NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
The Structure of Isocarborane

by

Hans Jürgen Schroeder and George D. Vickers

Prepared for Publication

in

Inorganic Chemistry

Olin Mathieson Chemical Corporation
Organics Division
New Haven, Connecticut

August 1963

Reproduction in whole or in part is permitted for any purpose of the United States Government
The Structure of Isocarborane

Sir:

Hoffmann and Lipscomb recently discussed the potential existence of three geometrical isomers for the icosahedral carborane system. In these structures (Fig. 1) the two carbon atoms are either adjacent (ortho), intermediate (meta), or opposite (para) to each other. To date two parent isomers of this class of compounds have been found which are called carborane and isocarborane. Efforts for establishing their structures based on chemical and spectral evidence especially by n.m.r. studies have been conducted in this Laboratory.

The theoretical 11B n.m.r. spectra of the geometrical isomers can be qualitatively deduced from the environments of the individual boron atoms in their respective icosahedral configurations. All boron atoms of the para-isomer (1,12) are geometrically equal in that each is adjacent to one of the carbon atoms. Therefore the spectrum should consist of only one doublet. The meta-isomer (1,7), on the other hand, has three kinds of geometrically different boron atoms. Two of them (2,3) are affiliated with both carbons, six of them with only one carbon, and the remaining two (9,10) have no carbon in their immediate environment. Based upon these assumptions, the spectrum should display three doublets with an intensity ratio of 2:6:2.

In the case of the ortho-isomer (1,2) we have, in contrast to the other structures, two adjacent carbon atoms. Again two of the boron atoms (3,6) are distinguished by their affiliation with both

1. Nomenclature and numbering are in accord with the tentative scheme proposed by the Committee on Inorganic Nomenclature.
carbon atoms. Of the remaining eight boron atoms, four are adjacent to one or the other carbon, and four have only boron atoms in their environment. This rationalization should be reflected in a three doublet spectrum. However, the presence of the unique carbon-carbon bond in this isomer might easily result in a spectrum in which these eight borons appear equal.

As reported recently\(^6\), we examined the \(^{11}\text{B}\) n.m.r. spectra (Fig. 2) of carborane and decachlorocarborane. The former compound displayed two doublets with an area ratio of 2:8. Exchange of all boron bound protons by chlorine atoms in \(\text{B}_{10}\text{Cl}_{10}\text{C}_2\text{H}_2\) produced a spectrum of two singlets with an intensity ratio of 2:8. Since these spectra were consistent only with the requirements of the ortho configuration, we assigned this structure to carborane.

We now have examined the \(^{11}\text{B}\) spectrum of isocarborane (Fig. 2). It consists of three doublets which can be decoupled into singlets by irradiating with a saturating 60 Mc. field. Since the overlapping of the doublets did not permit the area measurement required for the structure determination, the novel decachloroisocarborane was synthesized by direct chlorination of isocarborane in refluxing carbon tetrachloride in 90% yield, m.p. 235°C [calcd. for \(\text{C}_2\text{H}_2\text{B}_{10}\text{Cl}_{10}\) (488.8): C, 4.91; H, 0.41; B, 22.14; Cl, 72.54; found: C, 4.95; H, 0.50; B, 22.15; Cl, 72.65; mol. weight: 492.0]. Iso-\(\text{B}_{10}\text{Cl}_{10}\text{C}_2\text{H}_2\) exhibited the expected three singlets (Fig. 2) with an area ratio of 2:6:2. Since these findings were consistent with the requirements described above for the meta configuration, we propose to assign this structure to isocarborane.

