NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ON THE QUASI-LINEAR SUBSTITUTION METHOD FOR
MISSILE MOTION CAUSED BY
STRONGLY NONLINEAR STATIC MOMENT

Charles H. Murphy
ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from ASTIA.

The findings in this report are not to be construed as an official Department of the Army position.
ON THE QUASI-LINEAR SUBSTITUTION METHOD
FOR MISSILE MOTION CAUSED BY
STRONGLY NONLINEAR STATIC MOMENT

Charles H. Murphy

Exterior Ballistics Laboratory

RDT & E Project No. 1M010501A005

ABERDEEN PROVING GROUND, MARYLAND
ON THE QUASI-LINEAR SUBSTITUTION METHOD
FOR MISSILE MOTION CAUSED BY
STRONGLY NONLINEAR STATIC MOMENT

ABSTRACT

An improved quasi-linear substitution method is developed to treat properly the influence of a cubic static moment on the modal damping of a missile acted on by quite general nonlinear damping and Magnus moments. The predictions of this method are compared for various special cases with those of the more accurate but much more complicated perturbation method. The new quasi-linear theory predicts boundary curves for planar motion, almost circular motion and almost planar motion which are quite close to those of the perturbation theory. An original result of the theory is that all planar singular points for a non-spinning missile whose moment coefficients are only functions of the total angle of attack are nodes. That is, almost planar motion with amplitude close to that of a stable planar limit motion will tend to that motion.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>TABLE OF SYMBOLS</td>
<td>7</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>11</td>
</tr>
<tr>
<td>2. THE IMPROVED SUBSTITUTION QUASI-LINEAR SOLUTION</td>
<td>11</td>
</tr>
<tr>
<td>3. PLANAR MOTION</td>
<td>19</td>
</tr>
<tr>
<td>4. ALMOST CIRCULAR MOTION</td>
<td>21</td>
</tr>
<tr>
<td>4.1 CUBIC MAGNUS MOMENT</td>
<td>24</td>
</tr>
<tr>
<td>4.2 CUBIC DAMPING MOMENTS AND ZERO SPIN</td>
<td>26</td>
</tr>
<tr>
<td>5. ALMOST PLANAR MOTION</td>
<td>29</td>
</tr>
<tr>
<td>6. SUMMARY</td>
<td>35</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>36</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>45</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>a_{jk}</td>
<td>coefficients defined by Equation (17)</td>
</tr>
<tr>
<td>C_D</td>
<td>drag coefficient</td>
</tr>
<tr>
<td>$C_L\alpha$</td>
<td>lift coefficient</td>
</tr>
<tr>
<td>$C_M\alpha$</td>
<td>static moment coefficient</td>
</tr>
<tr>
<td>$C_{M\alpha}$, C_{Mq}</td>
<td>damping moment coefficients</td>
</tr>
<tr>
<td>$C_{Mq\alpha}$</td>
<td>Magnus moment coefficient</td>
</tr>
<tr>
<td>$E(k)$</td>
<td>complete elliptic integral of the second kind</td>
</tr>
<tr>
<td>H</td>
<td>$\frac{\gamma S_l}{2m} \left[\gamma C_L\alpha - C_D - k_t^{-2} \left(C_{Mq} + \gamma C_{M\alpha} \right) \right]$</td>
</tr>
<tr>
<td>H_0</td>
<td>$[H] \xi = \xi' = 0$</td>
</tr>
<tr>
<td>H_z</td>
<td>cubic damping moment coefficient</td>
</tr>
<tr>
<td>I_x</td>
<td>axial moment of inertia</td>
</tr>
<tr>
<td>$I_y = I_z$</td>
<td>transverse moments of inertia</td>
</tr>
<tr>
<td>$K(k)$</td>
<td>complete elliptic integral of the first kind</td>
</tr>
<tr>
<td>K_j</td>
<td>amplitude of the jth mode</td>
</tr>
<tr>
<td>k</td>
<td>modulus of the elliptic integrals</td>
</tr>
<tr>
<td>k_a</td>
<td>axial radius of gyration, $\sqrt{I_x/m}$</td>
</tr>
<tr>
<td>k_t</td>
<td>transverse radius of gyration, $\sqrt{I_y/m} = \sqrt{I_z/m}$</td>
</tr>
<tr>
<td>l</td>
<td>reference length</td>
</tr>
<tr>
<td>M</td>
<td>$\frac{\gamma S_l}{2m} \left[k_t^{-2} C_{M\alpha} - C_L\alpha \right]$</td>
</tr>
<tr>
<td>M'</td>
<td>part of M which is function of δ^2</td>
</tr>
<tr>
<td>M^*</td>
<td>part of M which is function of $(\delta^2)'$</td>
</tr>
</tbody>
</table>
\[M_0 \]
\[\dot{t} = t' = 0 \]

\[\dot{M}_0 \]
\[M_0 - \frac{p^2}{4} \]

