NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Biochemical Fuel Cell

Report Nr. 5

Signal Corps Contract Nr. DA 36-039 SC-90878

Department of Army Project Nr. 1G6-22001-A-053-04

FIFTH QUARTERLY PROGRESS REPORT

1 July 1963 -- 30 September 1963

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
Fort Monmouth, New Jersey

MELPAR INC
A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY
3000 ARLINGTON BOULEVARD FALLS CHURCH, VIRGINIA
DDC AVAILABILITY NOTICES

Qualified requestors may obtain copies of this report from Defense Documentation Center.
TABLE OF CONTENTS

LIST OF ILLUSTRATIONS 3
LIST OF TABLES 4
PURPOSE 5
ABSTRACT 6
PUBLICATIONS, LECTURES, REPORTS and CONFERENCES 7
FACTUAL DATA 8
1. INTRODUCTION 8
2. SCREENING AND RATE STUDIES 9
 2.1 Pseudomonas 109, 109, 110, 112 9
 2.2 Clostridium welchii strains (ATCC 9081) and NCIB 6785 12
3. SCALE UP STUDIES 21
 3.1 Cl. welchii (6785) - 10L Fermenter-Growing Cells 21
 3.2 Cl. welchii (6785) - 2.5L - Fermenter-Growing Cells 24
 3.3 Cl. welchii (6785) - 10 L - Fermenter-Resting Cells 24
 3.4 Fermentation Analysis 27
 3.5 Attempted Studies 27
4. PLATE STUDIES 31
5. SUBSTRATES FOR FIELD USE 35
 5.1 Natural Vegetation 35
 5.2 Hydrocarbons 38
6. UTILIZATION OF MICROORGANISM-PRODUCED HYDROGEN IN FUEL CELL 40
7. REFERENCES 41
CONCLUSIONS 43
PROGRAM FOR NEXT INTERVAL 45
IDENTIFICATION OF KEY PERSONNEL 46
APPENDIX A - BIBLIOGRAPHY OF SUBSTRATES COMPOSITION 47
LIST OF ILLUSTRATIONS

Figure

1. Hydrogen Production by Cl. welchii (6785) Glucose - 1%, Gas Tube Study 14
2. Typical Hydrogen Generation Curve 16
3. Hydrogen Production by Cl. welchii (6785) Maltose - 1%, Gas Tube Study 19
4. Hydrogen Production by Cl. welchii (6785) Glucose 1%, Growing Cells - 10L Fermenter 23
5. Hydrogen Production by Cl. welchii (6785) Glucose 1%, Growing Cells - 2.5L Fermenter 26
6. Hydrogen Production by Cl. welchii (6785) Glucose 1%, Resting Cells - 10L Fermenter 29
7. Plate Test for Dehydrogenase Activity - Formate 33
8. Plate Test for Dehydrogenase Activity - Glucose 34
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydrogen Production by Corrosion Associated Pseudomonads</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>No. 108, 109, 110, 112 - Gas Tube Study</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Hydrogenase Determination of Corrosion Associated Pseudomonads</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>No. 108, 109, 110, 112.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Hydrogen Production by Cl. welchii (6785) 1% Glucose - Gas Tube</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Hydrogen Production by Cl. welchii (6785) 1% Maltose - Gas Tube</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Hydrogen Production by Cl. welchii (6785) 1% Glucose - Growing</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Cells - 10L Fermenter</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Hydrogen Production by Cl. welchii (6785) 1% Glucose - Growing</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Cells - 2.5L Fermenter</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Hydrogen Production by Cl. welchii (6785) 1% Glucose - Resting</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Cells - 10.5 Fermenter</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Approximate Sugar Composition of Selected Grains and Grasses</td>
<td>36</td>
</tr>
</tbody>
</table>
PURPOSE

The purpose of this program is to conduct investigations pertinent to biochemical fuel cells. More specifically, those investigations are devoted to:

1. The study of hydrogen generation by various microorganisms. This will include a survey of hydrogen-generating microorganisms, the rates at which they generate gases, and the composition of the gases.

2. The consideration of hydrogen utilization. This will include the consideration of the feasibility of utilizing this microorganism-produced hydrogen either at fuel electrodes in a hydrogen-oxygen fuel cell or directly at bioanodes.

3. The study of proper fuels. This evaluation will include the utilization of such materials as carbohydrates, proteins, and organic acids.

The results of this investigation will be evaluated with respect to the total biochemical fuel cell program.
ABSTRACT

This report describes an experimental and theoretical investigation of hydrogen production by microorganisms.

Screening studies were conducted on strains of *Clostridium welchii* and certain *Pseudomonads* related to metal corrosion in hydrocarbon fuel systems. These new strains produced hydrogen at rates higher than any organisms so far investigated. The gas generating system was scaled up to 10 liters and in this larger system *Clostridium welchii* (6785) produced \(H_2 \) at the rate of 8.2 liters/hr.

The genetic work, designed to develop mutants with outstanding hydrogen generating capability has been initiated with the development of a simple plate technique for selection of desirable mutants.

A literature survey of potential cheap, available substrates suitable for field use has been made with the starch and sugar content of various materials being tabulated. The possibility of using hydrocarbons is considered.

The rate of hydrogen production observed on this program is expressed in terms of fuel cell consumption to make a rough preliminary appraisal of the biochemical fuel cell.
PUBLICATIONS, LECTURES, REPORTS and CONFERENCES

Publications, Lectures

There were no publications or lectures during this quarter.

Reports

The fourth quarterly report on this project was issued during this quarter.6

Conferences

A conference was held at the U.S. Army Electronics Research and Development Laboratory at Ft. Monmouth, New Jersey on July 30, 1963. U. S. Army Electronics Research and Development Laboratory was represented by Dr. H. F. Hunger, Mr. J. Perry, Jr., and Mr. B. Resnic with Dr. C. Daniel in consultation. Melpar, Inc. was represented by Dr. R. T. Foley, Dr. G. C. Blanchard, Dr. P. S. May, and Mr. H. H. Titus. The program was reviewed with emphasis on the statistical design of experiments and statistical treatment of data.
FACTUAL DATA

1. INTRODUCTION

During the first year of this project the hydrogen generating capability of microorganisms was investigated. Initially a survey was conducted on possible biochemical mechanisms by which various genera produced hydrogen, and the literature was searched with respect to microorganisms (catalysts) and substrates (fuels) which could be employed on the hydrogen utilization side of a biochemical fuel cell. Many organisms were screened and rate data accumulated. It was established that rate curves were required to give a valid picture of the capability of the microorganisms.