This conclusion which is based upon nuclear magnetic resonance spectroscopy, reconciles theoretical considerations with the chemistry reported. It was proposed from bonding principles\(^7\) and molecular

Fig. 2- \(^{11}B\) n.m.r. spectra of two carboranes and two iso-carboranes in acetonitrile in displacement (in p.p.m.) from methyl borate. The chemical shifts of the boron resonance doublets were obtained from the decoupled spectra.
orbital energies\(^8\) that the meta isomer should be more stable than
the ortho isomer. Thus the preparation of isocarborane\(^5\) which was
obtained from carborane at approximately 470\(^\circ\), is in accord with
this assumption. As opposed to the participation of carborane in
five-membered exocyclic rings\(^3,4\), similar reactions of isocarborane\(^5\)
led only to non-cyclic derivatives. Also, comparison of iso-
carborane derivatives with the analogous carborane derivatives has
shown that the former are almost invariably lower melting; this
would indicate that the former are of a more unsymmetrical conformation
than the latter. From additional work in progress in this Laboratory,
we have not encountered any evidence which would contradict this
assignment.

Acknowledgement: The authors are indebted to Prof. W.N. Lipscomb and
Dr. T.L. Heying for helpful discussions and wish to
acknowledge the support of this work by the Office
of Naval Research.

Organics Division
Olin Mathieson Chemical Corporation
New Haven, Connecticut

Hansjuergen Schroeder
George D. Vickers

Received.................
<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th>NO. COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer
Office of Naval Research Branch Office
The John C. Crear Library Building
No East Randolph Street
Chicago 1, Illinois</td>
<td>Air Force
Office of Scientific Research (SRC-E)
Washington 25, D. C.</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York 13, New York</td>
<td>Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.</td>
</tr>
<tr>
<td>(1)</td>
<td>Attn: Technical Information Office
Branch 012</td>
</tr>
<tr>
<td>Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California</td>
<td>(1)</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory
Washington 25, D. C.</td>
<td>Office, Chief of Research & Development
Department of the Army
Washington 25, D. C.</td>
</tr>
<tr>
<td>Attn: Technical Information Officer (6)</td>
<td>Attn: Physical Sciences Division (1)</td>
</tr>
<tr>
<td>Chemistry Division (2)</td>
<td>(1)</td>
</tr>
<tr>
<td>Chief of Naval Research
Department of the Navy
Washington 25, D. C.</td>
<td>Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.</td>
</tr>
<tr>
<td>Attn: Code 425 (2)</td>
<td>Attn: Code 342A
Code 634C (1)</td>
</tr>
<tr>
<td>DODLE
Technical Library
Room 3C-128, The Pentagon
Washington 25, D. C.</td>
<td>Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.</td>
</tr>
<tr>
<td>(1)</td>
<td>Attn: Technical Library
Code R&DA-3 (1)</td>
</tr>
<tr>
<td>Technical Director
Research & Engineering Division
Office of the Quartermaster General
Department of the Army
Washington 25, D. C.</td>
<td>ASTIA
Document Service Center
Arlington Hall Station
Arlington 12, Virginia (10)</td>
</tr>
<tr>
<td>(1)</td>
<td>Director of Research
U.S. Army Signal Research & Development Laboratory
Fort Monmouth, New Jersey (1)</td>
</tr>
<tr>
<td>Technical Director
Research & Engineering Division
Office of the Quartermaster General
Department of the Army
Washington 25, D. C.</td>
<td>Naval Radiological Defense Laboratory
San Francisco 24, California
Attn: Technical Library (1)</td>
</tr>
<tr>
<td>(1)</td>
<td>Naval Ordnance Test Station
China Lake, California
Attn: Head, Chemistry Division (1)</td>
</tr>
<tr>
<td>Research Director
Clothing & Organic Materials Division
Quartermaster Research & Engineering Command
U. S. Army
Patrick, Massachusetts (1)</td>
<td>Code 46 (1)</td>
</tr>
<tr>
<td></td>
<td>Code 50 (1)</td>
</tr>
</tbody>
</table>

REVISED 1 FEB 1962
TECHNICAL REPORT DISTRIBUTION LIST

CONTRACTOR Olin Mathison Chemicals Corporation
CONTRACT NUMBER NAVY 3395(00)
NO. COPIES

