NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
CONVEX PROGRAMMING—DUAL ALGORITHM

by

Pierre Huard
CONVEX PROGRAMMING - DUAL ALGORITHM

by

Pierre Huard*
Operations Research Center
University of California, Berkeley

16 July 1963

This research has been partially supported by the Office of Naval Research under Contract Nonr-222(83) with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.

*The author was a visiting research engineer from the Electricite de France in Paris.
ABSTRACT

This work is the result of a study of G. B. Dantzig's [1] algorithm for nonlinear programs where the objective as well as inequality constraints are convex functions. This algorithm consists of finding an equivalent "generalized linear program" where the standard procedure for determining the candidate to enter the basis is replaced by an auxiliary nonlinear program where the nonlinear constraints of the original problem have disappeared. The algorithm described in this paper is very close to Dantzig's algorithm, but the relations between the two algorithms are not yet well established.
I. Definitions-Properties

The initial program

PROBLEM 1:

Find x such that \(\phi_0(x) \) is maximum
subject to \(\phi_i(x) \geq 0 \) \(i = 1, 2, \ldots, m \).

where \(\phi_0 \) and \(\phi_i \) are continuously differentiable concave functions in x.

We will call \(\phi(x) \) or \(\phi \) the vector whose elements are \(\phi_i(x) \).

We assume that the optimal value of \(\phi_0(x) \) is finite.

Let \(\pi = (\pi_1, \pi_2, \ldots, \pi_m) \) be a row vector.

Consider the following program:

PROBLEM 3:

Find x such that \(\psi(x, \pi) \) is maximum

where \(\psi(x, \pi) = \pi \phi(x) + \phi_0(x) \) and \(\pi \) is given (\(\pi \geq 0 \)).

Let \(z(\pi) \) be an optimal solution of Problem 3.

Assumption 1: \(z(\pi) \) is continuous in \(\pi \) and finite for all \(\pi \geq 0 \).

Let

\[
\Theta(\pi) = \pi \phi(z) + \phi_0(z).
\]

THEOREM 1: The gradient of \(\Theta(\pi) \) in the \(\pi \)-space is equal to \(\phi(z) \).

PROOF: At the optimum, \(z(\pi) \), of Problem 3 we have

\[
\left(\frac{\partial \psi(x, \pi)}{\partial x} \right) = 0 \quad \text{(Maximum with respect to } x) \]

so, at \(x = z(\pi) \)
THEOREM 2: \(\Theta(\pi) = \psi(x, \pi) \) is a convex function in \(\pi \).

PROOF: Let \(\lambda' \) and \(\lambda'' \) be two scalars such that \(\lambda' + \lambda'' = 1 \), and \(\lambda', \lambda'' \geq 0 \). Let \(\pi', \pi'' \geq 0 \) be two values of \(\pi \); and \(z', z'' \) the corresponding optimal values for Problem 3. Then,

\[
\Theta'' - \Theta' = \pi'' \phi'' + \phi'' - (\pi' \phi + \phi') \\
\geq \pi'' \phi' + \phi'' - (\pi' \phi' + \phi'') \\
\text{because } \Theta(\pi'') = \max_{x} \{ \psi(x, \pi'') \} \\
= (\pi'' - \pi') \phi' \\
\]

or

\[
\Theta'' - \Theta' \geq (\pi'' - \pi') \left[\frac{d\Theta}{d\pi} \right]_{\pi = \pi'} \quad \text{by Theorem 1}
\]

Figure 1

i.e., the variation of \(\Theta(\pi) \) is always greater than or equal to that tangent plane, which characterizes a convex function.
Let the following program be:

PROBLEM 2: [Find $\pi \geq 0$ such that $\theta(\pi)$ is minimum]

Assumption 2: There exists a finite optimal solution $\hat{\pi}$ to Problem 2.

THEOREM 3: The optimal value of the objective function of Problem 2 is equal to $\phi_o(\hat{x})$ the optimal value of the objective function of Problem 1.

PROOF: A necessary condition of optimality for Problem 2 is

$$(5) \quad \pi \frac{d\theta}{d\pi} = 0 \quad \text{(Kuhn-Tucker condition)}$$

It follows that

$$(6) \quad \nabla \phi(\hat{\pi}) = 0,$$

and

$$(7) \quad \theta(\hat{\pi}) = \phi_o(\hat{x}).$$

II. The Algorithm

We replace the initial Problem 1 by Problem 2 of which the optimal solution yields the optimal solution for Problem 1.

Problem 2 is the minimization of a convex function, $\theta(\pi)$, where the variable π is subjected to being nonnegative. The expression of the function $\theta(\pi)$ is not given, but one can compute its value for all π, using the auxiliary program Problem 3. This auxiliary program gives us also the value, $\phi(z)$ of the gradient of $\theta(\pi)$ at any given π.