Technical work done during the fifth quarter was devoted to the continuation of the screening program for new hydrogen evolving organisms, studies on rates of hydrogen evolution, further scale-up studies, investigations of plate techniques for the detection and evaluation of hydrogen producing organisms, and initial surveys of possible natural substrates which would be suitable for field application.

A preliminary calculation was made of the power output of a fuel cell utilizing hydrogen at an output already achieved on this program. The objective was one of preliminary orientation of the biochemical fuel cell in fuel cell technology.
2. SCREENING AND RATE STUDIES

2.1 Pseudomonads No. 108, 109, 110, 112

A group of organisms related to the *Pseudomonas sp.* (G4A) were found to produce gas in studies relating to metal corrosion\(^1\). The organisms, identified as Pseudomonads 108, 109, 110 and 112, were examined for their hydrogen producing capability in gas tube experiments. The inocula were prepared as previously described\(^2\) and tested with 1% glucose in 0.1 M phosphate buffer at pH 7.4. Incubation was at 30°C. The data for these studies are found in table 1. Traces of gas were found in all tubes at four hours. Because of foaming in the tubes, no analyses could be begun until 8 hours when approximately 0.3 ml of gas was evolved. In addition to the gas tube studies manometric measurements of the hydrogenase activity for these organisms were made. The procedures for measuring hydrogen utilization were those of Peck and Gest.\(^3\) The data for these studies are found in table 2. It should be noted that although hydrogen evolution was obtained with all the organisms, cultures No. 109 and 110 were not able to utilize hydrogen readily. These organisms, cultures 109 and 110, will be particularly valuable in studies of the mechanism of hydrogen evolution because two types of hydrogenase containing organisms have been described in the literature. The first type are organisms which can either produce hydrogen from rich substrates or utilize hydrogen gas in the presence of appropriate dyes. The second type are organisms which cannot produce hydrogen from rich substrates but can utilize it. No reports however could be found where organisms can produce hydrogen from rich substrates but lack the ability to utilize hydrogen. The study of the ferredoxin, formic
TABLE 1

Hydrogen Production by Corrosion Associated Pseudomonads No. 108, 109, 110, 112

Glucose 1% 0.1 M Phosphate Buffer, pH 7.4
30°C 2 x 10^10 cells/ml

<table>
<thead>
<tr>
<th>TIME (HOURS)</th>
<th>TOTAL GAS (ml)</th>
<th>HYDROGEN (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>108</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>12</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>24</td>
<td>3.2</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Organism</td>
<td>ml H₂ uptake x 10⁻⁹/30 min/cell</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>E. coli (control)</td>
<td>30.6 38.7 34.8</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>26 17</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>8.7 4.2</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>46.5 44.7</td>
<td></td>
</tr>
</tbody>
</table>
dehydrogenase and hydrogenase levels in all three types of organisms may provide some clues not only to the basic mechanism of hydrogen production but also to methods of increasing hydrogen yields. These studies will be considered in the future.

Of greater interest is the fact that these organisms were isolated from hydrocarbon fuel-water mixtures and have the demonstrated ability to use the hydrocarbons as carbon sources. If these organisms can produce hydrogen from hydrocarbons, an entirely new area of cheap substrates is made available. Further discussion of this subject will be found in Section 5.2.

2.2 Clostridium welchii, Strains (ATCC 9081) and (NCIB 6785)

In the previous report, strains 9856 and 10513 were screened and found to produce hydrogen at the rate of 0.67 ml/hour and 0.9 ml/hour, respectively. During this period, two new strains, ATCC 9081, and NCIB 6785, were screened for hydrogen production by previously described procedures. Strain 9081, with 1% glucose and 1% starch produced only negligible amounts of gas in 24 hours. On the other hand, strain 6785 produced large volumes of hydrogen in 4.5 hours. The rate of gas, hydrogen and acid production during the five hour incubation is shown in table 3 and figure 1. This experiment was set up with five replicates, each to be analyzed during a set interval. One of these replicates, taken at random, was used to determine the change in pH during the incubation. Examination of the data in table 3 shows an apparent decrease in total gas production. This is not an actual decrease, but is explained by the fact that the data are representative of a series of tubes. The column
TABLE 3
Hydrogen Production by *Clostridium welchii* (6785) - 1% Glucose

Buffer: 0.1% PO₄, pH 6.8
Temp.: 37°C
Inoculum 1 ml of 1 x 10¹⁰ cells

<table>
<thead>
<tr>
<th>Tube No.</th>
<th>Time (Hrs)</th>
<th>Total Gas Volume (ml)</th>
<th>Total Hydrogen Volume (ml)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0</td>
<td>1.7</td>
<td>1.63</td>
<td>6.8</td>
</tr>
<tr>
<td>(2)</td>
<td>1.33</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>1.5</td>
<td>2.3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1.66</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>1.83</td>
<td>4.9</td>
<td>4.8</td>
<td>6.69</td>
</tr>
<tr>
<td>(1)</td>
<td>2.66</td>
<td>6.0</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>3.17</td>
<td>6.3</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>3.33</td>
<td>6.5</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>3.5</td>
<td>8.0</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>3.66</td>
<td>8.3</td>
<td>(6.1)</td>
<td>6.58</td>
</tr>
<tr>
<td>(1)</td>
<td>3.83</td>
<td>8.2</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>4.33</td>
<td>8.2</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>4.5</td>
<td>10.0</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>4.66</td>
<td>10.0</td>
<td>4.6</td>
<td>6.56</td>
</tr>
</tbody>
</table>
Figure 1. Hydrogen Production by *Cl. welchii* (6785) Glucose - 1% Gas tube Study
headed tube number indicates the values obtained from a specific tube. It was originally intended that the data from the five tubes be averaged together for the value of a particular interval. But, because of the rapid gas evolution, this was not feasible.

