NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
July 1963

DERIVATION OF EQUATIONS FOR CONVERTING FROM GEODETIC COORDINATES TO GEOCENTRIC COORDINATES

by F. T. Heuring
July 1963

Derivation Of Equations For Converting From Geodetic Coordinates To Geocentric Coordinates

by F. T. Heuring
TABLE OF CONTENTS

I. NOTATION 1

II. DERIVATION 2

References 12
DERIVATION OF EQUATIONS FOR CONVERTING FROM GEODETIC
COORDINATES TO GEOCENTRIC COORDINATES

F. T. Heuring

In the A.P.L. orbit computation programs, the TRANET Tracking
Stations are specified in a geocentric coordinate system, whereas,
particular positions (such as a TRANET Tracking Site) over the Earth are
expressed initially in a geodetic coordinate system. In order to acquire
geocentric coordinates from a given set of geodetic coordinates a set of
transformation equations were derived.

Section I will define the notation, and Section II will embody
the derivation of the transformation equations.

I. Notation*

Let:

$\phi_i = \text{geodetic latitude of } i\text{-th tracking site in its local datum},$

$\lambda_i = \text{geodetic longitude of } i\text{-th tracking site in its local datum},$

$h_i = \text{elevation of } i\text{-th tracking site above (below) geoid},$

$H_i = \text{geoidal height of } i\text{-th tracking site in its local datum},$

$\xi_i = \text{deflection in meridian at } i\text{-th tracking site},$

$\eta_i = \text{deflection in prime vertical at } i\text{-th tracking site},$

$a_i = \text{equatorial radius of the local datum spheroid of the } i\text{-th}
\text{tracking site, scaled by } R_0,$

$b_i = \text{polar radius of the local datum spheroid on the } i\text{-th tracking}
\text{site, scaled by } R_0.$

*See References 1 and 2 for definition of geodetic, datum, etc.
\[x_{G_i}', y_{G_i}', z_{G_i}' = \text{cartesian coordinates, scaled by } R_0, \text{ on } i-th \text{ datum spheroid as specified by tracking site } \varphi_G' \text{ and } \lambda_G', (\text{cartesian origin identical to } i-th \text{ datum origin}), \]

\[x_{H_i}', y_{H_i}', z_{H_i}' = \text{cartesian coordinates, scaled by } R_0, \text{ on geoid as specified by tracking site } H, (\text{cartesian origin identical to } i-th \text{ datum origin}), \]

\[x_{E_i}', y_{E_i}', z_{E_i}' = \text{cartesian coordinates, scaled by } R_0, \text{ of tracking site on earth's surface, (cartesian origin identical to } i-th \text{ datum origin}), \]

\[\Delta x_i, \Delta y_i, \Delta z_i = \text{center of spheroid of the } i-th \text{ tracking site datum in the A.P.L. Datum, scaled by } R_0, \]

\[\zeta_{G_i} = (x_{G_i}'^2 + y_{G_i}'^2)^{\frac{1}{2}} \]

\[R_0 = \text{equatorial radius of A.P.L. Datum spheroid,} \]

\[x_{c_i}', y_{c_i}', z_{c_i}' = \text{cartesian coordinates of tracking site in A.P.L. geocentric coordinates, scaled by } R_0, \]

\[r_{c_i} = \text{radius of } i-th \text{ tracking site in A.P.L. geocentric coordinates, scaled by } R_0, \]

\[\varphi_{c_i} = \text{latitude of } i-th \text{ tracking site in A.P.L. geocentric coordinates,} \]

\[\lambda_{c_i} = \text{longitude of } i-th \text{ tracking site in A.P.L. geocentric coordinates,} \]

\[\zeta_{c_i} = (x_{c_i}'^2 + y_{c_i}'^2)^{\frac{1}{2}}. \]