We can solve Problem 2 as follows:
(1) Start with $\pi = \pi^k \geq 0$.

Compute $Q(\pi^k)$ and $\phi(z(\pi^k))$ using Problem 3.

Determine the vector $g(\pi^k)$ defined by

$$g_i = \begin{cases} \phi_i[z(\pi^k)] & \text{if } \phi_i < 0 \text{ and/or if } \pi_i > 0, \\ 0 & \text{otherwise (i.e., if } \phi_i > 0 \text{ and } \pi_i = 0). \end{cases}$$

(8)

In order to simplify the notation g will be considered in some cases to be a row vector and in some other cases to be a column vector.

(2) On the half-line $\pi = \pi^k + \lambda g(\pi^k)$, $\lambda \geq 0$, determine a new point $\pi^{k'} \geq 0$ at a finite distance corresponding to $\lambda = \lambda' \geq 0$ and satisfying the condition

$$0 < \lambda' \leq \min_i \left\{ \left| \frac{-\pi_i^k}{g_i} \right| : g_i < 0 \right\}$$

(9)

(3) Compute $Q(\pi^{k'})$ using Problem 3.

If $Q(\pi^{k'}) < Q(\pi^k)$, go to 1, replacing π^k by $\pi^{k+1} = \pi^{k'}$.

If $Q(\pi^{k'}) \geq Q(\pi^k)$ and if π^k is not the optimal solution, we have necessarily

$$(\pi^{k'} - \pi^k) \cdot \phi(\pi^k) < 0$$

(10)

$$(\pi^{k'} - \pi^k) \cdot \phi(\pi^{k'}) > 0.$$
Determine then a new point

\[(11) \quad \pi^{m,k} = \pi^k + (1/2)\lambda_k g(\pi^k)\]

i.e., the middle point of \((\pi^k, \pi^{',k})\) or another intermediate point, taking into account the respective slopes at \(\pi^k\) and \(\pi^{',k}\).

Then repeat (11) with \(\pi^{m,k}\) instead of \(\pi^{',k}\), and so on until we obtain (in a finite number of steps) a point \(\pi^{k+1}\) such that

\[(12) \quad \phi(\pi^{k+1}) < \phi(\pi^k) .\]

Remark: To prove the convergence, we have to perform the subdivision of \(\lambda_k\) once more, which yields a point \(\pi^{*,k+1}\), and work with the better of \(\pi^{*,k+1}\) and \(\pi^{k+1}\). In order to simplify the notations, we will call the selected point \(\pi^{k+1}\), and \(\lambda_k\) the value of \(\lambda\) for that point.

4. Go to 1 with \(\pi^{k+1}\) instead of \(\pi^k\).
III. Convergence

We can show easily (see 3 of the algorithm), that the variation of $\phi(\pi)$, at each step k, is strictly negative, except if $g(\pi^k) = 0$ which implies that $\phi[z(\pi^k)] \geq 0$ and $\pi^k \cdot \phi[z(\pi^k)] = 0$. In these conditions, we achieved the optimum of Problem 2.

Since the minimum of $\phi(\pi)$, $\pi \geq 0$ is equal to $\phi_0(\pi)$, optimum of Problem 1 which is assumed to be finite, the sequence of points π^k gives a sequence of convergent values $\phi(\pi^k)$ because we have a lower bound for these values. Moreover, we will make the following assumption:

Assumption 3: The second partial derivatives of $\phi(\pi)$ are bounded above in all directions by a scalar $D > 0$.

One can show that:

\begin{align}
\tag{13} & \phi(\pi^k) - \phi(\pi^{k+1}) \geq (1/2) \, \lambda_k \, |g_k|^2 \quad \text{if } \lambda_k \leq 1/D, \\
\tag{14} & \phi(\pi^k) - \phi(\pi^{k+1}) \geq 1/4 \, |g_k|^2 \quad \text{if } \lambda_k \geq 1/D
\end{align}

where $|g|$ = modulus of g, letting $g_k^k = g(\pi^k)$.

Since λ_k is either determined by (g) or equal to a fraction of the first value λ_k' that we tried at the beginning of each step which can be taken equal to a constant h, for all k.

We obtain for all λ_k such that $0 \leq \lambda_k \leq h$.

\begin{align}
\tag{15} & \phi(\pi^k) - \phi(\pi^{k+1}) \geq K \lambda_k \, |g_k|^2, \\
\text{with } K = \min \{1/2, 1/4hD\}
\end{align}

from which we deduce that the series $\sum_k \lambda_k \, |g_k|^2$ converges and that
For each step k, by the convexity of $\theta(\pi)$ we have

$$0 \leq \theta(\pi^k) - \theta(\hat{\pi}) \leq (\pi^k - \pi) \cdot \phi^k$$

where $\hat{\pi}$ is an optimal solution of Problem 2.