In considering hydrogen evolution the question arises as to how to represent the kinetics accurately and simply. A generalized hydrogen evolution curve is given in figure 2. Most of the experimental runs resemble this curve. In some cases region 1 is absent with gas generation starting immediately. With others there is a drop off in region 3. However, most of the generation curves include the features given in figure 2. Some characteristics of the three regions may be briefly mentioned.

Region 1 is a lag time before gas production begins. This may be attributed to

1. adaptation of microorganism to media
2. alteration of environment, for example, the creation of anaerobicity. *E. coli* has a long lag period until the system became anaerobic.
3. Enzyme induction

This lag period can be altered by

1. change in media
2. control of environment
3. volume of inoculum

It is pertinent that the extent of the lag is not fixed but can be altered by these parameters. Region 2, appears to be the significant part of the
Figure 2. Typical Hydrogen Generation Curve
curve from the standpoint of biochemical fuel cell technology. This part of the curve

1. represents the greatest rate of output of metabolic product, H₂ gas, and presumably the rate which would govern fuel cell application

2. This portion is characteristic of the organism with growing cells.

It is proposed here to use this linear part of the curve to characterize the particular microorganism.

Region 3 is the stationary state and one of reduced activity. The cell concentration is relatively constant or, if toxic materials build up, gas production will drop off. Here the significant point is that the "plateau" can be altered or eliminated by

1. increasing substrate concentration

2. continuous culture

Or, in other words, this region 3 is not an accurate measurement of microorganism capability of producing H₂ for fuel cell application.

Calculated on this basis, the hydrogen generation rate, "k", which is equal to ΔV/Δt, from figure 1 is approximately

\[\frac{\Delta V}{\Delta t} = 6.6 \text{ ml/3 hrs} = 2.2 \text{ ml/hr.} \]

Cl. welchii, strain 6785 was also tested for hydrogen production from starch and maltose. Negligible amounts (less than 0.2 ml) of gas were produced after 24 hours with starch as the substrate. This suggests either insufficient development or absence of the amylases required for starch utilization.

Gas and hydrogen production from maltose did not begin until about 6 hours after inoculation (table 1 and figure 3). The total gas volume rose
TABLE 4

Hydrogen Production by *Clostridium welchii* (6785)

Maltose 1%

Buffer: 0.1 M PO₄, pH 6.8
Inoculum: 1 ml of 1.2 x 10^10 cells
Temp: 37°C

<table>
<thead>
<tr>
<th>Time Hrs.</th>
<th>Total Gas Volume (ml)</th>
<th>Total Hydrogen Volume (ml)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.8</td>
<td>1.2</td>
<td>6.8</td>
</tr>
<tr>
<td>5.75</td>
<td>4.7</td>
<td>3.5</td>
<td>6.55</td>
</tr>
<tr>
<td>9.00</td>
<td>6.2</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>10.0</td>
<td>8.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Figure 3. Hydrogen Production by Clostridium welchii (6785) Maltose - 1% Gas tube Study
steadily as did the percentage of hydrogen. With glucose, however, peak hydrogen levels were obtained in four hours, and dropped off during the fifth hour. Carbon dioxide levels remained very low throughout both series. The pH dropped from pH 6.8 to pH 6.2 in the 24 hour period.

The rate of production of hydrogen was calculated as:

\[
\frac{\Delta V}{\Delta t} = \frac{4.6 \text{ ml}}{6 \text{ hrs}} = 0.77 \text{ ml/hr}.
\]
3. SCALE UP STUDIES

3.1 Clostridium welchii 6785 - 10L Fermenter, Growing Cells

The rapid, and high hydrogen rate obtained with this organism, prompted immediate scale up studies. A ten liter fermenter was prepared containing the same media described in the Third Quarterly Report for culture maintenance and inoculum preparation. This medium was prepared without glucose and sterilized for 60 minutes at 121°C. The glucose was added aseptically as a 50% solution to a final concentration of one percent. The pH after autoclaving and before inoculation was 6.75. An antifoam, SAG 470* was aseptically added to a final concentration of 1:100,000. The inoculum for this fermenter was prepared in Deep Liver Medium. Inoculum size was 100 ml of 8 x 10^9 cells/ml. The uninoculated fermenter, set up as in the Fourth Quarterly Report was deaerated by bubbling helium through a sparger for 8 hours. Following inoculation the fermenter was incubated at 37°C with constant agitation. The data for this experiment are found in table 5 and figure 4.

The rate of hydrogen evolution, using 4 and 6 hour measurements to calculate the curve slope, was 8.2 liters per hour. Total hydrogen produced was 29.14 liters or 54% of the total gas volume of 53.96 liters.

The real efficiency of substrate utilization and product yield cannot be determined unless the substrate remaining at the end of the experiment is known. However, an approximate calculation can be made recognizing that these organisms follow the butyric fermentation and the following equation may be expected to hold.

\[
4 \text{ Glucose} \rightarrow 2 \text{ Acetate} + 3 \text{ Butyrate} + 6\text{CO}_2 + 8\text{H}_2
\]

* Union Carbide Corp., Silicones Div., New York 17, N.Y.
<table>
<thead>
<tr>
<th>Time Hrs.</th>
<th>Total Gas Volume (Liters)</th>
<th>Hydrogen Volume (Liters)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>6.75</td>
</tr>
<tr>
<td>2.00</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>23.5</td>
<td>11.75</td>
<td></td>
</tr>
<tr>
<td>4.33</td>
<td>27.75</td>
<td>13.87</td>
<td>5.05</td>
</tr>
<tr>
<td>4.58</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.83</td>
<td>36.55</td>
<td>17.54</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>43.50</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>5.50</td>
<td>45.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.75</td>
<td>48.0</td>
<td>27.84</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>50.10</td>
<td>28.06</td>
<td>4.85</td>
</tr>
<tr>
<td>6.50</td>
<td>53.80</td>
<td>26.36</td>
<td></td>
</tr>
<tr>
<td>6.75</td>
<td>53.96</td>
<td>29.14</td>
<td>4.70*</td>
</tr>
<tr>
<td>7.00</td>
<td>53.98</td>
<td>28.07</td>
<td>4.85</td>
</tr>
<tr>
<td>7.50</td>
<td>53.90</td>
<td>29.11</td>
<td>5.10**</td>
</tr>
<tr>
<td>7.90</td>
<td>53.90</td>
<td>26.41</td>
<td>5.2</td>
</tr>
</tbody>
</table>

* 25 ml. - NaOH - 20% added

** 10 ml. - NaOH - 20% added
Figure 4. Hydrogen Production by Cl. welchii (8785) Glucose 1% Growing Cells - 10L Fermenter
Assuming that this reaction actually represents the case, the fermentation should return 25.1 liters of hydrogen for 100 gms or 0.56 moles of glucose. The yield obtained in this study was approximately equal to that amount theoretically obtainable. This means that the organisms, under the specified conditions were about 100% efficient in utilizing the available glucose.