II. Derivation

A. Given \(\varphi_{G_i}, \lambda_{G_i}, a_i \) and \(b_i \), conversion to \(x_{G_i}', y_{G_i}', z_{G_i}' \) and \(\zeta_{G_i} \) is as follows. Using the equation for an ellipse

\[\frac{\zeta_{G_i}^2}{a_i^2} + \frac{z_{G_i}^2}{b_i^2} = 1, \]
in particular the ellipse is a meridional plane of the i-th datum; differentiate z_{G_1} with respect to ζ_{G_1}

$$\frac{\partial z_{G_1}}{\partial \zeta_{G_1}} = -\frac{b_1^2}{a_1^2} \frac{\zeta_{G_1}}{z_{G_1}}.$$

But (see Figure 1A),

$$\frac{\partial z_{G_1}}{\partial \zeta_{G_1}} = -\frac{1}{\tan \varphi_{G_1}}$$

from which by algebraic manipulation (Figure 1B),

$$\zeta_{G_1} = \frac{a_1}{(1 + (\frac{b_1}{a_1})^2 \tan^2 \varphi_{G_1})^{\frac{1}{2}}},$$

after which,

$$\begin{align*}
x_{G_1} &= \zeta_{G_1} \cos \lambda_{G_1} \\
y_{G_1} &= \zeta_{G_1} \sin \lambda_{G_1} \\
z_{G_1} &= \zeta_{G_1} \frac{b_1^2}{a_1^2} \tan \varphi_{G_1}.
\end{align*}$$
Figure 1A Meridian Plane in i-th Datum

\[
\frac{1}{\tan \phi_{G_i}} = \cot \phi_{G_i} = \tan \epsilon = \frac{\partial z_{G_i}}{\partial \zeta_{G_i}}
\]
Figure 1B
Pictorial view of geodetic \((\phi_{G_i}, \lambda_{G_i})\), cartesian "geodetic" \((x_{G_i}, y_{G_i}, z_{G_i})\) and cartesian "geoidal" \((x_{H_i}, y_{H_i}, z_{H_i})\) coordinates.
B. Compute x_{H_i}, y_{H_i}, z_{H_i} (Figure 1B). H_i is an extension of the normal to the spheroid, consequently,

$$
\begin{align*}
 x_{H_i} &= x_{G_i} + H_i \cos \varphi_{G_i} \cos \lambda_{G_i} \\
 y_{H_i} &= y_{G_i} + H_i \cos \varphi_{G_i} \sin \lambda_{G_i} \\
 z_{H_i} &= z_{G_i} + H_i \sin \varphi_{G_i}.
\end{align*}
$$

C. Compute x_{E_i}, y_{E_i}, z_{E_i} by considering h_i, ξ_i and η_i (see Figure 2).

$$
\begin{align*}
 x_{E_i} &= x_{H_i} + h_i \cos (\varphi_{G_i} + \xi_i) \cos (\lambda_{G_i} + \Delta\lambda_i) \\
 y_{E_i} &= y_{H_i} + h_i \cos (\varphi_{G_i} + \xi_i) \sin (\lambda_{G_i} + \Delta\lambda_i) \\
 z_{E_i} &= z_{H_i} + h_i \sin (\varphi_{G_i} + \xi_i).
\end{align*}
$$

From law of cosines for spherical triangles (Figure 2), $\Delta\lambda_i$ can be approximated.

$$
\cos \eta_i = \sin^2 (\varphi_{G_i} + \xi_i) \cos \Delta\lambda_i = \frac{\cos \eta_i - \sin^2 (\varphi_{G_i} + \xi_i)}{\cos^2 (\varphi_{G_i} + \xi_i)} \quad (4)
$$

(Restrict $\Delta\lambda_i$ to have the same sign as η_i.)
Figure 2
Diagram of the deflections of the vertical (ξ_i and η_i) and the associated quantities necessary to acquire the cartesian coordinates on the geoid from earth surface cartesian coordinates.
D. Let us simplify by expanding small quantities. Assume:

\[\xi_1, \eta_1 \leq 30'' \text{ (of arc)}; \]

and

\[1^\circ < |\varphi_G| < 89^\circ; \]

and only take quantities of magnitude \(\xi_1, \eta_1 \) and \(\Delta \lambda \) to second order.