By definition of ϕ^k:

$$0 \leq \theta(\pi^k) - \theta(\hat{\pi}) \leq (\pi^k - \hat{\pi}) \cdot \phi^k$$

where ϕ_N is a vector containing only the components of ϕ such that $\phi_1 > 0$, $\pi_1 = 0$. Then

$$0 \leq \theta(\pi^k) - \theta(\hat{\pi}) \leq (\pi^k - \hat{\pi}) \cdot \phi^k$$

and finally

$$0 \leq \theta(\pi^k) - \theta(\hat{\pi}) \leq (\pi^k - \hat{\pi}) \cdot \phi^k$$

and in particular

$$0 \leq \theta(\pi^k) - \theta(\hat{\pi}) \leq (\pi^k - \hat{\pi}) \cdot \phi^k$$

which means that the vector $(\pi^k - \hat{\pi})$ has an acute angle with $(\hat{\pi} - \pi)$

It follows

$$\|\pi^k - \pi^{k+1}\|^2 \leq \|\hat{\pi} - \pi^k\|^2 + \|\pi^{k+1} - \pi^k\|^2 =$$

$$\|\hat{\pi} - \pi^k\|^2 + \lambda_k^2 \|g^k\|^2$$

Summing with respect to k:

$$\|\hat{\pi} - \pi^k\|^2 \leq \|\pi - \pi^0\|^2 + \sum_{k'=0}^{k} \lambda_{k'}^2 \cdot \|g^{k'}\|^2$$
Since \(\sum_{k'=0}^{k} \lambda_{k'} |g^{k'}|^2 \) converges and \(\lambda_k \leq h \), the series
\[
\sum_{k'=0}^{k} \lambda_{k'} |g^{k'}|^2
\]
converges when \(k \to \infty \), from which we obtain an upper bound for the distance
\[
|\pi^k - \pi|.
\]

We have to consider two cases:

CASE 1: \(g^k \to 0 \), at least for a finite or infinite subsequence of \(k \). Then the corresponding subsequence

\[
(24) \quad g^k (\pi^k - \pi) \to 0 \quad \text{and} \quad \theta(\pi^k - \theta(\pi))
\]

For these conditions, the algorithm converges to an optimal solution.

CASE 2: \(g^k \) does not converge to zero for any subsequence of \(k \). This means \(g^k \) is different from zero for all \(k \), and moreover \(|g^k| \) has a lower bound \(> 0 \). For these conditions, the convergence of the series \(\sum \lambda_k |g^k|^2 \) implies the convergence of the series
\[
\sum \lambda_k |g^k| \quad \text{and} \quad \sum \lambda_k
\]
and therefore implies the convergence of the point \(\pi^k \) which was defined by

\[
(25) \quad \pi^k = \sum_{k'=0}^{k} \lambda_{k'} g^{k'}
\]

Let \(\pi \) be the limit of \(\pi^k \), and let \(g \) be the limiting value of \(g^k \) at that point. (This limit exists by Assumption 1.)

The convergence of the series \(\sum \lambda^k \) implies that \(\lambda_k \to 0 \) and by Assumption 3, \(\lambda_k \) is determined by the relation (9) for \(K \) sufficiently large. There exists at least one index \(i \) and two subsequences \(K' \) and \(K'' \)
corresponding to the steps k such that,

\[
\begin{bmatrix}
\epsilon_1^{k'} < 0 ; & \phi_1^{k'} > 0 \\
\eta_1^{k'} > 0 & \\
\lambda_k = \frac{\pi_1}{-g_1}
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
\epsilon_1^{k''} > 0 ; & \phi_1^{k''} < 0 \\
\eta_1^{k''} > 0 \\
\pi_1 = 0
\end{bmatrix}
\]

So $\phi_1^{k'}$ and $\phi_1^{k''}$ go to zero, and we have by the fact that the second order derivatives of ϕ have an upper bound, D,

\[
-k_1^{k'} < D \cdot \pi_1^{k'}
\]

If j is the index of a nonzero component of g, we have for k' sufficiently large,

\[
\lambda_k, g_j^{k'} = -\frac{\pi_1}{g_1^{k'}} g_j^{k'} \geq \frac{1}{D} |g_j^{k'}| \geq \frac{1}{D} |g_j| > 0.
\]

We have here a contradiction with the fact that π^k converges to π which implies that $\lambda_k, g_j^{k'} \to 0$. Thus the components of g must be zero, which contradicts the assumption of a possible second case.

