NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SOME CALCULATIONS OF OBSERVABLES BASED ON
THE SCHWARTZ METHOD

by

R. J. WEISS

MATERIALS RESEARCH LABORATORIES
U. S. ARMY MATERIALS RESEARCH AGENCY
JANUARY 1963

WATERTOWN 72, MASS.
The findings in this report are not to be construed as an official Department of the Army position.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from Director, Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia

DISPOSITION INSTRUCTIONS

Destroy; do not return
Some calculations of observables based on the Schwartz method

Technical Report AMRA TR 63-01

by

R. J. Weiss

January 1963

MRL Report 128
AMS Code 5026.11.842
D/A Project 1-H-0-24401-A-110

Materials Research Laboratories
U. S. Army Materials Research Agency
Watertown 72, Mass.
SOME CALCULATIONS OF OBSERVABLES BASED ON THE
SCHWARTZ METHOD

ABSTRACT

C. Schwartz has derived an improved method for the calculation of observables other than the energy utilizing approximate wave functions. We have extended his calculations for the ground state of helium to other one electron observables such as the X-ray scattering factor, $\langle 1/r^2 \rangle$, $\langle r \rangle$ and to $\langle s(r) \rangle$ for the triplet state of helium.
SOME CALCULATIONS OF OBSERVABLES BASED ON THE SCHWARTZ METHOD

Schwartz\(^1\) has suggested that the solution of the equation

\[
[F, H]\psi_0 = \Omega \psi_0 - \langle \Omega \rangle \psi_0
\]

(1)

(where \(\Omega\) is an operator whose expectation value is sought, \(\psi_0\) a trial wave function, \(H\) the hamiltonian of the system, and \(\langle \Omega \rangle\) the expectation value of \(\Omega\) evaluated with \(\psi_0\)) leads to a corrected value of \(\langle \Omega \rangle\) (denoted \(\langle \Omega \rangle^*\)) given by

\[
\langle \Omega \rangle^* = \langle \Omega \rangle + 2(\psi_0, F(H - \langle E \rangle) \psi_0)
\]

(2)

whose error is approximately the error in the expectation value of the energy \(\langle E \rangle\) where

\[
\langle E \rangle = (\psi_0, H\psi_0)
\]

(3)

If the Schwartz equations are correct this would yield a marked improvement in the error of observables (other than the energy) calculated from wave functions obtained by traditional methods like Hartree, Hartree-Fock, etc. Schwartz justified his method by evaluating certain observables for the ground state of helium. We have extended his calculations for the ground state of helium to other one electron observables such as the X-ray scattering factor, \(\langle 1/r^2 \rangle\), \(\langle r \rangle\) and to \(\delta(r)\) for the triplet state of helium all with remarkable success.
Table I summarizes the results for the ground state of helium employing the trial wave function

$$\psi_0 = \frac{b^3}{\pi} e^{-br_1^2} e^{-br_2^2} \quad \text{(singlet)}$$

$$b = \frac{me^2}{\hbar^2} (Z - \frac{5}{16})$$

<table>
<thead>
<tr>
<th></th>
<th>Pekeris(^{\dagger})</th>
<th>% Error</th>
<th>Hartree-Fock</th>
<th>% Error</th>
<th>Schwartz</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-2.904</td>
<td>-1.12</td>
<td>-2.8615</td>
<td>1.12</td>
<td>-2.843</td>
<td>2.1</td>
</tr>
<tr>
<td>(\langle r_1 \rangle)</td>
<td>22.75</td>
<td>70</td>
<td>8.88</td>
<td>90</td>
<td>22.95</td>
<td>1</td>
</tr>
<tr>
<td>(\langle r_1^2 \rangle)</td>
<td>1.1935</td>
<td>1.8</td>
<td>1.172</td>
<td>1.8</td>
<td>1.161</td>
<td>2.7</td>
</tr>
<tr>
<td>(\langle r_1 \rangle)</td>
<td>0.9295</td>
<td>0.6</td>
<td>0.924</td>
<td>0.6</td>
<td>0.920</td>
<td>1.0</td>
</tr>
<tr>
<td>(\langle 1 \rangle / r_1)</td>
<td>1.688</td>
<td>0.18</td>
<td>1.691</td>
<td>0.18</td>
<td>1.681</td>
<td>0.05</td>
</tr>
<tr>
<td>(\langle 1 \rangle / r_1^2)</td>
<td>6.0134</td>
<td>0.05</td>
<td>6.02</td>
<td>0.05</td>
<td>6.035</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((\sin \theta / \lambda))</th>
<th>Hylleras(^{**})</th>
<th>% Error</th>
<th>Hartree-Fock</th>
<th>% Error</th>
<th>Schwartz</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle f \rangle)</td>
<td>1.841</td>
<td>0.2</td>
<td>1.841</td>
<td>0.2</td>
<td>1.841</td>
<td>0.2</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>1.464</td>
<td>0.2</td>
<td>1.464</td>
<td>0.2</td>
<td>1.464</td>
<td>0.2</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>1.062</td>
<td>0.4</td>
<td>1.062</td>
<td>0.4</td>
<td>1.062</td>
<td>0.1</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.741</td>
<td>0.3</td>
<td>0.741</td>
<td>0.3</td>
<td>0.7375</td>
<td>0.2</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.512</td>
<td>0.6</td>
<td>0.512</td>
<td>0.6</td>
<td>0.506</td>
<td>0.6</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.355</td>
<td>0.3</td>
<td>0.355</td>
<td>0.3</td>
<td>0.351</td>
<td>0.8</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.249</td>
<td>0.2</td>
<td>0.249</td>
<td>0.2</td>
<td>0.247</td>
<td>0.8</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.176</td>
<td>0.2</td>
<td>0.176</td>
<td>0.2</td>
<td>0.177</td>
<td>0.6</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.129</td>
<td>0.7</td>
<td>0.129</td>
<td>0.7</td>
<td>0.129</td>
<td>0.0</td>
</tr>
<tr>
<td>(\langle f \rangle)</td>
<td>0.0953</td>
<td>2.4</td>
<td>0.0976</td>
<td>2.4</td>
<td>0.0946</td>
<td>0.7</td>
</tr>
</tbody>
</table>