\[M_2 \]
cubic static moment coefficient

\[M_{11} \]
non-linear moment coefficient

\[m \]
mass

\[m \]

\[\frac{M_2 \beta \text{max}}{\dot{M}_0 \text{max}} \]

\[m_2 \]

\[\frac{M_2}{M_0} \]

\[P \]
gyroscopic spin, \(P = \frac{I_x}{I_y} \frac{d\dot{\theta}}{V} \)

\[\hat{p} \]
\[P/|\dot{M}_0|^{1/2} \]

\[p \]
axial component of angular velocity

\[r_j \]
defined by Equation (87)

\[S \]
reference area

\[s \]
dimensionless distance along flight path

\[T \]
\[\frac{2Sf}{\Sigma m} \left[C_L \alpha + k_a^{-2} C_M \alpha \right] \]

\[T_0 \]
\[\left[T \right] t = t' = 0 \]

\[T_2 \]
cubic Magnus moment coefficient

\[u, v, w \]
components of velocity

\[V \]
magnitude of velocity, \(V = \sqrt{u^2 + v^2 + w^2} \)

\[\gamma \]
cosine of total angle of attack

\[\delta \]
\[\left| \delta \right| \]
\[\theta \] angle the flight path makes with respect to the vertical

\[\lambda_j \] damping coefficient of the \(j \)th mode

\[\lambda_j^* \] defined by Equation (12)

\[\xi = \frac{v + iv}{V} \]

\[\rho \] air density

\[\sigma \] coefficient of exponential density function

\[\gamma = \sigma \cos \theta \]

\[\phi_j \] phase angle of the \(j \)th mode

\[\hat{\theta} = \phi_1 - \phi_2 \]

Superscript

\[' \] derivative with respect to arc length, \(s \)

\[- \] complex conjugate

\[\sim \] quantity related to non-rotating coordinate system

Subscripts

\[c \] quantities evaluated for circular motion

\[p \] quantities evaluated for planar motion
1. INTRODUCTION

In Reference 1, three different quasi-linear methods were described and their different predictions of the nutational frequency for a missile with a cubic static moment were compared with the exact result obtained by the use of elliptic integrals. The best of the three was called the substitution method and was employed to obtain the combined effect of a cubic static moment, varying air density and both linear and nonlinear damping moments. Although this approach was not as accurate as the perturbation method2,3 which uses the exact elliptic function solution for no damping as the initial approximation, it did give trends with a significant reduction in the necessary algebraic work.

One difficulty with the substitution method was use of a rather strange condition on the damping of the modal amplitudes:

\[K_1 e^{il_1} + K_2 e^{il_2} = 0 \]

(1)

A re-examination of this question has revealed a different substitution method which yields the same expression for the frequencies but does not make use of Equation (1). This improved substitution method does lead to different expressions for modal damping which are the same as those for the earlier substitution method for planar motion but are closer to those obtained from the perturbation method for almost circular motion. It is the purpose of this report to describe this new quasi-linear method.

2. THE IMPROVED SUBSTITUTION QUASI-LINEAR SOLUTION

The equation for the pitching and yawing motion of symmetric missiles can be written in the form2

\[\dddot{\xi} + (H - \frac{M}{\gamma} - IP)\ddot{\xi}' - (M + IPT)\dot{\xi} = 0 \]

(2)

where the various symbols are defined in the Table of Symbols.
\[\ddot{\xi} + (H_0 - iP)\dot{\xi}' - (M_0 + iP_T)\dot{\xi} = - \left[H - H_0 - \frac{\gamma'}{\gamma} \right] \ddot{\xi}' + \left[(M - M_0) + iP(T - T_0) \right] \dot{\xi} \] (3)

where the zero subscript denotes the value of the aerodynamic quantities for zero amplitude motion.

The left side of Equation (3) is the linearized version of Equation (2) and has a solution in the form

\[\ddot{\xi} = K_1 e^{i\phi_1} + K_2 e^{i\phi_2} \] (4)

The primary interest of a missile designer is usually the behavior of the modal amplitudes \(K_j \). This can conveniently be described by their logarithmic derivatives

\[\frac{K_j'}{K_j} = \lambda_j \] (5)

For linear moments, the \(\lambda_j \)'s are constants but when the moments are nonlinear the various quasi-linear analyses obtain \(\lambda_j \)'s which are functions of \(K_1 \) and \(K_2 \).