What is required now are methods for increasing the amount of enzyme per organism and for maintaining conditions for maximum hydrogen production throughout the fermentation.

3.2 Clostridium welchii 6785, 2.5L Fermenter - Growing Cells

The results from the above experiment utilizing this particular strain of *Clostridium welchii* were checked in a brief experiment. The total volume of the fermenter in this experiment was 2.5 liters. It was hoped that by adding CaCO₃ and increasing the initial pH from 6.8 to 7.1 the effects of acid produced would be reduced. The results did not indicate any improvement. The data for this experiment are found in table 6 and figure 5. As with the previous fermenter gas production did not begin until approximately 4 hours after inoculation. The rate of gas production between 7 and 10 hours was 2.2 liters of hydrogen per hour, which was comparable to the 8.2 liter/hour rate of the previous fermenter when the respective fermenter volumes and inoculums are considered.

3.3 Clostridium welchii (6785)-10L Fermenter-Resting Cells

The employment of resting cells hold an advantage over growing cells. With resting cells, the major requirement is a carbon source. The requirements for a nitrogen source, the procurement of which, under practical field conditions, would constitute a problem, is eliminated. This experiment
TABLE 6
Hydrogen Production by Clostridium Welchii (6785) - 1% Glucose
2.5 Liters + CaCO$_3$ (Fermenter)
Inoculum: 25 ml of 1.1 x 10^{10} cells/ml.
Temp: 37°C

<table>
<thead>
<tr>
<th>Time Hours</th>
<th>Total Gas Volume (Liters)</th>
<th>Total Hydrogen Volume (Liters)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0.03</td>
<td>7.1</td>
</tr>
<tr>
<td>7.00</td>
<td></td>
<td>0.36</td>
<td>7.1</td>
</tr>
<tr>
<td>7.83</td>
<td></td>
<td>1.53</td>
<td>*</td>
</tr>
<tr>
<td>8.08</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.33</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.50</td>
<td>5.35</td>
<td>2.25</td>
<td>*</td>
</tr>
<tr>
<td>10.17</td>
<td>8.65</td>
<td>3.63</td>
<td>*</td>
</tr>
<tr>
<td>13.75</td>
<td>9.00</td>
<td>4.05</td>
<td>5.8</td>
</tr>
</tbody>
</table>

* Sample port obstructed
Figure 5. Hydrogen Production by Cl. welchii (8785) Glucose 1% Growing Cells-2.5L Fermenter
is a direct scale up of the resting cell - tube studies and cannot because of inoculum size, be compared with the 10 liter fermenter using growing cells.

The fermenter was set up as previously described, containing 0.01 M, pH 6.8, phosphate buffer. The inoculum, prepared from 8 liters of Deep Liver Medium was 595 ml of \(1 \times 10^{10}\) cells/ml. The data for this experiment are found in table 7 and figure 6. An accurate scale-up from the gas tubes would indicate an inoculum size of 667 ml of \(1 \times 10^{10}\) cells/l. The inoculum size used in the 10 liter resting cell fermenter was calculated on the basis of one ml. of \(1 \times 10^{10}\) cells/15 ml substrate. This expands to 667 ml of \(1 \times 10^{10}\) cells for 10 liters. The inoculum used represented 90% of this. The maximum hydrogen production rate was 0.66 liters/hour, measured between 2.5 and 5.5 hours incubation. If the gas tube rate of 2.2 ml \(H_2\)/hour were multiplied by the appropriate scale up factor, a rate of 1.46 liters/hour would be expected. Considering the lower inoculation, the volume obtained was only 50% of that anticipated from the direct proportional scale up.

The pH range during the tube study was pH 6.8 - 6.56. The range for the fermenter was pH 6.75 - 6.0. Further studies to determine whether maximum substrate conversion can be or was obtained are required. To compare 10 liter fermenters of growing cells and resting cells, the cell concentration at the time of maximum hydrogen production will be used in the resting cell study. The cells from the growing fermenter will be concentrated, washed and used to inoculate the resting cell study.

3.4 Fermentation Analysis

To properly establish the efficiency of an organism-substrate system in fermenters or in other scale-up studies, certain analyses must be carried
TABLE 7
Hydrogen Production by *Clostridium welchii* (6785) - 1% Glucose
Resting Cells 10L Fermenter
Inoculum: 595 ml of 1×10^{10} cells/ml
Temp: 37°C

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Total Gas Volume (Liters)</th>
<th>Hydrogen Volume (Liters)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>6.75</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>3.01</td>
<td>.60</td>
<td>6.6</td>
</tr>
<tr>
<td>3.00</td>
<td>4.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>5.75</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>5.95</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>6.75</td>
<td>2.30</td>
<td>6.55</td>
</tr>
<tr>
<td>5.00</td>
<td>7.35</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>7.80</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>8.30</td>
<td>3.57</td>
<td>6.35</td>
</tr>
<tr>
<td>8.00</td>
<td>10.00</td>
<td>3.70</td>
<td>6.15</td>
</tr>
<tr>
<td>20.50</td>
<td>15.44</td>
<td></td>
<td>6.0</td>
</tr>
</tbody>
</table>
Figure 6. Hydrogen Production by *Cl. welchii* (6785) Glucose 1% Resting Cells - 10L Fermenter
out. It is required to establish the fermentation balance and accurately determine the relation of products formed to the amount of substrate used. The *Clostridium* fermentation follows the butyric fermentation pathway and to establish the complete balance analyses for H₂ and CO₂, butyric, acetic and lactic acids and ethanol would be required. Initially, it is planned to analyze for glucose utilization and hydrogen production. Other intermediates will be considered if found necessary. Methods for analysis will be those suggested by Neish and other suitable sources.

