THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
THERMOPHYSICAL PROPERTIES OF SOME CANDIDATE SUPERORBITAL HEAT SHIELD AND INSULATION MATERIALS

Prepared By
Materials Applications Division
AF Materials Laboratory
Deputy Cmdr/Research & Engineering

6 June 1963

Task 738103

Aeronautical Systems Division
Air Force Systems Command
United States Air Force
Wright-Patterson Air Force Base, Ohio
THERMOPHYSICAL PROPERTIES OF SOME CANDIDATE
SUPERORBITAL HEAT SHIELD AND INSULATION MATERIALS

Prepared By
Materials Applications Division
AF Materials Laboratory
Deputy Cdr/Research & Engineering

6 June 1963

Task 738103

Aeronautical Systems Division
Air Force Systems Command
United States Air Force
Wright-Patterson Air Force Base, Ohio
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government Procurement Operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.
THERMOPHYSICAL PROPERTIES OF SOME CANDIDATE SUPERORBITAL HEAT SHIELD AND INSULATION MATERIALS

I. PURPOSE:

The purpose of this memorandum is to present a concise summary of the most useful thermophysical properties of some candidate heat shield materials for the thermal protection of superorbital lift reentry vehicles.

II. FACTUAL DATA

1. The following materials properties reports and compendia were searched for pertinent data:

 (a) WADC TR58-476
 (b) ASD TR62-215
 (c) TPRC Data Book Vol. 1, 2, & 3
 (d) DMIC Memo 141
 (e) WADC TR57-476
 (f) ASD TR62-765
 (g) DMIC Memo 177

III. CONCLUSIONS

1. The data sheets (Appendix I) constitute Information Processing Section's first compilation in this specific area, and it is intended to be the most complete summary of the data in published unclassified reports and data compendia.

2. In evaluating the reliability of the data, we suggest that the source reference be noted and that they have the following order, the most reliable first:

 (a) TPRC Data Book
 (b) DMIC Memo 141 & 177
 (c) ASD & WADC Technical Reports

3. The emissivity data, while the best available, is probably the least reliable of the data presented.

IV. RECOMMENDATIONS:

It is recommended that this initial review be continued and updated as may be warranted by the availability of new and/or more refined data.
COORDINATION: PREPARED BY:

Edward Dugger, ASRCE-31

John H. Charlesworth, ASRCE-31

PUBLICATION REVIEW

This report has been reviewed and is approved.

D. A. Shin
Chief, Materials Information Branch
Materials Applications Division
AF Materials Laboratory

DISTRIBUTION:
300 COPIES ASRCE-3

ASRCE TM-63-16 2
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Material</th>
<th>Density (g/cm³)</th>
<th>Tension (MPa)</th>
<th>Bending (MPa)</th>
<th>Elongation</th>
<th>Ductility</th>
<th>Elongation %</th>
<th>Ductility %</th>
<th>Tension (ksi)</th>
<th>Bending (ksi)</th>
<th>Ref.</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aluminum 6061</td>
<td>0.0009</td>
<td>3000</td>
<td>0.0009</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>70</td>
<td>70</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Titanium 6Al-4V</td>
<td>0.0012</td>
<td>12000</td>
<td>0.0012</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Stainless Steel 304</td>
<td>0.0078</td>
<td>15000</td>
<td>0.0078</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>200</td>
<td>200</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Brass 270</td>
<td>0.0081</td>
<td>5000</td>
<td>0.0081</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>50</td>
<td>50</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Indicated are materials from TPE.
Values in parenthesis () from TPE.
Values in parenthesis [] from TPE.

Compilation of Material Data from TPE.

(Continued...)