College, Dana Biomedical Library, Hanover N. H.
Harvard Univ, Medical Library, Boston, Mass.
Indiana Univ, Medical Center Library, Indianapolis, Ind.
Indiana Univ, School of Medicine Library, Bloomington, Ind.
Johns Hopkins Univ, Belk Medical Library, Baltimore, Md.
Kansas State Univ, Department of Psychology, Manhattan, Kan.
Lone Linda Univ, White Memorial Medical Library, Los Angeles, Calif.
<table>
<thead>
<tr>
<th>Medical College / School Libraries and Depts Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTION</td>
</tr>
<tr>
<td>Marquette Univ. Medical-Dental Library, Milwaukee, Wis.</td>
</tr>
<tr>
<td>Medical College of Virginia, Tompkins-McCaw Library, Richmond, Va.</td>
</tr>
<tr>
<td>New York Academy of Medicine Library, New York, N. Y.</td>
</tr>
<tr>
<td>New York Univ. College of Medicine, Research Division, New York, N. Y.</td>
</tr>
<tr>
<td>New York Univ. Medical Center Library, New York, N. Y.</td>
</tr>
<tr>
<td>Northwestern Univ. Department of Psychology, Evanston, Ill.</td>
</tr>
<tr>
<td>Northwestern Univ. Medical School Library, Chicago, Ill.</td>
</tr>
<tr>
<td>Ohio State Univ. Chemical Abstracts Service, Columbus, Ohio</td>
</tr>
<tr>
<td>Ohio State Univ. Engr Experiment Station, Systems Research Group, Columbus, Ohio</td>
</tr>
<tr>
<td>Ohio State Univ. Psycholinguistics Laboratory, Columbus, Ohio</td>
</tr>
<tr>
<td>Ohio State Univ. Research Center, Aviation Psychology Laboratory, Columbus, Ohio</td>
</tr>
<tr>
<td>Ohio State Univ. School of Optometry, Columbus, Ohio</td>
</tr>
<tr>
<td>Ohio State Univ. Topas Library, Columbus, Ohio</td>
</tr>
<tr>
<td>Purdue Univ. Department of Psychology, Lafayette, Ind.</td>
</tr>
<tr>
<td>Rush Medical College Library, Chicago, Ill.</td>
</tr>
<tr>
<td>St. Louis Univ. Medical School Library, St. Louis, Mo.</td>
</tr>
<tr>
<td>Stanford Univ. Lane Medical Library, Palo Alto, Calif.</td>
</tr>
<tr>
<td>State Univ. of Iowa, College of Medicine Library, Iowa City, Iowa.</td>
</tr>
<tr>
<td>State Univ. of Iowa, Univ Hosp, Dept of Otolaryng & Maxillofacial Surg, Iowa City, Iowa.</td>
</tr>
<tr>
<td>State Univ. of New York, Anesthesiology Department, Brooklyn, N. Y.</td>
</tr>
<tr>
<td>State Univ. of New York, Medical Library, Downtown Medical Center, Brooklyn, N. Y.</td>
</tr>
<tr>
<td>Texas Medical Center Library, Jesse M. James Library Bldg, Houston, Tex.</td>
</tr>
<tr>
<td>Tulane Univ. School of Medicine, New Orleans, La.</td>
</tr>
<tr>
<td>Vanderbilt Univ. Hospital Library, Birmingham, Ala.</td>
</tr>
<tr>
<td>Univ of Alabama, Medical Center Library, Birmingham, Ala.</td>
</tr>
<tr>
<td>Univ of Arkansas, Medical Center Library, Little Rock, Ark.</td>
</tr>
<tr>
<td>Univ of Buffalo, Department of Psychology, Buffalo, N. Y.</td>
</tr>
<tr>
<td>Univ of Buffalo, Health Sciences Library, Buffalo, N. Y.</td>
</tr>
<tr>
<td>Univ of California, Biomedical Library, Los Angeles, Calif.</td>
</tr>
<tr>
<td>Univ of Chicago, Radiation Laboratory, Chicago, Ill.</td>
</tr>
<tr>
<td>Univ of Cincinnati, College of Medicine, Fettering Lab, Cincinnati, Ohio</td>
</tr>
<tr>
<td>Univ of Florida, College of Medicine, Gainesville, Fla.</td>
</tr>
<tr>
<td>Univ of Georgia, Department of Psychology, Athens, Ga.</td>
</tr>
</tbody>
</table>
DISTRIBUTION