Errors can be expected from several sources. These include:

a. that a large portion of the carbon in the substrate is converted to cell material
b. other components in the medium contribute to product formation
c. CO₂ is fixed by the cells.

3.5 Attempted Studies

Rate and statistical studies on *Clostridium* butyricum, *Clostridium* butylicum and *Pseudomonas* sp. (GluA) were planned, but not completed. Previous data on the *Clostridia* showed gas production no earlier than 18 to 40 hours. It was expected that methods to improve this output would be developed. These methods were not forthcoming. Continued effort will be directed toward achieving improved gas production.

Similar studies as well as scale up studies were scheduled for *Pseudomonas* sp. (GluA) and *E. coli*. It was found that a physiological alteration had occurred in these two organisms that affected their hydrogen producing ability. Studies with these organisms will resume when the original strains can be recovered.
4. PLATE STUDIES

The assumption has been made that in spite of diligent screening tests it is unlikely that microorganisms will be found with sufficient hydrogen generating ability. For this reason it is intended to use genetic techniques to increase the amount of hydrogen produced per cell of microorganism. The feasibility of this approach has been demonstrated by the classic work with penicillin. The original strain of the penicillin organism, Penicillium notatum, which Fleming isolated in 1929, produced only 2-3 units of penicillin per milliliter in small flasks. By isolation, selection, mutation and kinetic studies it was possible to increase production to 6-10,000 units/ml in large fermentation tanks. This represented a $10^3 - 10^4$ improvement factor.

A general plan to develop desirable mutants is as follows:

(a) Treatment of the culture with a mutagenic agent (U.V. light, X-ray or chemical agent) to produce a 95-99% kill.
(b) Agar plating of the treated suspension.
(c) Selection of the mutant colony from the agar.
(d) Isolation of the mutant in pure culture.

The procedure can be repeated. Obviously a critical phase of the whole process is to find the proper technique of selecting the mutant. Attention has been directed to this problem during this quarter. E. coli was grown, anaerobically, in a liquid medium in one case with 0.25% glucose as the substrate and the other with 1% formate as the substrate. Following incubation at 37°C for 18 hours, 10 fold serial dilutions in sterile buffer, pH 7.4, were prepared. One ml of each dilution was added to each of four plates. The inoculum was thoroughly mixed with 25-30 ml of trypticase soy agar (BBL) with 1% formate added. Duplicates of each
dilution were incubated aerobically and anaerobically at 37°C for 18 hours. Examination of the plates following incubation showed numerous gas bubbles within the agar. Representatives of the plates may be found in figures 7, 8.

The description of the plates is as follows:

A - formate grown inoculum - formate agar
B - formate grown inoculum - formate agar
C - glucose grown inoculum - formate agar
D - glucose grown inoculum - formate agar

By measuring the size of the bubble, it should be possible to detect mutant colonies with greater hydrogen producing capability than the parent strain.

In the case of the Clostridia, not normally considered able to utilize formate, it may be possible to detect mutants by their ability to produce gas on other substrates, i.e., glucose.

It is encouraging that such a simple technique should be suitable for selection of variants. Further studies with differing agar concentrations, other solidifying media and overlay techniques should better define a more exact procedure.

Other approaches may be used in collaboration with these techniques. These will include correlation of dehydrogenase activity, particularly formic dehydrogenase, with hydrogen production and possible adaptation of the above data to a visual readout using redox dyes such as benzyl viologen.
Figure 7 Plate Test for Dehydrogenase Activity - FORMATE
Figure 8. Plate Test for Dehydrogenase Activity - GLUCOSE
5. SUBSTRATES FOR FIELD USE

5.1 Natural Vegetation

The possibility of the ultimate employment of the biochemical fuel cell in the field would be greatly enhanced if cheap available substrates could be utilized. In this connotation a cheap, available substrate implies a source of carbohydrate which can be found at the site in a form that can be metabolized by microorganisms to the desired product (hydrogen gas).

Under most field conditions, some sort of vegetation such as grasses, seeds, grains, roots and leaves can be expected to be present. Chemically, these materials are composed of cellulose, lignin, hemicelluloses, starches, and sugars. From the standpoint of rapid utilization by microbes, only sugars and starches appear to merit extensive consideration.

Before these raw materials can be considered as substrates, the concentration of fermentable components must be established. The available literature on this subject is scarce and the reports that are available do not usually indicate the concentration of carbohydrates or fermentable components. What is listed in the approximate analysis of these products are agricultural and feed terms. The analyses are based on methods which are official with the Association of Official Agricultural Chemists (A.O.A.C.)

Several large symposia have been conducted (10, 11, 12) under the aegis of the National Academy of Sciences. The published proceedings contain the most up-to-date surveys of the approximate composition of the various feed compounds, many of which can be considered for field use in the biochemical fuel cell. In table 8, a list of several grains and grasses and the approximate content of the readily fermentable components is given. The limited
TABLE 8
APPROXIMATE SUGAR COMPOSITION OF SELECTED GRAINS AND GRASSES

<table>
<thead>
<tr>
<th>Grains</th>
<th>Starch (% Range)</th>
<th>Total (% Range)</th>
<th>Reducing Sugars</th>
<th>Acid Hydrolyzable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>Glucose Fructose Pentose Sucrose Maltose</td>
</tr>
<tr>
<td>Barley</td>
<td>60.1-67.1</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>22.6-73.7</td>
<td>1.5-9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oats</td>
<td>38.7-62.3</td>
<td>1.2-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td>63.8-66.1</td>
<td>0.3-4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorghum</td>
<td>66.9-73.3</td>
<td>0.8-3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>6.17-69.3</td>
<td>2.7-4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry Roughage

