NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
OFFICE OF NAVAL RESEARCH
Contract Nonr.2687(00),
Task No. NR 356-408,

TECHNICAL REPORT NO. 37

New High Pressure Form of Calcium Disilicide,
by

M. S. Silverman and J. R. Soulen.

Accepted by the Journal of Physical Chemistry

PENNSALT CHEMICALS CORPORATION
Research and Development Department
Wyndmoor, Pennsylvania

June 1963

Reproduction in whole or in part is permitted for
any purpose of the
United States Government
NEW HIGH PRESSURE FORM OF CALCIUM DISILICIDE

By M. S. Silverman and J. R. Soulen

Research and Development Laboratories
Pennsalt Chemicals Corporation
Wyndmoor, Pennsylvania

Calcium disilicide is known to have a hexagonal layer type structure as do graphite and boron nitride. At very high pressures and

temperatures the latter compounds form the more dense cubic polymorphs, diamond and borazon. CaSi$_2$ has been transformed at high

pressures to a new, more dense modification which appears to be tetragonal.

Commercial grade CaSi$_2$ obtained from K and K Laboratories was used as one starting material. This contained several percent iron
as an impurity. Mixtures of semiconductor grade silicon, spectroscopic grade graphite, and CaO prepared by heating 99.9 % \(\text{CaCO}_3 \) were also used.

The apparatus was of the tetrahedral anvil type developed at the National Bureau of Standards.\(^4\) The sample holder, heating assembly, and calibration techniques were similar to those described previously,\(^5\) except that a boron nitride insulating capsule was used between the graphite heater and the sample.

In carrying out the runs, \(\text{CaSi}_2 \) or a \(\text{CaO} + \text{Si} + \text{C} \) mixture was first compressed to the desired pressure between 8 and 87 kilobars, temperature was then raised and held at the desired level, which ranged up to 1800°. After 2 to 10 minutes the electrical power was shut off and the sample was decompressed after the product had reached ambient temperature.

With \(\text{CaSi}_2 \) as the starting material, striking changes were noted in the solid resulting from a number of runs. Under microscopic examination it appeared

that essentially 100% conversion to a reflective, coral material had occurred from the original grey form. In concentrated HCl the latter reacted with vigorous effervescence whereas the new form, even when finely ground, underwent only slight reaction. Density of the hexagonal starting material was 2.47 ± 0.02 g/cm3, in good agreement with 2.46 g/cm3 reported previously.1 Measured densities of the high pressure form ranged from 2.60 to 2.76 ± 0.02 g/cm3. The highest value was obtained from a product formed under the most severe combination of conditions, 87 kilobars and 1500°, and thus must be closest to correct for the new form. X-ray diffraction films of many of the samples gave an identical powder pattern which is characteristic of the new form and is completely different from that of the original material. The strongest lines are listed in Table I.

These can be indexed on the basis of a tetragonal structure with $a = 6.23\AA$ and $c = 4.52\AA$. Density calculated from these constants, assuming 3 CaSi$_2$ per unit cell, is 2.73 g/cm3, compared with 2.76 for the highest density product. Taking the iron impurity into account, product analysis showed about 2.6% Fe, and a composition approximately $\text{Ca}_{0.93}\text{Fe}_{0.05}\text{Si}_{2.00}$. Assuming simple substitution of Fe for Ca to this extent in the proposed CaSi$_2$ structure, calculated density is 2.75 g/cm3, in excellent agreement with the measured value.
To determine whether iron is a necessary constituent of the new structure, reaction of calcium oxide, silicon and carbon was carried out under high pressure conditions using very pure reactants. Although conversions were poor, the X-ray diffraction powder pattern of Table I was obtained from a number of the pressed pellets, showing formation of the new high pressure form from these entirely different reactants in which the impurity level is very low. The pattern must thus be characteristic of calcium disilicide itself, and the presence of iron in the products obtained from impure CaSi$_2$ is not essential to obtain it.

The high pressure form was obtained from hexagonal CaSi$_2$ in varying amounts over the ranges 17 to 87 kilobars and 700° to 1800°. Below 17 kilobars no transformation occurred, even at temperatures up to 1500°. Besides thermodynamically favoring the reaction, pressure also favors formation of the new form kinetically. Thus in 10-minute runs at 1250° and 17 and 42 kilobars, conversions to the high pressure form were less than 50% and 100%, respectively. At 1000° no new product was obtained after 10 minutes at 20 kilobars whereas complete conversion resulted after 10 minutes at 50 kilobars and 3 minutes at 83 kilobars. To obtain essentially complete conversion to the high pressure form in short periods of time, pressures above 40 kilobars and temperatures above 1000° are required simultaneously.