We now differentiate Equations (4) twice, substitute in Equation (3) and solve for the frequency and damping of the first mode.

\[(\phi_1')^2 - P\phi_1' + M_0 - \lambda_1(\lambda_1 + H_0) - \lambda_1' \]

\[- 1 \left[(2\phi_1' - P)\lambda_1 + H_o\phi_1 + P_T o + \phi_1'' \right] \]

\[= \left[H - H_0 - \frac{\gamma'}{\gamma} \right] \left[(\lambda_1 + i\phi_1') + (\lambda_2 + i\phi_2) \frac{K_2}{K_1} e^{-i\phi} \right] \]

\[- \left[(M - M_0) + iP(T - T_0) \right] \left[1 + \frac{K_2}{K_1} e^{-i\phi} \right] \] (6)

12
\[
\begin{align*}
- \left\{ \left(\phi_2' \right)^2 - P \phi_2' + M_0 - \lambda_2 (\lambda_2 + H_0) - \lambda_2 \right\} \\
- i \left\{ (2 \phi_2' - P) \lambda_2 + H_0 \phi_2' + \frac{2}{\gamma} \right\} \left(\frac{K_2}{K_1} \right) e^{-i \hat{\phi}}
\end{align*}
\]

(6)

where \(\hat{\phi} = \phi_1 - \phi_2 \)

For linearized motion, all the terms on the right of Equation (6) vanish except for the term in braces. Since the left side of the linearized Eq. (6) is constant or slowly varying due to density or Mach number induced variations of \(M_0, H_0, \) and \(T_0 \) and spin or velocity variations in \(P \), it can only equal the periodic term in \(e^{-i \hat{\phi}} \) on the right side if both sides are zero. This condition yields the usual linear relations. The nonlinear terms on the right, however, will in general be periodic but their average or d.c. components will not necessarily be zero. This average will directly affect the terms on the left side and it is the assumption of the quasi-linear method that the average is the only influence of the nonlinearities on the frequencies and damping exponents. We, therefore, average Equation (6) over a period of nutation* and neglect the small damping term in comparison with \(M_0 \) in the real part of this equation.

\[
\begin{align*}
(\phi_1')^2 - P \phi_1' + M_0 - i \left\{ (2 \phi_1' - P) \lambda_1 + H_0 \phi_1' + \phi_2'' \right\} \\
+ \frac{1}{2\pi} \int_0^{2\pi} \left(H - H_0 - \frac{2}{\gamma} \right) \left[\phi_1' + \phi_2' \left(\frac{K_2}{K_1} \right) e^{-i \hat{\phi}} \right] \, d\phi \\
- \frac{1}{2\pi} \int_0^{2\pi} \left((M - M_0) + iP(T - T_0) \right) \left[1 + \frac{K_2}{K_1} e^{-i \hat{\phi}} \right] \, d\phi
\end{align*}
\]

(7)

\(\gamma \) which is the cosine of the total angle of attack can be related to \(|\xi| \), the magnitude of the sine of the total angle of attack by the relation

* Ballisticians frequently use the terms nutation and precession to distinguish two modal oscillations. Nutation in this report has the classical meaning assigned by top theory, i.e., the variation of the amplitude of the total angle, \(|\xi| \).
\[
\gamma^2 = 1 - \delta^2 \\
\text{where } \delta^2 = |t|^2 = t_1 t_2
\]

\(\delta^2\) can, then, be computed from Equation (4)

\[
\delta^2 = k_1^2 + k_2^2 + K_1 K_2 (e^{i\theta} + e^{-i\theta})
\]

\[
= k_1^2 + k_2^2 + 2K_1 K_2 \cos \theta
\]

Since

\[
\frac{\gamma'}{\gamma} = \frac{(\delta^2)'}{2\delta^2} = \frac{-2(\delta^2)'}{2(1 - \delta^2)}
\]

we see that \(\gamma'/\gamma\) is an odd function of \(\hat{\theta}\) and, therefore, only affects the real part of Equation (7). If we make the assumption that \(H\) and \(T\) are functions of \(\delta^2\) and, thereby, are even functions of \(\hat{\theta}\), the following equations may be obtained from Equation (7).

\[
(\phi_1')^2 - P\phi_1' + \frac{1}{2\pi} \int_0^{2\pi} \left\{ \left(\frac{\gamma'}{\gamma} \right) \phi_2' \left(\frac{K_2}{K_1}\right) \sin \theta + M \left[1 + \frac{K_2}{K_1} \cos \theta \right] \right\} d\theta = 0
\]

(11)

\[
\lambda_1 = \lambda_1^* - \frac{\phi_1''}{2\phi_1' - P}
\]

(12)

where \(\lambda_1^* = -\frac{1}{2\pi(2\phi_1' - P)} \int_0^{2\pi} \left\{ H \left[\phi_1' + \phi_2' \frac{K_2}{K_1} \cos \theta \right] \\
- PT \left[1 + \frac{K_2}{K_1} \cos \theta \right] + M \frac{K_2}{K_1} \sin \theta \right\} d\theta
\]

Similar expressions apply for the other mode.
This result differs from that of the substitution method of Reference 1 in the presence of $2\phi'_1 - P$ in the denominators of λ_1 and λ_1^*. In that report, $\phi'_1 - \phi'_2$ appeared. This is the same as $2\phi'_1 - P$ for planar motion but differs for other motions.