Univ of Illinois, Aeromedical Laboratory, Chicago, Ill.
Univ of Illinois, Aviation Psychology Laboratory, Savoy, Ill.
Univ of Illinois, Documents Division Library, Urbana, Ill.
Univ of Illinois, Speech and Hearing Clinic, Champaign, Ill.
Univ of Illinois, Training Research Laboratory, Urbana, Ill.
Univ of Kansas, Clandening Medical Library, Kansas City, Kan.
Univ of Kansas, Psychology Department, Manhattan, Kan.
Univ of Kentucky, Psychology Department, Lexington, Ky.
Univ of Louisville, Medical Library, Louisville, Ky.
Univ of Maryland, Health Sciences Library, Baltimore, Md.
Univ of Miami, School of Medicine, Department of Ophthalmology, Miami, Fla.
Univ of Miami, School of Medicine, Department of Psychology, Coral Gables, Fla.
Univ of Michigan, General Library of Serials & Documents, Ann Arbor, Mich.
Univ of Minnesota, Serials Division Library, Minneapolis, Minn.
Univ of Mississippi, Medical Center, Reclund Medical Library, Jackson, Miss.
Univ of Missouri, Medical Library, Columbia, Mo.
Univ of Nebraska, College of Medicine Library, Omaha, Neb.
Univ of North Carolina, Div of Health Affairs, Memorial Hosp Library, Chapel Hill, N.C.
Univ of Oklahoma, Medical Center Library, Oklahoma City, Okla.
Univ of Oregon, Medical School Library, Portland, Ore.
Univ of Oregon, Department of Dermatology, Portland, Ore.
Univ of Pittsburgh, Department of Psychology and Radiology, Pittsburgh, Pa.
Univ of Pittsburgh, Folk Library, Pittsburgh, Pa.
Univ of Rochester, Atomic Energy Project, Rochester, N. Y.
Univ of Rochester, Department of Psychology, Rochester, N. Y.
Univ of Rochester, School of Medicine & Dentistry, Rochester, N. Y.
Univ of Rochester, Strong Memorial Hospital, Rochester, N. Y.
Univ of Southern California, School of Medicine Library, Los Angeles, Calif.
Univ of Southern California, Serials Library, Los Angeles, Calif.
Univ of South Dakota, Medical Library, Vermillion, S. D.
Univ of Tennessee, Meany Memorial Library, Memphis, Tenn.
Univ of Texas, The Radiology Laboratory, Austin, Tex.
Univ of Texas, Medical Branch Library, Galveston, Tex.
Univ of Texas, Speech & Hearing Clinic, Austin, Tex.
Univ of Utah, Library of Medical Sciences, Salt Lake City, Utah.
Univ of Vermont, College of Medicine Library, Burlington, Vt.
Univ of Virginia, School of Medicine, Biostatistics, Charlottesville, Va.
 MEDICAL COLLEGE/SCHOOL LIBRARIES AND DEPTS Cont.

DISTRIBUTION

Univ of Virginia, Medical Library, Univ Hospital, Charlottesville, Va.
Univ of Virginia, Psychology Department, Charlottesville, Va.
Univ of Washington, Health Sciences Library, Seattle, Wash.
Univ of Wisconsin, Medical School Library, Madison, Wis.
Univ of Wisconsin, Psychology Studies Division, Madison, Wis.
Wayne State Univ, Medical Library, Detroit, Mich.
West Virginia Univ, Medical Center Library, Morgantown, W. Va.
Yale Univ, School of Medicine, Otologic Research Laboratory, New Haven, Conn.
Xavier Univ, Department of Psychology, Cincinnati, Ohio

FOREIGN

Accessions Dept, Nat'l Lending Library for Sci & Tech, Boston SPA, Yorkshire, England
British Army Medical Liaison Officer, British Embassy, Washington, D. C.
British Navy Staff Officer, Benjamin Franklin Ste, Attn: F. P. Ellis, Washington, D. C.
Canadian Liaison Officer, Office of the European Gen, Washington, D. C.
Commander P. H. Keesel, Med En Cheese De La, Murano, Persia, France
Defence Research, Canadian Joint Staff, Washington, D. C.
Dr. Martti J. Korvonen, Dir Physiol Dept, The Inst of Occup Health, Helsinki, Finland
Dr. Joa Vignaud, Dept of Histology, Karolinska Inst, Stockholm, Sweden
Dr. C. H. Wyndham, Dir Appl Physiol Lab, TUL & O.F.S. Chamber of Mining, Johannesburg, S. Africa
Eichil Nagashima Inst Info Svc, The Nat'l Inst of Animal Health, Tokyu, Japan
Escuela de Sanidad Militar, V. Edo Smitts, Attn: Espana G. C. McKee, Armée, Fuerzas Armadas
French Military Attaché, Federal Ministry of Defense, Washington, D. C.
Inst of Clinical Expo Surgery, Attn: Dr. Liska, Prague, Ks, Czechoslovakia
Inst of Expo Med & Surg, Attn: Dr. Emo Sejno, Inst Univ of Montreal, Montreal, Canada
Inst of Physiology, Univ of Pisa, Attn: Gaspare Normoli, Pisa, Italy
Laboratory of General Pathology Therapy, Attn: Prof Zenean N. Baecq, Liège, Belgium
Medical Sciences Library, University of Alberta, Edmonton, Alberta, Canada
Oxford Univ, Department of Human Anatomy, Attn: Dr. A. R. Lind, Oxford, England
Prof D. Bennati, Dir Inst de Clinica Fisiologicz, Montevideo, Uruguay
Prof R. W. Ditchburn, J. J. Thomson Physical Lab, Berks Univ, Berks, England
Prof D. B. MacKay, Univ of N. Staffordshire, Eccle, Staffordshire, England
Prof J. A. F. Stevenson Faculty of Med, Univ of Western Ont, London, Ont, Canada
Royal Air Force Inst of Aviation Med, Attn: Dr. C. C. Dykes, Farnborough, England
Royal Society of Medicine Library, London England
Univ of Western Ontario Med School, Attn: Dr. Allen C. Burton, London, Ont, Canada