<table>
<thead>
<tr>
<th>Grains</th>
<th>Starch (% Range)</th>
<th>Total (% Range)</th>
<th>Reducing Sugars</th>
<th>Acid Hydrolyzable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa, All Forms 1.6-4.1</td>
<td>3.2-10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brome Hay, Smooth</td>
<td></td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover, All Forms</td>
<td></td>
<td>2.4-8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchard Grass</td>
<td>1.1</td>
<td>5.1-5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorghum, All Forms</td>
<td>2.8</td>
<td>0.6-3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timothy</td>
<td></td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green Roughages

<table>
<thead>
<tr>
<th>Grains</th>
<th>Starch (% Range)</th>
<th>Total (% Range)</th>
<th>Reducing Sugars</th>
<th>Acid Hydrolyzable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa Forage</td>
<td>4.7-10.5</td>
<td></td>
<td>3.22</td>
<td>4.11-5.15</td>
</tr>
<tr>
<td>Blue Grass Forage</td>
<td>5.0-16.3</td>
<td></td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>Blue Stem Forage</td>
<td>1.3-5.4</td>
<td></td>
<td>2.51</td>
<td>8.17-8.25</td>
</tr>
<tr>
<td>Brome Forage</td>
<td>2.8-13.6</td>
<td></td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>Canarygrass Forage</td>
<td>5.1-10.3</td>
<td></td>
<td>2.84</td>
<td>4.43-5.65</td>
</tr>
<tr>
<td>Clover, Forage</td>
<td>3.1</td>
<td></td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>Fescue, Forage</td>
<td>3.2-14.9</td>
<td></td>
<td>3.74</td>
<td>4.51-7.36</td>
</tr>
<tr>
<td>Oatgrass, Forage</td>
<td>5.6-16.9</td>
<td></td>
<td>3.00</td>
<td>7.81-9.65</td>
</tr>
</tbody>
</table>
TABLE 8
APPROXIMATE SUGAR COMPOSITION OF SELECTED GRAINS AND GRASSES (Continued)*

<table>
<thead>
<tr>
<th>Grains</th>
<th>Starch (% Range)</th>
<th>Total (% Range)</th>
<th>Reducing Sugars</th>
<th>Acid Hydrolyzable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Glucose</td>
<td>Fructose</td>
</tr>
<tr>
<td>Redtop, Forage</td>
<td>4.6-15.6</td>
<td>1.85-2.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorghum, Fodder</td>
<td>3.2-9.1</td>
<td>2.14-2.88</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>Timothy Forage</td>
<td>2.4-9.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchard Grass</td>
<td>4.11-4.51</td>
<td></td>
<td>2.00</td>
<td>1.81</td>
</tr>
<tr>
<td>Forage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryegrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Adapted from References 10, 13, 14.
coverage of the table is not due to selection, but to the small amount of information available in the literature. From the table it can be seen that starch is the predominating fermentable component in the grains. Dry grasses (dry roughages) contain small amounts of starch and varying concentrations of fermentable sugars. Green cut grasses (green roughage) contain virtually no starch but have a variety of sugars. It appears that, of the fermentable sugars present in these materials, sucrose predominates over the reducing sugars.

A partial bibliography of the literature in the area of the composition of field crops and forages is appended to this report. The literature of the U.S. Department of Agriculture and the state departments of agriculture, agricultural colleges and experiment stations is now being collected and will be collated.

The questions regarding the potential of utilizing field vegetation, whether or not plants can actually be considered as substrate material, cannot be answered until some experimentation is completed. But some speculation is possible. The starches in grain materials, such as corn and corn products, have been used, but some pretreatment, such as chopping, shredding or grinding might be required. How the natural flora of these materials would affect the desired microbial activity would have to be established. These questions must be answered before the use of these materials can be fully appraised.

5.2 Hydrocarbons

Up to now consideration of cheap substrates has been directed primarily to vegetation which may be found in the field—substrates which are sugar or
polysaccharide in nature. Comparable consideration should be also given to hydrocarbons as substrates for organisms capable of producing hydrogen. If hydrogen in these compounds can be liberated by these organisms further study is warranted. Preliminary studies with organisms known to be able to metabolize hydrocarbons has been conducted. These organisms, classed as Pseudomonads, produced gas on glucose under the experimental conditions used in Table 1. Whether gas, especially hydrogen can be liberated by microorganisms growing in fuel is not known but experiments are in progress which should answer this question. The results from this study will be reported in the future.
6. UTILIZATION OF MICROORGANISM-PRODUCED HYDROGEN IN FUEL CELL

It is desirable to appraise the rate of hydrogen production achieved on this project in terms of operating a hydrogen-oxygen fuel cell. This is done here in a preliminary way, making what are admittedly some gross assumptions. However, this analysis reveals the order of magnitude of improvements that must be made.

The assumption is made that a one watt unit will operate at 0.6 volt and 1.67 amp, which would require 6000 coulombs, 0.031 moles or about 0.7 liters of H_2 per hour.

Hydrogen generation rates of 8.2 liter/hr have been obtained in the 10 liter fermenter. It is assumed that 0.7 liters would be produced in a fermenter occupying 0.85 liters, or 0.03 cubic feet, and weighing 1.9 lbs.

The unit would thus approximate a rating of about 0.5 watts/lb. or 33 watts/cubic ft.

The hydrogen generation rate should be increased by a factor of 100-1000 to make such systems of interest to the fuel cell field. This order of improvement appears feasible and following are suggested ways in which this may be accomplished.

1. Hydrogen output per organism increases - an improvement of 10-100 may be anticipated here - see section 4.

2. Increased cell content per volume of fermenter - an improvement of 10 fold appears feasible here.

3. Optimize conditions, e.g. temperature, pH, substrate concentration - an improvement of 10 fold appears reasonable. Within the scope of what has been achieved in the laboratory in recent years an increased output of 10^4 over present rates of hydrogen generation appears feasible.
7. REFERENCES

5. Mortensen, L. E., Personal Communication

11. Composition of Concentrate By-Product Feed Stuffs, NAS/NRC 449, 1956
12. Joint U.S.A. and Canadian Tables of Feed Composition, NAS/NRC 659, 1959

CONCLUSIONS

The following conclusions may be drawn from the data in this report.