\[\cos \xi_1 = 1 - \frac{\xi_1^2}{2}, \sin \xi_1 = \xi_1 \]

\[\cos \eta_1 = 1 - \frac{\eta_1^2}{2}, \sin \eta_1 = \eta_1 \]

\[\cos \Delta \lambda = 1 - \frac{\Delta \lambda}{2} \]

thus,

\[\cos^2 (\varphi_G + \xi_1) = \left[\cos \varphi_G (1 - \frac{\xi_1^2}{2}) - \xi_1 \sin \varphi_G \right]^2 \]

\[= (1 - \frac{\xi_1^2}{2})^2 \cos^2 \varphi_G + \xi_1^2 \sin^2 \varphi_G \]

\[- 2 \xi_1 (1 - \frac{\xi_1^2}{2}) \sin \varphi_G \cos \varphi_G \]

\[= \cos^2 \varphi_G - \xi_1 \sin 2\varphi_G - \xi_1^2 \cos 2\varphi_G + \text{3rd order} \quad (5) \]

From a personal communication with Mr. L. Simmons, U.S.C. and G.S., deflection of 30'' exist but are in general uncommon.
\[
\sin^2 (\varphi_G + \xi_1) = \left[\sin \varphi_G \left(1 - \frac{\xi_1^2}{2} \right) + \xi_1 \cos \varphi_G \right]^2
\]

\[
= \left(1 - \frac{\xi_1^2}{2} \right) \sin^2 \varphi_G + \xi_1^2 \cos^2 \varphi_G + 2 \xi_1 \sin \varphi_G \cos \varphi_G
\]

\[
= \sin^2 \varphi_G + \xi_1 \sin 2 \varphi_G + \xi_1^2 \cos 2 \varphi_G + \text{3rd order}
\]

\[\tag{6}\]

\[
\cos (\varphi_G + \xi_1) = \cos \varphi_G \left(1 - \frac{\xi_1^2}{2} \right) - \xi_1 \sin \varphi_G = \cos \varphi_G - \xi_1 \sin \varphi_G - \frac{\xi_1^2}{2} \cos \varphi_G
\]

\[\tag{7}\]

\[
\sin (\varphi_G + \xi_1) = \sin \varphi_G \left(1 - \frac{\xi_1^2}{2} \right) + \xi_1 \cos \varphi_G = \sin \varphi_G + \xi_1 \cos \varphi_G - \frac{\xi_1^2}{2} \sin \varphi_G
\]

\[\tag{8}\]

from equation (4):

\[
1 - \frac{\eta_1^2}{2} = \sin^2 (\varphi_G + \xi_1) + \cos^2 (\varphi_G + \xi_1) \left[1 - \frac{\Delta \lambda_1^2}{2} \right],
\]

\[= 1 - \frac{\Delta \lambda_1^2}{2} \cos^2 (\varphi_G + \xi_1),\]

\[
\Delta \lambda_1 = \frac{\eta_1}{\cos (\varphi_G + \xi_1)}.
\]
and using equation (7),

$$
\Delta \lambda_i = \frac{\eta_i}{\cos \varphi_{G_i}} \left[\frac{1}{1 - \xi_i \tan \varphi_{G_i} - \frac{\xi_i^2}{2}} \right] = \frac{\eta_i}{\cos \varphi_{G_i}} \left[1 + \xi_i \tan \varphi_{G_i} + \frac{\xi_i^2}{2} + \frac{\xi_i^2}{2} \tan^2 \varphi_{G_i} \right]
$$

$$
= \eta_i \sec \varphi_{G_i} \left[1 + \xi_i \tan \varphi_{G_i} \right] + 3\text{rd order.}
$$