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Army Research Office</td>
<td></td>
</tr>
<tr>
<td>Box CH, Duke Station</td>
<td></td>
</tr>
<tr>
<td>Durham, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Attn: Scientific Synthesis Office</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer and Director</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Civil Engineering Lab.</td>
<td></td>
</tr>
<tr>
<td>Fort Huachuca, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Chemistry Division</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. A. L. Powell</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td></td>
</tr>
<tr>
<td>495 Summer Street</td>
<td></td>
</tr>
<tr>
<td>Boston 10, Mass.</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Chemical Research and Development Laboratories</td>
<td></td>
</tr>
<tr>
<td>Technical Library</td>
<td></td>
</tr>
<tr>
<td>Army Chemical Center, Maryland</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Technical Services</td>
<td></td>
</tr>
<tr>
<td>Department of Commerce</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. P. A. Miller</td>
<td></td>
</tr>
<tr>
<td>1000 Gary Street</td>
<td></td>
</tr>
<tr>
<td>San Francisco 9, Calif.</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. C. Habor</td>
<td></td>
</tr>
<tr>
<td>Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td>Corona, California</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Porter W. Erickson</td>
<td></td>
</tr>
<tr>
<td>Chemistry Research Department</td>
<td></td>
</tr>
<tr>
<td>Non-Metallic Materials Division</td>
<td></td>
</tr>
<tr>
<td>Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td>White Oak, Maryland</td>
<td>(1)</td>
</tr>
</tbody>
</table>

DATE 15 FEB 1962
NR NO. 356-433

NO. COPIES

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Albert Lightbody</td>
<td></td>
</tr>
<tr>
<td>Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td>White Oak, Maryland</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. E. G. Rochow</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>Harvard University</td>
<td></td>
</tr>
<tr>
<td>Cambridge 38, Mass.</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. John E. Loffler</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>Florida State University</td>
<td></td>
</tr>
<tr>
<td>Tallahassee, Fla.</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. William H. Lipscomb</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>Harvard University</td>
<td></td>
</tr>
<tr>
<td>Cambridge, Mass.</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. T. D. Parsons</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>Oregon State College</td>
<td></td>
</tr>
<tr>
<td>Corvallis, Oregon</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Dr. L. F. Rahn
Princeton University
Princeton Plastics Laboratory
Princeton, New Jersey

Dr. A. V. Tobolsky
Department of Chemistry
Princeton University
Princeton, New Jersey

Dr. R. S. Stein
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts

Dr. S. Young Tyree, Jr.
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina

Dr. J. C. Bailar, Jr.
Department of Chemistry
University of Illinois
Urbana, Illinois

Dr. L. F. Audrieth
Department of Chemistry
University of Illinois
Urbana, Illinois

Dr. A. B. Burg
Department of Chemistry
University of Southern California
Los Angeles 7, Calif.

Dr. Riley Schaeffer
Department of Chemistry
Indiana University
Bloomington, Indiana

Dr. T. G. Fox, Jr., Director of Research
Mellon Institute
4400 Fifth Avenue
Pittsburgh 13, Pennsylvania

Air Carn Industries Association
7660 Beverly Boulevard
Los Angeles 36, Calif.
Attn: Mr. H. D. Moran

American Potash & Chem. Corp.
201 W. Washington Blvd.
Whittier, California
Attn: Dr. W. S. Emerson

U. S. Borax Research Corp.
Attn: Dr. Carl Randolph
Anaheim, California

General Electric Company
Research Laboratory
P. O. Box 1098
Schecttady, New York
Attn: Dr. J. R. Elliot

Dr. P. D. George
General Electric Company
General Engineering Lab.
Schenectady, New York

Dr. Hans B. Jonassen
Department of Chemistry
Tulane University
New Orleans 15, Louisiana

Dr. Henry Taube
Department of Chemistry
Stanford University
Stanford, Calif.

Plastics Technical Evaluation Center
Plasticity Arsenal
Dover, N. J.

Dr. G. Barth-Wohrenalp, Director
Inorganic Research Department
Pennsalt Chemicals Corporation
Box 4308
Philadelphia 18, Penna.