For small geometrical angles ($\gamma' = 0$) and a cubic static moment ($M = M_o + M_o\phi^2$), Equation (11) and the corresponding equation for the other mode yield frequency relations which are identical with those of Reference 1.

\[\phi'_1 = \frac{P}{2} + \sqrt{-\hat{M}_0 \left[1 + m_2(K_1^2 + 2K_2^2) \right]} \]
(13)

\[\phi'_2 = \frac{P}{2} - \sqrt{-\hat{M}_0 \left[1 + m_2(2K_1^2 + K_2^2) \right]} \]
(14)

where $\hat{M}_0 = M_o - \frac{P^2}{4}$

\[m_2 = \frac{M_2}{M_o} \]

Equation (13) can be differentiated and substituted in Equation (12) with the result:

\[\lambda_1 \left[1 + \frac{m_2K_1^2}{2 \left[1 + m_2(K_1^2 + 2K_2^2) \right]} \right] + \lambda_2 \left[\frac{2m_2K_2^2}{2 \left[1 + m_2(K_1^2 + 2K_2^2) \right]} \right] = \lambda_1^* - \left[\frac{M'_o - P\phi'_1}{4\hat{M}_o} \right] + \left[\frac{M'_o m_2(K_1^2 + 2K_2^2)}{4M_2} \right] \left[1 + m_2(K_1^2 + 2K_2^2) \right]^{-1} \]

\[= \lambda_1^* \left(\frac{M'_o - P\phi'_1}{4\hat{M}_o} \right) + \left[\frac{M'_o m_2(K_1^2 + 2K_2^2)}{4M_2} \right] \left[1 + m_2(K_1^2 + 2K_2^2) \right] \frac{m_2(K_1^2 + 2K_2^2)}{1 + m_2(K_1^2 + 2K_2^2)} \]
(15)
A similar equation can be derived for the other mode.

\[
\lambda_1 \left[\frac{2m_2k^2_1}{2 \left[1 + m_2(2k^2_1 + K^2_2) \right]} \right] + \lambda_2 \left[\frac{m_2k^2_2}{2 \left[1 + m_2(2k^2_1 + K^2_2) \right]} \right] = \lambda^* - \left(\frac{M'_o - P' \phi'_2}{4K'_0} \right) + \left[\frac{M'_o - P' \phi'_2}{4K'_0} - \frac{M'_2}{4M'_2} \right] \frac{m_2(2k^2_1 + K^2_2)}{1 + m_2(2k^2_1 + K^2_2)}
\]

Equations (15-16) may now be solved simultaneously for \(\lambda_1 \) and \(\lambda_2 \).

\[
\lambda_j = a_{j1} \left[\lambda'^* - \frac{M'_o}{4K'_0} \right] + a_{j2} \left[\lambda'^*_2 - \frac{M'_o}{4K'_0} \right] + a_{j3} \left[\frac{M'_o}{4M'_0} - \frac{M'_2}{4M'_2} \right] + a_{j4} \left(\frac{P' \phi'_1}{M'_o} \right)
\]

where the \(a_{jk} \)'s are defined in the Table.
\[
\text{TABLE}
\]

<table>
<thead>
<tr>
<th>General</th>
<th>Quasi-Planar Motion</th>
<th>Almost Circular Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{11} = \frac{2}{d} \left[1 + m_2 (K_1^2 + 2K_2^2) \right] \left[2 + m_2 (4K_1^2 + 3K_2^2) \right])</td>
<td>(\frac{2(4 + 3m)(8 + 7m)}{(8 + 9m)(8 + 5m)})</td>
<td>(\frac{2(1 + m)}{2 + 3m})</td>
</tr>
<tr>
<td>(a_{12} = -\left(\frac{4}{d} \right) (m_2 K_2^2) \left[1 + m_2 (2K_1^2 + K_2^2) \right])</td>
<td></td>
<td>(- \frac{4m(4 + 3m)}{(8 + 9m)(8 + 5m)})</td>
</tr>
<tr>
<td>(a_{13} = \left(\frac{1}{2d} \right) \left[2m_2 (K_1^2 + 2K_2^2) + m_2 (4K_1^4 + 7K_1^2 K_2^2 + 4K_2^4) \right])</td>
<td>(\frac{3m}{2(8 + 9m)})</td>
<td>(\frac{m}{2(2 + 3m)})</td>
</tr>
<tr>
<td>(a_{14} = \left(\frac{1}{2d} \right) \left[2 + m_2 (4K_1^2 + 3K_2^2) - 2 \left(\frac{\phi'_2}{\phi_1} \right) (m_2 K_2^2) \right])</td>
<td>(\frac{2(8 + 7m - 2m \left(\frac{\phi'_2}{\phi_1} \right))}{(8 + 9m)(8 + 5m)})</td>
<td>(\frac{1}{2(2 + 3m)})</td>
</tr>
<tr>
<td>(a_{21} = -\left(\frac{4}{d} \right) (m_2 K_1^2) \left[1 + m_2 (K_1^2 + 2K_2^2) \right])</td>
<td></td>
<td>(- \frac{4m(4 + 3m)}{(8 + 9m)(8 + 5m)})</td>
</tr>
<tr>
<td></td>
<td>(\frac{2(1 + m)}{(2 + 3m)(1 + 2m)})</td>
<td></td>
</tr>
</tbody>
</table>
TABLE (Cont.)