(1) Further screening studies with various Clostridia species and strains should be conducted on new substrates in the form of rate studies with pH determination. The pH control is not only required to maintain hydrogen output but also is required to achieve valid comparisons between test systems.

Species of the Clostridia have produced more hydrogen than other organisms to date. It would be desirable to concentrate on these organisms in future studies. The future studies should be concerned with obtaining a nonpathogenic strain with high hydrogen producing potential and with methods for improving current strains.

(2) *Clostridium welchii* (6785) produced hydrogen at the rate of 8.2 liters/hours in active fermentation. Resting cells of this strain do not produce as much hydrogen as growing cells. Also large scale studies with resting cells show that only 50% of the anticipated level was realized in the scaling up.

Further evaluations with this organism should be conducted with active fermentations with sucrose as a substrate because sucrose constitutes a major portion of the fermentable sugars found in grass cuttings. While it appears that theoretical biological yield of hydrogen has been achieved, adjustment of the conditions of the experiment and substrate concentration may serve to increase yields of hydrogen. But, these studies should be conducted in fermenters so that actual conversion efficiencies can be measured.

(3) A plate technique has been developed which should make it possible to detect cells with greater hydrogen producing ability than the parent cells. Further studies to establish exact experimental conditions are required.
4. Preliminary examination of the literature pertaining to the composition of substrates available in the field shows that, of those available, grasses and forages appear to possess the greatest potential. However, the percentages of fermentable components is low and this would necessitate the use of large amounts of raw material to achieve a desired substrate concentration. A major problem that enters here, beside the handling of this material, is the contamination from other soil flora. The question of whether this will render this source useless must await the results of further study.

In the same area of consideration, that of inexpensive and available substrates, the hydrocarbons should be considered. There are organisms which can accommodate these materials as energy sources and they should be studied.

5. An improvement of hydrogen generation by a factor of 100-1000 is required before microorganism-generated hydrogen will be of significance in fuel cell technology. However, certain possible ways of accomplishing the required improvement are visualized.
PROGRAM FOR THE NEXT INTERVAL

Work during the next quarter will be conducted primarily in the following areas.

1. Analysis of the glucose utilization efficiency during fermentation with Cl. welchii (6785) and studies on increasing hydrogen production as discussed in Section 3.4.

2. Measurement of hydrogen production by new Cl. welchii isolates obtained from active, human infections.

3. Consideration of nonpathogenic Clostridia species.

4. Improvement of the agar plate technique described in this report by using different media (i.e., silica gel).

5. Investigation of the correlation of formic dehydrogenase activity with hydrogen production.

IDENTIFICATION OF KEY PERSONNEL

The following personnel performed the approximate number of man-hours during the fourth quarter of the project.

Robert T. Foley

68 hours

Project scientist with background in electrochemistry and surface chemistry.

B.S. (Chemistry) University of Massachusetts
M.S. (Physical Chemistry) Lafayette College
(Graduate Work) New York University
Ph. D. (Physical Chemistry) University of Texas

Gordon C. Blanchard

8 hours

Senior microbiologist with background in heterotrophic and autotrophic metabolism.

B.A. (Zoology) University of Vermont
M.S. (Biochemistry) University of Vermont
Ph. D. (Microbiology) Syracuse University

Paul S. May

216 hours

Microbiologist with background in waste conversion and sewage decomposition by fecal microorganisms.

B.S. (Biology) City College of New York
M.S. (Industrial Microbiology) Syracuse University
D.Sc. (Microbiology) Philadelphia College of Pharmacy & Science

Harry H. Titus

60 hours

Mathematician with background in statistical design of experiments

B. S. (Mathematics) Hampden-Sydney College, Computer Programming Courses - International Business Machines

Technician, Microbiology

518 hours

Technician, Analytical Chemistry

41 hours
APPENDIX A - BIBLIOGRAPHY OF SUBSTRATE COMPOSITION
APPENDIX A - BIBLIOGRAPHY OF
SUBSTRATES COMPOSITION

27. Fagan, T. W., "The Nutritive Value of Grasses, as Pasture Hay and Aftermath, as Shown by Their Chemical Composition," University College of Wales, Advisory Bull. 2, pp. 3-23, 1927.

DISTRIBUTION LIST
FIFTH QUARTERLY REPORT
CONTRACT NO. DA 36-039 SC-90878

Commanding Officer
U.S.A. Electronics Research and
Development Laboratories
Fort Monmouth, N.J. 07703
ATTN: Logistics Division
(MARKED FOR PROJECT ENGINEER)
ATTN: SELRA/P
ATTN: Dir of Research/Engineering
ATTN: File Unit #1
ATTN: Technical Document Center

MARKED FOR PROJECT ENGINEER
ATTN: SELRA/P
ATTN: Dir of Research/Engineering
ATTN: File Unit #1
ATTN: Technical Document Center

OASD (R&D), Rm 3E1065
ATTN: Technical Library
The Pentagon
Washington 25, D.C.

Chief of Research and Development
OCS, Department of the Army
Washington 25, D.C.

Commanding General
U.S.A. Electronics Command
ATTN: AMSEL-AD
Fort Monmouth, N.J. 07703

Director
U.S. Naval Research Laboratory
ATTN: Code 2027
Washington, D.C. 20390

Commanding Officer and Director
U.S. Naval Electronics Laboratory
San Diego 52, California

Air Force Cambridge Research Laboratories
ATTN: CRZC
L. G. Hanscom Field
Bedford, Massachusetts

Rome Air Development Center
ATTN: RAALD
Griffiss Air Force Base, N.Y.

Commanding Officer
Harry Diamond Laboratories
ATTN: Library, Room 211, Hldg. 92
Connecticut Ave & Van Ness St., N.W.
Washington 25, D.C.