IV. REMARKS

1) **Nature of the Algorithm**: Our initial program is

\[
\text{Problem 1} \quad \begin{cases}
\text{Find } x \text{ such that } \phi_0(x) \text{ is maximum} \\
\text{subject to } \phi_1(x) \geq 0
\end{cases}
\]
Let us consider the dual [2] of Problem 1:

\[(D) \begin{align*}
 \text{Find } \pi \geq 0 \text{ such that } & \psi(x,\pi) \text{ is minimum} \\
 \text{subject to } & \frac{\partial}{\partial x_j} \psi(x,\pi) = 0 \quad j = 1,2,\ldots,n.
\end{align*}\]

We see that solving the auxiliary program Problem 5 for a given nonnegative \(\pi \), is equivalent to finding a feasible solution \((x,\pi)\) for the dual program \((D)\). Problem 2, which minimizes \(\Theta(\pi) \) solves \((D)\) by a discrete gradient method.

2) On Assumption 1: Assumption 1 seems at first very restrictive, nevertheless, if the optimum of Problem 1 is finite, one can always remove the constraints \(\phi_1(x) \) and the functional \(\phi_0(x) \) far enough from the origin in order to have \(z(\pi) \) at a finite distance. For instance, this modification can consist in joining the surfaces \(y_1 = \phi_1(x) \) and \(y_0 = \phi_0(x) \) to the vertical cylinder \(|x| = \text{constant}\) if the constant is chosen large enough. This would reduce the search for an optimum of Problem 3 to the interior of a sphere, \((x) = \text{constant} \). One could imagine other compact spaces.

The continuity of \(z(\pi) \) for \(\pi \) can be achieved, e.g., by assuming the optimum of Problem 3 is always unique. This is the case if \(\psi(x,\pi) \) is strictly concave in \(x \), i.e., if one at least of the functions \(\phi_1(x) \) or \(\phi_0(x) \) is strictly concave.
REFERENCES

BASIC DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS

Head, Logistics and Mathematical Statistics Branch
Office of Naval Research
Washington 25, D. C.

C. O., ONR Office
Navy No. 100, Box 39, F. P. O.
New York, New York

ASTIA Document Service Center
Building No. 5
Cameron Station
Alexandria, Virginia

Institute for Defense Analyses
Communications Research Division
von Neumann Hall
Princeton, New Jersey

Technical Information Officer
Naval Research Laboratory
Washington 25, D. C.

C. O., ONR Branch Office
1030 East Green Street
Pasadena 1, California
ATTN: Dr. A. R. Lauffer

Bureau of Supplies and Accounts
Code OW, Department of the Navy
Washington 25, D. C.

Professor Russell Ackoff
Operations Research Group
Case Institute of Technology
Cleveland 6, Ohio

Professor Kenneth J. Arrow
Serra House, Stanford University
Stanford, California

Professor L. W. Cohen
Mathematics Department
University of Maryland
College Park, Maryland

Professor Donald Eckman
Director, Systems Research Center
Case Institute of Technology
Cleveland, Ohio

Professor Lawrence E. Fouraker
Graduate School of Business
Harvard University
Cambridge, Massachusetts

Professor David Gale
Department of Mathematics
Brown University
Providence 12, Rhode Island

Dr. Murray Geisler
The RAND Corporation
1700 Main Street
Santa Monica, California

Professor L. Hurwicz
School of Business Administration
University of Minnesota
Minneapolis 14, Minnesota

Dr. James R. Jackson, Director
Western Management Sciences Institute
University of California
Los Angeles 24, California

Professor Samuel Karlin
Mathematics Department
Stanford University
Stanford, California

Professor C. E. Lemke
Department of Mathematics
Rensselaer Polytechnic Institute
Troy, New York

Professor W. H. Marlow
Logistics Research Project
The George Washington University
707 - 22nd Street, N. W.
Washington 7, D. C.
BASIC DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS

Professor A. Charnes
The Technological Institute
Northwestern University
Evanston, Illinois

Professor R. Radner
Department of Economics
University of California
Berkeley 4, California

Professor Murray Rosenblatt
Department of Mathematics
Brown University
Providence 12, Rhode Island

Mr. J. R. Simpson
Bureau of Supplies and Accounts
Navy Department (Code W31)
Washington 25, D. C.

Professor A. W. Tucker
Department of Mathematics
Princeton University
Princeton, New Jersey

Professor J. Wolfowitz
Department of Mathematics
Lincoln Hall, Cornell University
Ithaca 1, New York

C. 0., ONR Branch Office
346 Broadway
New York 13, New York
ATTN: J. Laderman

Professor Oskar Morgenstern
Economics Research Project
Princeton University
92 A Nassau Street
Princeton, New Jersey