<table>
<thead>
<tr>
<th>General</th>
<th>Quasi-Planar Motion</th>
<th>Almost Circular Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{22} = \left(\frac{2}{\alpha} \right) \left[1 + m_2 (2K_1^2 + K_2^2) \right] \left[2 + m_2 (3K_1^2 + 4K_2^2) \right]$</td>
<td>$\frac{2(4 + 3m)(8 + 7m)}{(8 + 9m)(8 + 5m)}$</td>
<td>1</td>
</tr>
<tr>
<td>$a_{23} = \left(\frac{1}{2\alpha} \right) \left[2m_2 (2K_1^2 + K_2^2) + m_2 (4K_1^4 + 7K_1^2K_2^2 + 4K_2^4) \right]$</td>
<td>$\frac{3m}{2(8 + 9m)}$</td>
<td>$\frac{m(1 + m)}{(2 + 3m)(1 + 2m)}$</td>
</tr>
<tr>
<td>$a_{24} = \left(\frac{1}{2\alpha} \right) \left[2 + m_2 (3K_1^2 + 4K_2^2) - 2 \left(\frac{\phi_1}{\phi_2} \right) m_2 K_1^2 \right]$</td>
<td>$\frac{2(8 + 7m - 2m \left(\frac{\phi_1}{\phi_2} \right)^2)}{(8 + 9m)(8 + 5m)}$</td>
<td>$\frac{2 + 3m - 2m \left(\frac{\phi_1}{\phi_2} \right)^2}{4(2 + 3m)(1 + 2m)}$</td>
</tr>
<tr>
<td>$d = 4 + 14m_2 (K_1^2 + K_2^2) + m_2^2 (12K_1^4 + 21K_1^2K_2^2 + 12K_2^4)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. PLANAR MOTION

In the Table, values of the a_{jk}'s are computed for quasi-planar motion, i.e., nutation between zero and δ_{max}. For this motion, $K_1 = K_2 = K$, $\delta_{\text{max}} = K_1 + K_2 = 2K$ and the ratio of the maximum value of the cubic term to the linear term is

$$m = \frac{M_0^3 \delta_{\text{max}}^3}{M_0^2 \delta_{\text{max}}} = 4m_2K^2$$

(18)

There are three types of cubic static moments which can cause a periodic motion. These are shown in Figure 1 and may be described as follows:

(a) Stable at small angles; more stable at larger angles ($M_2 < 0$); quasi-planar motion of all amplitudes possible ($m > 0$).

(b) Stable at small angles; less stable at large angles ($M_2 > 0$); amplitude of quasi-planar motion must be small enough to assure positive M ($-1 < m < 0$).

(c) Unstable at small angles; stable at large angles ($M_2 < 0$); amplitude of quasi-planar motion must be large enough to ensure positive average M ($m < -2$).

Pure planar motion occurs when spin is zero. With zero spin, a number of simplifications are possible.

$$M_0 = \hat{M}_0$$

(19)

$$\phi_1' = -\phi_2' = \pm \sqrt{-M_0 (1 + \frac{m}{4})}$$

(20)

$$\lambda_1 = \lambda_2 = \lambda$$

(21)

$$\lambda = -\frac{1}{4\pi} \int_0^{2\pi} \left\{ H \left[1 - \cos \phi \right] + \frac{M_0}{\phi_1} \sin \phi \right\} d\phi$$

(22)
\[\theta^2 = 2k^2(1 + \cos \phi) \quad (23) \]

\[(\dot{\theta}^2)' = -4\phi^2k^2 \sin \phi \quad (24) \]

\[\lambda_1 = \lambda_2 \]

\[2(4 + 3m)\lambda^* - 8 \left(\frac{M_0'}{M_0} \right) - 6m \left(\frac{M_2'}{M_2} \right) = \frac{8 + 9m}{8 + 9m} \quad (25) \]

If the cause of the variation in the coefficients is changing air density due to entering or leaving an exponential atmosphere, \(^1\)

\[\frac{M_0'}{M_0} = \frac{M_2'}{M_2} = \frac{\rho}{\rho_0} = \sigma \quad (26) \]

\[\therefore \quad \lambda_1 = \lambda_2 = \frac{2(4 + 3m)(\lambda^* - \frac{\sigma}{4})}{8 + 9m} \quad (27) \]