Commanding Officer
U.S.A. Electronics Material Support Agency
ATTN: SELMS-ADJ
Fort Monmouth, N.J. 07703

Deputy President
U.S.A. Security Agency Board
Arlington Hall Station
Arlington 12, Virginia

Commander
Defense Documentation Center
ATTN: TISIA
Cameron Station, Building 5
Alexandria, Virginia 22314

Chief
U.S.A. Security Agency
Arlington Hall Station
Arlington 12, Virginia

Commander
Aeronautical Systems Division
ATTN: ASNXRR
Wright-Patterson Air Force Base
Ohio

Air Force Cambridge Research Laboratories
ATTN: CRXL-R
L. G. Hanscom Field
Bedford, Massachusetts

Headquarters
U.S.A. Material Command
Research and Development Directorate
ATTN: AMCRD-DE-MO
Washington 25, D.C.
DISTRIBUTION LIST
FIFTH QUARTERLY REPORT
CONTRACT NO. DA 36-039 SC-90878

Commanding General
U.S.A. Electronics Research and Development Activity
ATTN: Technical Library
Fort Huachuca, Arizona 85613 (1)

Commanding General
U.S.A. Combat Development Command
ATTN: CDCMR-E
Fort Belvoir, Virginia (1)

Commanding Officer
U.S.A. Communications and Electronics
Combat Development Agency
Fort Huachuca, Arizona 85613 (1)

Director
Fort Monmouth Office
U.S.A. Communications and Electronics
Combat Development Agency
Fort Monmouth, N.J. 07703 (1)

AFSC Scientific/Technical Liaison Office
U.S.A. Electronics Research and Development Laboratories
Fort Monmouth, N.J. 07703 (1)

Power Information Center
Moore School Building
200 South Thirty-Third Street
Philadelphia 4, Pennsylvania (1)

Dr. Ralph Roberts
Head, Power Branch
Office of Naval Research (Code 429)
Department of the Navy
Washington 25, D.C. (1)

Mr. George W. Sherman
Aeronautical Systems Division
ATTN: ASRMFP
Wright-Patterson Air Force Base
Ohio (1)

Commanding General
U.S.A. Electronics Command
ATTN: AMSEL-RE-A
Fort Monmouth, N.J. 07703 (1)

Scientific and Technical Information Facility
ATTN: NASA Representative
P.O. Box 5700
Bethesda, Maryland 20014 (1)

Air Force Systems Command
Scientific/Technical Liaison Office
U.S. Naval Air Development Center
Johnsville, Pennsylvania (1)

Marine Corps Liaison Office
U.S.A. Electronics Research and Development Laboratories
Fort Monmouth, N.J. 07703 (1)

USAELRDL Liaison Office
Rome Air Development Center
ATTN: RAOL
Griffiss Air Force Base, N.Y. 13401 (1)

Dr. Sidney J. Magram
Physical Sciences Division
Army Research Office
3045 Columbia Pike
Arlington, Virginia (1)

Mr. Bernard B. Rosenbaum
Bureau of Ships (Code 340)
Department of the Navy
Washington 25, D.C. (1)

Dr. John H. Huth
Advanced Research Projects Agency
The Pentagon, Room 3E157
Washington 25, D.C. (1)
DISTRIBUTION LIST
FIFTH QUARTERLY REPORT
CONTRACT NO. DA 36-039 SC-90878

Lt. Col. John H. Anderson
Advanced Space Reaction Branch (SNAP)
Division of Reactor Development
U.S. Atomic Energy Commission
Washington 25, D.C.

Mr. Walter C. Scott
National Aeronautics and Space Administration
1512 H Street, N.W.
Washington 25, D.C.

Institute for Defense Analysis
1666 Connecticut Avenue, N.W.
Washington 25, D.C.
ATTN: Dr. Szego and Mr. Hamilton

American Oil Company
Research and Development Department
Whiting Laboratories
2500 New York Avenue
P.O. Box 131
Whiting, Indiana

United Aircraft Corporation
Pratt and Whitney Aircraft Division
East Hartford 8, Connecticut
ATTN: Mr. W. H. Podolny

Engelhard Industries, Inc.
Military Service Department
113 Astor Street
Newark 2, New Jersey
ATTN: Mr. V. A. Porlenza

General Electric Company
Direct Energy Conversion Operations
Lynn, Massachusetts
ATTN: Dr. E. Oster

University of California
Chemistry Department
Berkeley, California
ATTN: Dr. C. Tobias

Esso Research and Engineering Company
Products Research Division
P.O. Box 215
Linden, New Jersey
ATTN: Dr. M. A. Weiss

Union Carbide Corporation
Parma Research Center
P.O. Box 6116
Parma 30, Ohio
ATTN: Dr. C. E. Winters

Texas Research Associates Company
1701 Guadalupe Street
Austin 1, Texas
ATTN: Dr. R. M. Hard

Electrochimica Corporation
1140 O'Brien Drive
Menlo Park, California
ATTN: Dr. M. Eisenberg

University of Pennsylvania
John Harrison Laboratory of Chemistry
Philadelphia 4, Pennsylvania
ATTN: Dr. J. Bockris

Allis-Chalmers Manufacturing Company
Research Division
P.O. Box 512
Milwaukee, Wisconsin
ATTN: Dr. P. Joyner

Dr. H. P. Gregor
150 Lakeview Avenue
Leonia, New Jersey

Allison Division
General Motors Corporation
P.O. Box 894
Indianapolis 6, Indiana
ATTN: Dr. R. E. Henderson
DISTRIBUTION LIST
FIFTH QUARTERLY REPORT
CONTRACT NO. DA 36-039 SC-90878

Westinghouse Electric Corporation
13 West Front Street
Red Bank, New Jersey
ATTN: Mr. C. Arthur

Magna Corporation
R&D Laboratories
1001 South East Street
Anaheim, California
ATTN: Dr. Silverman

Chief
N. Power Branch
NOCOM
USAERDL
ATTN: Mr. D. Looft

Texas Instruments, Incorporated
Energy Research Laboratory
P. O. Box 5474
Dallas 22, Texas
ATTN: Dr. C. G. Peattie

Aeronutronic Division
Ford Motor Company
Ford Road
Newport Beach, California
ATTN: F. M. Hlack, Acquisition Librarian
UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells

UNCLASSIFIED

1. Biochemical Fuel Cell
2. Fuel Cell - Biochemical
3. Hydrogen Production - Microorganism source
4. Microorganisms - utilization for fuel cells