\(^{\dagger}\)Sinoshita value

\(^{**}\)(Error in \(\langle f \rangle\))
The X-ray scattering factor can be evaluated in closed form for the two electron systems \(H^- \), \(He \), \(Li^+ \), \(Be^{++} \), etc., and is given by

\[
f = f_0 + \Delta
\]

\[
f_0 = \left(\frac{2}{1 + \frac{k^2}{4b^2}} \right)^2
\]

\[
\Delta = \frac{f_0}{32Z-10} \left(\frac{10 - \frac{15k^2}{2b^2}}{1 + \frac{k^2}{4b^2}} \right) \left(\frac{4 - \frac{17k^2}{8b^2}}{64b^4} \right) \left(\frac{6k}{b} - \frac{24b}{k} \right) \tan^{-1} \left(1 + \frac{k}{4b} \right)
\]

\[
+ 12k \ln \left(\frac{1 + \frac{k^2}{4b^2}}{1 + \frac{k^2}{16b^2}} \right)
\]

\(k = 4\pi \sin \theta / \lambda \) (in Bohr units; divide by 6.65 to convert to \(\sin \theta / \lambda \) in \(\text{Å}^{-1} \)).

Table I also lists the values of the observables obtained from the Hartree-Fock wave function and while it gives good results for most observables it deviates appreciably for \(\langle \phi(r) \rangle \). Table I clearly shows that the errors in the Schwartz method are always comparable to the error in the energy.

In the case of the triplet state of two electron atoms the trial wave function (non-determinantal)

\[
\Psi_0(1s) = \frac{b^{3/2}}{\pi^{1/2}} e^{-br_1}
\]

\[
\Psi_0(2s) = \frac{b^{3/2}}{\pi^{1/2}} \left(1 - \frac{4}{9} br \right) e^{-br_2/3}
\]

\[
b = (1.072Z - 0.1235) \text{me}^2/k^2
\]
yields an energy in error by <0.1 percent. For helium this leads to a value
$<\delta(r_1) > + <\delta(r_2) > = 33.16$ which is in error by 0.1 percent compared to the
Pekeris2 value 33.181 (Bohr units).

One restriction that must be placed on the Schwartz method is that the
virial theorem be satisfied. This can be seen in Table II where we have
plotted the error in $<r^2>$ for the ground state of helium as a function of the
error in the energy due to a variation in the parameter b in the trial wave
function, Eq. 4. It is seen that the error in $<r^2>$ quickly exceeds the
error in the energy as b is varied from $Z - \frac{5}{16} = 1.688$ to 1.5.

Inasmuch as all the calculations quoted in this paper were obtained in
simple closed form it appears desirable to pursue the Schwartz method to
many electron systems.

<table>
<thead>
<tr>
<th>Table II</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
</tr>
<tr>
<td>1.688</td>
</tr>
<tr>
<td>1.65</td>
</tr>
<tr>
<td>1.60</td>
</tr>
<tr>
<td>1.55</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>1.45</td>
</tr>
<tr>
<td>1.40</td>
</tr>
</tbody>
</table>
REFERENCES

REPORT NO. AMRA TR 63-01

Title: Some Calculations of Observables
Based on the Schwartz Method

February 1963

No. of
Copies
TO

10 Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia

1 Defense Metals Information Center, Battelle Memorial Institute, Columbus 1, Ohio

1 Commanding Officer, U. S. Army Research Office, Arlington Hall Station, Arlington 12, Virginia

Commanding Officer, Army Research Office (Durham), Box CM, Duke Station, Durham, North Carolina

ATTN: Physics Division

Commanding General, U. S. Army Materiel Command, Washington 25, D.C.