Equation (27) was essentially derived by Coakley, Laitone and Mass \(^4\) and predicts that the amplitude of planar motion for a type (b) moment has an upper bound imposed by the requirement \(-8/9 < m\). For linear damping, however, the more exact perturbation method of Reference 2 yields the relation: \(^1,3\)

\[\lambda_1 = \lambda_2 = \frac{-b_0}{2(1 + m)} \left[\frac{H_0}{2} + \frac{\sigma}{4} \right] \quad (28) \]

where

\[b_0 = 4(1 + m)a_2 - 2ma_4 \quad \text{types (a) and (c)} \]

\[= 2(2 + m - 2a_2 - ma_4) \quad \text{type (b)} \]
\[a_2 = k_p^{-2} \left[1 - \frac{E_p}{K_p} \right] \]

\[a_4 = \frac{1}{3} k_p^{-2} \left[2 (1 + k_p^2) a_2 - 1 \right] \]

\[K_p = K(k_p) \text{ complete elliptic integral of the first kind} \]

\[E_p = E(k_p) \text{ complete elliptic integral of the second kind} \]

\[k_p^2 = \frac{m}{2(1 + m)} \text{ types (a) and (c)} \]

\[= \frac{m}{\frac{m}{2} + m} \text{ type (b)} \]

The coefficients of \(\left[\frac{H_0^2 + q_k^2}{2} \right] \) in Equations (27) and (28) are compared for the three types of moments in Figures (2-4). With the exception of the vicinity of \(m = -8/9 \), the quasi-linear substitution value is a reasonable approximation of the more exact but quite complicated perturbation result.

4. ALMOST CIRCULAR MOTION

For almost circular motion, one modal amplitude is much larger than the other and any static moment can be approximated by a cubic in the vicinity of the amplitude of the circular motion. In the Table, the coefficients, \(a_{jk} \), are computed for \(K_2 < < K_1 \). (The coefficients for \(K_1 < < K_2 \) may be obtained by interchanging \(K_1 \) and \(K_2 \).) As in the case of planar motion, a number of simple relations can be written for \(K_2 < < K_1 \) and constant spin.* (\(P = 0 \))

\[\phi_1' = \frac{P}{2} + \sqrt{-\hat{M}_0 (1 + m)} \]

\[\phi_2' = \frac{P}{2} - \sqrt{-\hat{M}_0 (1 + 2m)} \]

* If \(K_1 < < K_2 \), the frequency equations are

\[\phi_1' = \frac{P}{2} + \sqrt{-\hat{M}_0 (1 + 2m)}; \quad \phi_2' = \frac{P}{2} - \sqrt{-\hat{M}_0 (1 + m)} . \]
\[\lambda_1^* = \frac{-1}{4\pi \sqrt{-\lambda_0 (1 + m)}} \int_0^{2\pi} \left[H\phi'_1 - PT \right] d\phi \]

(31)

\[\lambda_2^* = \frac{1}{4\pi \sqrt{-\lambda_0 (1 + 2m)}} \int_0^{2\pi} \left\{ \lambda_2 + \lambda_1 \phi'_1 + \frac{K_1}{K_2} \cos \phi \right\} d\phi \]

(32)

\[- PT \left[1 + \frac{K_1}{K_2} \cos \phi \right] - M_2 \frac{K_1}{K_2} \sin \phi \right\} d\phi \]

\[\lambda_1 = \frac{4(1 + m)}{2(2 + 3m)} \left[\lambda_1 - \frac{M_0}{4\lambda_0} \right] + m \left[\lambda_1 - \frac{M_2}{M_0} \right] \]

(33)

\[\lambda_2 = \frac{-2m(1 + m)}{(2 + 3m)(1 + 2m)} \left[\lambda_1 - \frac{M_0}{4\lambda_0} \right] + \lambda_2 - \frac{M_0}{4\lambda_0} \]

(34)

\[+ \frac{m(1 + m)}{(2 + 3m)(1 + 2m)} \left[\frac{M_0}{M_2} - \frac{M_2}{M_2} \right] \]

Note that Equation (32) contains the very large quantity \(K_1/K_2\). For most nonlinearities, the averaging process of the integral formally yields a magnitude for \(\lambda_2^*\) of the order of \(10^{-2}\) and certainly much less than one. This need for the average of a large periodic term to vanish would lead us to expect Equation (32) to be less accurate than Equation (31). As we shall see, this is a correct conjecture.
The exact elliptic integral solution\(^2\) places the following limitations on \(m:\)

- **type (a)** no limitation (\(m > 0\)).
- **type (b)** only possible circular motions are those for which \(-2/3 < m < 0\).
- **type (c)** only possible circular motions are those for which \(M\) is negative (\(m < -1\)).