The authors wish to thank Dr. W. Clavan and Mr. R. Hamilton for obtaining the X-ray diffraction patterns, and the analytical
and shop groups for their help in this work. It was supported in part by the Office of Naval Research.
TABLE I. X-RAY POWDER DIFFRACTION PATTERN OF HIGH PRESSURE FORM OF CALCIUM DISILICIDE

<table>
<thead>
<tr>
<th>d(Å)</th>
<th>I</th>
<th>hkl</th>
<th>obsd.</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.77</td>
<td>100</td>
<td>210</td>
<td>0.0774</td>
<td>0.0766</td>
</tr>
<tr>
<td>2.28</td>
<td>80</td>
<td>002</td>
<td>0.1143</td>
<td>0.1164</td>
</tr>
<tr>
<td>2.14</td>
<td>55</td>
<td>102</td>
<td>0.1297</td>
<td>0.1317</td>
</tr>
<tr>
<td>1.76</td>
<td>55</td>
<td>212</td>
<td>0.1918</td>
<td>0.1929</td>
</tr>
<tr>
<td>1.56</td>
<td>50</td>
<td>222</td>
<td>0.2442</td>
<td>0.2388</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td>0.2450</td>
</tr>
<tr>
<td>1.512</td>
<td>30</td>
<td>302</td>
<td>0.2599</td>
<td>0.2542</td>
</tr>
<tr>
<td></td>
<td></td>
<td>410</td>
<td></td>
<td>0.2603</td>
</tr>
<tr>
<td>1.326</td>
<td>30</td>
<td>213</td>
<td>0.3380</td>
<td>0.3387</td>
</tr>
<tr>
<td></td>
<td></td>
<td>421</td>
<td></td>
<td>0.3353</td>
</tr>
<tr>
<td>1.235</td>
<td>25</td>
<td>223</td>
<td>0.3856</td>
<td>0.3843</td>
</tr>
</tbody>
</table>

\[\sin^2 \theta \]

a Copper K\(_\alpha\) radiation taken as 1.5418 Å.

b Assuming tetragonal structure with \(a = 6.23\) Å and \(c = 4.52\) Å.
TECHNICAL REPORT DISTRIBUTION LIST (Cont.)

Peninsul Chemicals Corporation

Contract No. Month 2687(09) NB 354-00

Mr. Of Copies

Atomic Energy Commission
Division of Technical Information
Extension
Post Office Box 62
Oak Ridge, Tennessee
(1)

Plastics Technical Evaluation Center
Polaris Arsenal
Dover, New Jersey
(1)

John I. Thompson & Co.
1118 32nd St., N.W.
Washington, D.C.
Attn: Mr. C. A. Proctor
(1)

Dr. M. H. Cohen, Chief
Propellants Synthesis Section
Reaction Motors Division
Denville, New Jersey
(1)

Dr. M. T. Dewar
Department of Chemistry
University of Chicago
Chicago 27, Illinois
(1)

Commanding Officer
Ordnance Materials Res. Office
Watertown Arsenal
Watertown, Mass.
Attn: RFO
(1)

Commanding Officer
Rock Island Arsenal
Rock Island, Illinois
Attn: Mr. B. Shaw, Laboratory
(1)

Monsanto Research Corporation
Everett Station
Boston 45, Mass.
Attn: Librarian
(1)

Dr. T. L. Hering
Organics Division
Celan Matheson Chemical Corporation
275 Winchester Avenue
New Haven, Connecticut
(1)

Dr. W. S. Fye
Department of Geology
University of California
Berkeley, California
(1)

New York Naval Shipyard
Mineral Laboratory
Brooklyn, N. Y.
Attn: Mr. B. S. Simon
(1)

Professor R. S. Nyholm
University College London, Department of Chemistry
Gower St., WC1
London, England
(1)

Monsanto Research Corporation
1515 Nicholas Road
Dayton, Ohio
Attn: Librarian
(1)

Mr. G. W. Harding
Materials Officer
Defense Research Staff
British Embassy
3100 Massachusetts Ave., N.W.
Washington, D.C.
(1)

Dr. Roald Hoffman
Department of Chemistry
Harvard University
Cambridge 38, Mass.
(1)

The Dow Chemical Co.
NPA Laboratory
1701 Building
Midland, Michigan
(1)

Naval Ordnance Test Station
China Lake, California
Attn: Code 4344 (Dr. Kaufman)
(1)

Code 5557 [Mr. S. B. Herzig - Mr. R. J. Landry]
(1)