ATTN: AMCRD-RS, Research Division

1 AMCRD-RS, Scientific Deputy

1 AMCRD-RS-CM, Mr. J. Kaufman

1 AMCRD-RS-CM-M, Dr. P. Kosting

1 AMCRD-DE, Development Division

Commanding General, U. S. Army Electronics Command, Fort Monmouth, New Jersey

ATTN: Institute for Fundamental Research

Commanding General, U. S. Army Missile Command, Redstone Arsenal, Huntsville, Alabama

ATTN: AMSMI-RB, Redstone Scientific Information Center

1 Directorate of R&D

1 Chief Scientist, Dr. W. W. Carter

1 Dr. B. Steverding

Commanding General, U. S. Army Mobility Command, 28251 Van Dyke Avenue, Center Line, Michigan

ATTN: Physical Sciences Laboratory

Commanding General, U. S. Army Munitions Command, Dover, New Jersey

ATTN: Chief Scientist
No. of Copies TO

Commanding General, U. S. Army Transportation Research Command, Fort Eustis, Virginia
1
ATTN: Physical Science Division, Dr. G. D. Sands

1
ATTN: Chief Scientist

Commanding Officer, U. S. Army Ballistics Research Laboratories, Aberdeen Proving Ground, Maryland
1
ATTN: Dr. Coy Glass

Commanding Officer, U. S. Army Chemical Corps Nuclear Defense Laboratories, Army Chemical Center, Maryland
1
ATTN: Nuclear Physics Division

Commanding Officer, U. S. Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia
1
ATTN: ERD-DDR

Commanding Officer, U. S. Army Quartermaster Research and Engineering Laboratories, Natick, Massachusetts
1
ATTN: Pioneering Research Division, Dr. S. D. Bailey

Commanding Officer, Harry Diamond Laboratories, Washington 25, D. C.
1
ATTN: AMXDO-TIB

Commanding Officer, Frankford Arsenal, Bridge and Tacony Streets, Philadelphia 37, Pennsylvania
1
ATTN: Pitman-Dunn Laboratories

Commanding Officer, Picatinny Arsenal, Dover, New Jersey
1
ATTN: Feltman Research Laboratories

Commanding Officer, Rock Island Arsenal, Rock Island, Illinois
1
ATTN: 9320, Research and Development Division

Commanding Officer, Springfield Armory, Springfield 1, Massachusetts
1
ATTN: SWESP-TX, Research and Development Division

Commanding Officer, Watervliet Arsenal, Watervliet, New York
1
ATTN: Research Branch

Commander, Office of Naval Research, Department of the Navy, Washington 25, D. C.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director, Naval Research Laboratories, Anacostia Station, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, Air Force Cambridge Research Laboratories, Hanscom-Field, Bedford, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Electronic Research Directorate</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, Air Force Materials Central, Wright-Patterson Air Force Base, Ohio</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Physics Laboratory</td>
</tr>
<tr>
<td>1</td>
<td>Aeronautical Research Laboratories</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Office of Scientific Research, Air R&D Command, Temporary Building T, Washington 25, D. D.</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Office of Technical Information</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Atomic Energy Commission, Office of Technical Information Extension, P.O. Box 62, Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>Director, George C. Marshall Space Flight Center, Huntsville, Alabama</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: M-S&M-M, Dr. W. Lucas</td>
</tr>
<tr>
<td>1</td>
<td>Director, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 3, California</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Dr. L. Jaffe</td>
</tr>
<tr>
<td>1</td>
<td>Director, Lewis Research Center, Cleveland Airport, Cleveland, Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Director, National Bureau of Standards, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Director, Research Analysis Corporation, 8935 Arlington Road, Bethesda, Maryland</td>
</tr>
<tr>
<td>5</td>
<td>Commanding Officer, U. S. Army Materials Research Agency, Watertown 72, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: AMXMR-LXM, Technical Information Section</td>
</tr>
<tr>
<td>1</td>
<td>AMXMR-OPT</td>
</tr>
<tr>
<td>1</td>
<td>AMXMR, Dr. R. Beeuwkes, Jr.</td>
</tr>
<tr>
<td>1</td>
<td>Author</td>
</tr>
</tbody>
</table>

61 -- TOTAL COPIES DISTRIBUTED
C. Schwartz has derived an improved method for the calculation of observables other than the energy utilizing approximate wave functions. We have extended his calculations for the ground state of helium to other one electron observables such as the X-ray scattering factor, \(<r^2>\), \(<r>\) and to \(<3l|r>\) for the triplet state of helium.

NO DISTRIBUTION LIMITATIONS