The presence of \(2 + 3m\) in the denominator of Equation (33) is the first time a quasi-linear approach has been able to indicate the completely unexpected limitation on circular motions for a type (b) moment which was previously obtained through the use of elliptic integrals. This result is the first evidence of the value of the improved substitution method in comparison with that of Reference 1. The fallacious indication of trouble for \(m = -1/2\) in Equation (34) reinforces our concern for the value of the expressions for damping of the small modal amplitude.

In order to derive an estimate for the accuracy of Equations (33-34), we will now consider two special cases for which the coefficients are constants (\(M_0' = M_2' = 0\)).

\[
\lambda_1 = \frac{2 + 2m}{2 + 3m} \lambda_1^* \tag{35}
\]

\[
\lambda_2 = -\frac{2m(1 + m)}{(2 + 3m)(1 + 2m)} \lambda_1^* + \lambda_2^* \tag{36}
\]

These cases were treated by the perturbation method in Reference 2 and the validity of our results will be determined by comparison with results of that method.
4.1 CUBIC MAGNUS MOMENT

In the first example, we will consider a spinning missile with a cubic Magnus moment \(T = T_0 + T_2 \delta^2 \)

\[
\lambda_1^* = \frac{-H_0 \left[\frac{P}{2} + \sqrt{-M_0 (1 + m)} \right] + P \left[T_0 + T_2 K_1^2 \right]}{2 \sqrt{-M_0 (1 + m)}}
\]

\[
= -\left[\frac{1}{4} \left(2H_0 - \left| 1 + m \right| \right) - \frac{1}{2} \hat{P} (2T_0 - H_0 + 2T_2 K_1^2) \right]^{1/2}
\]

\[
\lambda_2^* = \frac{H_0 \left[\frac{P}{2} - \sqrt{-M_0 (1 + 2m)} \right] - P \left[T_0 + 2T_2 K_1^2 \right]}{2 \sqrt{-M_0 (1 + 2m)}}
\]

\[
= -\left(\frac{1}{4} \right) \left[2H_0 + \left| 1 + 2m \right| \right]^{1/2} \hat{P} (2T_0 - H_0 + 4T_2 K_1^2)
\]

where \(\hat{P} = \frac{P}{\sqrt{M_0}} \)

When the damping coefficient of the large mode as given by Equations (35) and (37) is compared with that obtained from the perturbation method, we find them to be identical. A comparison of the damping coefficients for the small mode reveals that they do differ. A measure of the magnitude of this difference can be obtained by considering the conditions for a circular motion singularity which is a stable node. The location of the singularity is given by

\[
\lambda_1 = -\left(\frac{1}{2} \right) \left(\frac{1 + m}{2 + 3m} \right) \left[2H_0 - \left| 1 + m \right| \right]^{1/2} \hat{P} (2T_0 - H_0 + 2T_2 K_1^2) = 0
\]

(39)
Since small circular motion must grow and large circular motion must decay,

\[2H_o - \left| 1 + m \right| \sqrt{P(2T_o - H_o)} < 0 \] \hfill (40)

\[\hat{P}_T < 0 \] \hfill (41)

These inequalities naturally are equivalent with those of Reference 2. The final requirement is that in the vicinity of the singular point, almost circular motion will approach circular motion.

\[\lambda_2 = \lambda_2^* < 0 \] \hfill (42)

By the use of Equations (38-39), \(T_2 \) may be eliminated from Inequality (42).

\[2 \left[\left| \frac{1}{1 + 2m} \right| \frac{1}{2} \right] H_o - \left| 1 + 2m \right| \sqrt{P(2T_o - H_o)} > 0 \] \hfill (43)

But Inequalities (40) and (43) for \(m \) outside the interval \((-1, -1/2)\) may be combined to yield

\[2 \left| 1 + m \right| \sqrt{P(2T_o - H_o)} < 2 \left[\left| 1 + 2m \right| \frac{1}{2} + 2 \left| 1 + m \right| \frac{1}{2} \right] H_o \] \hfill (44)

Outside the forbidden interval of \(-1 < m < -1/2\) Inequality (44) requires that \(H_o \) be positive and

\[\left| 1 + m \right| \sqrt{P(2T_o - H_o)} < \left| 1 + 2m \right| \frac{1}{2} + 2 \left| 1 + m \right| \frac{1}{2} \] \hfill (45)
The corresponding inequality from Reference 2 is*

$$\left| l + m \right|^{1/2} < \sqrt{\frac{2T_0 - H_0}{2H_0}} < \left| \frac{6 + 7m}{2} \right| \left| l + m \right|^{-1/2}$$ \hspace{1cm} (46)$$

These bounds are compared in Figure 5. As can be seen from the figure, the upper bound is a good approximation.