Further,

$$
\sin (\lambda_{G_i} + \Delta \lambda_i) = \sin \lambda_{G_i} \left(1 - \frac{\eta_i^2 \sec^2 \varphi_{G_i}}{2} \right) + \cos \varphi_{G_i} \eta_i \sec \varphi_{G_i} \left(1 + \xi_i \tan \varphi_{G_i} \right)
$$

$$
= \sin \lambda_{G_i} + \eta_i \frac{\cos \lambda_{G_i}}{\cos \varphi_{G_i}} + \frac{\eta_i}{\cos^2 \varphi_{G_i}} \left[\xi_i \cos \lambda_{G_i} \sin \varphi_{G_i} - \frac{\eta_i}{2} \sin \lambda_{G_i} \right] + 3\text{rd order}
$$

$$
\cos (\lambda_{G_i} + \Delta \lambda_i) = \cos \lambda_{G_i} - \sin \lambda_{G_i} \sec \varphi_{G_i} \left(1 + \xi_i \tan \varphi_{G_i} \right) \eta_i - \frac{\eta_i^2}{2} \sec^2 \varphi_{G_i} \cos \lambda_{G_i}
$$

$$
= \cos \lambda_{G_i} - \eta_i \frac{\sin \lambda_{G_i}}{\cos \varphi_{G_i}} - \frac{\eta_i}{\cos^2 \varphi_{G_i}} \left[\xi_i \sin \lambda_{G_i} \sin \varphi_{G_i} + \frac{\eta_i}{2} \cos \lambda_{G_i} \right] + 3\text{rd order.}
$$
E. Using equations (1), (2), (3), (7), (8), (9), (10), and (11), \(x_{E_1} \), \(y_{E_1} \) and \(z_{E_1} \) can be expressed as functions of the geodetic inputs \((\phi_{G_1}, \lambda_{G_1}, h_1, H_1, \eta_1, \xi_1, a_1, \) and \(b_1) \).

\[
\begin{align*}
x_{E_1} &= \zeta_{G_1} \cos \lambda_{G_1} + H_1 \cos \phi_{G_1} \cos \lambda_{G_1} + h_1 \left(\cos \phi_{G_1} - \xi_1 \sin \phi_{G_1} \right) \left(\cos \lambda_{G_1} - \eta_1 \frac{\sin \lambda_{G_1}}{\cos \phi_{G_1}} \right) \\
&= \zeta_{G_1} \cos \lambda_{G_1} + (H_1 + h_1) \cos \phi_{G_1} \cos \lambda_{G_1} + h_1 \left(\xi_1 \sin \phi_{G_1} \cos \lambda_{G_1} + \eta_1 \sin \lambda_{G_1} \right) + 3\text{rd order.}
\end{align*}
\]

\[
\begin{align*}
y_{E_1} &= \zeta_{G_1} \sin \lambda_{G_1} + H_1 \cos \phi_{G_1} \sin \lambda_{G_1} + h_1 \left(\cos \phi_{G_1} - \xi_1 \sin \phi_{G_1} \right) \left(\sin \lambda_{G_1} + \eta_1 \frac{\cos \lambda_{G_1}}{\cos \phi_{G_1}} \right) \\
&= \zeta_{G_1} \sin \lambda_{G_1} + (H_1 + h_1) \cos \phi_{G_1} \sin \lambda_{G_1} - h_1 \left(\xi_1 \sin \phi_{G_1} \sin \lambda_{G_1} - \eta_1 \cos \lambda_{G_1} \right) + 3\text{rd order.}
\end{align*}
\]

\[
\begin{align*}
z_{E_1} &= \zeta_{G_1} \frac{b_1^2}{a_1^2} \tan \phi_{G_1} + H_1 \sin \phi_{G_1} + h_1 \left(\sin \phi_{G_1} + \xi_1 \cos \phi_{G_1} \right) \\
&= \zeta_{G_1} \frac{b_1^2}{a_1^2} \tan \phi_{G_1} + (H_1 + h_1) \sin \phi_{G_1} + h_1 \xi_1 \cos \phi_{G_1} + 3\text{rd order.}
\end{align*}
\]
F. The cartesian coordinates in the A.P.L. geocentric system are:

\[x_{ci} = x_{E1} + \Delta x_i \]
\[y_{ci} = y_{E1} + \Delta y_i \]
\[z_{ci} = z_{E1} + \Delta z_i \]

where \(\Delta x_i, \Delta y_i, \) and \(\Delta z_i \) are of second order, at best.