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Name and Address</th>
</tr>
</thead>
</table>
| 1 | Dr. H. M. Chamberlain
Department of Chemistry
Western Reserve University
Cleveland, Ohio |
| 1 | Dr. D. C. Bradley
Department of Chemistry
University of Western Ontario
London, Canada |
| 1 | Dr. T. P. Onak
Department of Chemistry
Los Angeles State College
Los Angeles, California |
| 1 | Dr. M. J. S. Dewar
Department of Chemistry
University of Chicago
Chicago, Illinois |
| 1 | Dr. M. S. Cohen
Thiokol Chemical Corporation
Reaction Motors Division
Duvalle, New Jersey |
| 1 | Inspector of Naval Material
101 Middle Street
Bridgeport, Conn. |
| 1 | Dr. George P. Huff, Vice President
Research and Development
Callery Chemical Company
Callery, Penn. |
| 1 | Dr. Joyce J. Kaufman
RAS
7212 Bellona Avenue
Baltimore 12, Maryland |
| 1 | Dr. Arthur Finch
Royal Holloway College
University of London
London, England |
| 1 | Dr. D. A. Brown
Department of Chemistry
University College
Upper Merrion Street
Dublin, Ireland |
| 1 | Dr. Albert Cotton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge 39, Mass. |
| 1 | Dr. Robert R. Holmes
Department of Chemistry
Carnegie Institute of Technology
Pittsburgh 13, Penn. |
| 1 | Prof. L. A. Bigelow
Department of Chemistry
Duke University
Durham, N. C. |
| 1 | Dr. William T. Miller
Department of Chemistry
Cornell University
Ithaca, New York |
| 1 | Prof. Jack Hine
Department of Chemistry
Georgia Institute of Technology
Atlanta 3, Georgia |
| 1 | Prof. Herbert G. Brown
Department of Chemistry
Purdue University
Lafayette, Indiana |
| 1 | Dr. Phillip S. Skell
Department of Chemistry
Pennsylvania State University
University Park, Penn. |
| 1 | Dr. B. D. Post
Polytechnic Institute of Brooklyn
Brooklyn 1, New York |
TECHNICAL REPORT DISTRIBUTION LIST

CONTRACTOR OLIN MATHIESON CHEMICALS CORPORATION

CONTRACT NUMBER Nonr 3395(00) NR NO. 356-431

DATE 15 FEB. 1962

NO. COPIES

Dr. R. T. Holzmann
Advanced Research Projects Agency
Washington 25, D. C. (1)

Commander
Ordnance Corps
Rock Island Arsenal
Rock Island, Illinois
Attn: ORDRC 9330-2T0 (1)

New York Naval Shipyards
Material Laboratory
Brooklyn 1, New York
Attn: Mr. B. B. Simms (1)

Bureau of Ships,
Department of the Navy
Washington 25, D. C.
Code 660L
Attn: Mr. E. J. Hrycklewicz (1)

Dr. M. F. Hawthorne
Department of Chemistry
University of California, Riverside
Riverside, California (1)

Dr. Roald Hoffman
Department of Chemistry
Harvard University
Cambridge, Massachusetts (1)

Mr. J. A. Kies
Code 6210
Naval Research Laboratory
Washington 25, D. C. (1)

Mr. E. J. Kohn
Code 6110
Naval Research Laboratory
Washington 25, D. C. (1)

Dr. R. B. Fox
Mr. J. E. Cowling (1)
Dr. A. L. Alexander (1)
Dr. D. L. Venezky (1)
Code 6120
Naval Research Laboratory
Washington 25, D. C.

Dr. O. Williams
National Science Foundation
Washington 25, D. C. (1)

Monsanto Research Corporation
1515 Nicholas Road
Dayton, Ohio
Attn: Librarian (1)

Monsanto Research Corporation
Everett Station
Boston 49, Massachusetts
Attn: Librarian

The Dow Chemical Company
ARPA Laboratory
1710 Building
Midland, Michigan (1)

Naval Ordnance Test Station
China Lake, California
Attn: Code 4544 (Dr. Kaufman) (1)
Code 5557 (Mr. S. H. Herzog)
(Mr. R. L. Landry) (1)