H. The cylindrical coordinates \((\zeta_{ci}, \lambda_{ci}, \zeta_{ci})\) in the A.P.L. geocentric system are:

\[z_{ci} = \zeta_{G1} \frac{b_1^2}{2} \tan \varphi_{G1} + (H_i + h_i) \sin \varphi_{G1} + h_i \xi_1 \cos \varphi_{G1} + \Delta z_i + 3\text{rd order} \quad (13) \]
\[\zeta_{ci}^2 = x_{ci}^2 + y_{ci}^2 \]

After some algebraic manipulation and using the binominal expansion

\[\zeta_{ci} = \zeta_{G1} + (H_i + h_i) \cos \varphi_{G1} + \Delta x_i \cos \lambda_{G1} + \Delta y_i \sin \lambda_{G1} - h_i \xi_1 \sin \varphi_{G1} \]
\[+ (H_i + h_i) \cos \varphi_{G1} \cdot \frac{1}{\zeta_{G1}} \left(\Delta x_i \cos \lambda_{G1} + \Delta y_i \sin \lambda_{G1} \right) + 3\text{rd order} \quad (14) \]

+ 3rd order.
In the derivation of λ_{G_1}, no previously derived quantities were used as was the case with ζ_{c_1}. From Figure 3A, h_i is considered to be zero, thus the angle σ can be approximated as follows:

$$\varepsilon_1 + \varepsilon_2 = \Delta x_i \sin \lambda_{G_1}$$

$$\varepsilon_2 = \Delta y_i \cos \lambda_{G_1}$$

where ε_1 and ε_2 are normal to ζ_{G_1}, and

$$\varepsilon_1 = \Delta x_i \sin \lambda_{G_1} - \Delta y_i \cos \lambda_{G_1}.$$

Since ε_1 considered, at best, second order,

$$\sigma = \frac{\varepsilon_1}{\zeta_{G_1}}$$

and from the geometry,

$$\lambda_{c_1} = \lambda_{G_1} - \sigma = \lambda_{G_1} - \frac{1}{\zeta_{G_1}} (\Delta x_i \sin \lambda_{G_1} - \Delta y_i \cos \lambda_{G_1}) \quad (15)$$

Upon including the station elevation (h_i) and deflection in the prime vertical (η_i) (see Figure 3B)

$$\tau = h_i \sin \eta_i = h_i \eta_i \quad (\eta_i \text{ is of magnitude } \pm 30'' \text{ of arc})$$
Figure 3A Diagram showing means of determining λ_c when $h_i = 0$.
Diagram showing determination of λ_c when $h_1 \neq 0$.

Figure 3B
and it follows similarly

$$\rho = \frac{\tau}{\zeta G_1} = \frac{h_1 \eta_1}{\zeta G_1}$$

From equation (15) and Figure 3B,

$$\lambda_{c_i} = \lambda_{G_1} + \rho - \sigma$$

$$= \lambda_{G_1} + \frac{h_1 \eta_1}{\zeta G_1} - \frac{1}{\zeta G_1} [\Delta x_1 \sin (\lambda_{G_1} + \rho) - \Delta y_1 \cos (\lambda_{G_1} + \rho)]$$

Assuming $\cos \rho = 1 - \frac{\rho^2}{2}$, $\sin \rho = \rho$,

$$\lambda_{c_i} = \lambda_{G_1} + \frac{1}{\zeta G_1} [h_1 \eta_1 - (\Delta x_1 \sin \lambda_{G_1} - \Delta y_1 \cos \lambda_{G_1})] + 3rd \, order. \quad (16)$$

Equations (13), (14), and (16) are the cylindrical coordinates z_{c_i}, ζ_{c_i}, λ_{c_i} in the A.P.L. Earth fixed coordinate system expressed as a function of the geodetic coordinates of a tracking station.
References

Initial distribution of this document has been made in accordance with a list on file in the Technical Reports Group of The Johns Hopkins University, Applied Physics Laboratory.