4.2 CUBIC DAMPING MOMENTS AND ZERO SPIN

For a nonspinning missile, it has been shown^5 that there are two cubic damping moments which can affect the modal amplitudes:**

$$H = H_0 + (H_2 + M_{ll}) \delta^2$$ \hspace{1cm} (47)

$$M = M_0 + M_2 \delta^2 + M_{ll}(\delta^2)'$$ \hspace{1cm} (48)

Since we are concerned with almost circular motion ($K_1 > K_2$), a much more general moment can be considered. This moment will be approximated by Equations (47-48) for almost circular motion. This moment can be written in terms of the aerodynamic moment coefficients as***

$$C_m + iC_n = -i \left[(c_o + c_2 \delta^2 + c^*) \xi + d \xi' \right]$$ \hspace{1cm} (49)

*The report is \(| l + m |^{1/2} \) for \(m > -2/3 \) and \(-| l + m |^{1/2} \) for \(m < -1 \).

**The presence of \(M_{ll} \) in (47) is due to its definition as the coefficient of \(\delta^2 \xi' \) in Reference 5.

***The good approximation \(\xi' = (q + ir) \xi V^{-1} \) has been made in Equation (49) so that \(C_M \) and \(C_M \) appear as a sum.

26
where $c^* = c^* (b^2')$ is a function of (b^2')

$d = d (b^2)$ is a function of b^2

$c^*(0) = 0$ and

$d (0) = C_{Mq} + C_{Ma} $

The coefficients of the differential equation of pitching and yawing motion assume the form

$$H = \frac{\rho S^2}{2m} \left[C_L - C_D - k_t^{-2} d \right] = H(b^2)$$

(50)

$$M = \frac{\rho S^2}{2m} k_t^{-2} \left[c_o + c_2 b^2 + c^* \right] = M_o + M_2 b^2 + M^* (b^2')$$

(51)

If H and M^* are differentiable functions, they can be expanded about the circular motion with amplitude b_c and amplitude derivative $(b^2')_c = 0$.

$$H = H_c + \left[\frac{dH}{db^2} \right]_c (b^2 - b^2_c)$$

(52)

$$M = M_o + M_2 b^2 + \left[\frac{dM^*}{d(b^2')} \right]_o (b^2')$$

(53)

where $H_c = H(b^2_c)$

$$\left[\frac{dH}{db^2} \right]_c = \left[\frac{dH}{db^2} \right] b^2 = b^2_c$$

$$\left[\frac{dM^*}{d(b^2')} \right]_o = \left[\frac{dM^*}{d(b^2')} \right] (b^2') = 0$$
\[\varepsilon^2 = k_1^2 + k_2^2 + 2k_1k_2 \cos \phi \]

\[(\varepsilon^2)' = -2k_1k_2 (\phi'_1 - \phi'_2) \sin \phi \]

Equations (52-53) are essentially of the same form as Equations (47-48) but allow us to consider much more complicated moments.

For these moments and almost circular motion,

\[\lambda_1^* = -(\frac{1}{2}) \left\{ H_c + \left[\frac{dH}{ds^2} \right]_c (k_1^2 - \varepsilon_c^2) \right\} \quad (54) \]

\[\lambda_2^* = \lambda_1^* + (\frac{1}{2}) \left\{ \left[\frac{dH}{ds^2} \right]_c \sqrt{\frac{1 + \frac{m_c}{1 + 2m_c}}{1 + \frac{m_c}{2 + 3m_c}}} + \left[\frac{dM^*}{a(\varepsilon^2)} \right]_c \left[1 + \sqrt{\frac{1 + \frac{m_c}{1 + 2m_c}}{1 + \frac{m_c}{2 + 3m_c}}} \right]^2 \right\} k_1^2 \]

(55)

The actual damping exponent for the larger mode can be obtained from Equations (35) and (54) and is exactly that given by the perturbation method.

\[\lambda_1 = -\left(\frac{1 + \frac{m_c}{2 + 3m_c}}{2 + 3m_c} \right) \left[H_c + \left[\frac{dH}{ds^2} \right]_c (k_1^2 - \varepsilon_c^2) \right] \quad (56) \]

The conditions on \(\lambda_1 \) for a stable node at \(K_1 = \delta_c \) are

\[H_c = 0 \quad (57) \]

\[\left[\frac{dH}{ds^2} \right]_c > 0 \quad (58) \]

According to Equation (36) the actual damping of the smaller mode near the singularity \((\lambda_1^* = 0) \) is \(\lambda_2^* \). For a stable node this must be negative.
The corresponding inequality derived from the perturbation method is

\[
\left[\frac{\text{d}M}{\text{d}(s^2)} \right]_o \sqrt{\frac{1 + \frac{m_c}{1 + 2m_c}}{1 + \frac{m_c}{1 + 2m_c}}} \left[\frac{1}{1 + \sqrt{\frac{1 + \frac{m_c}{1 + 2m_c}}{1 + \frac{m_c}{1 + 2m_c}}}} \right] < 0
\]

or

\[
\left[\frac{\text{d}M}{\text{d}(s^2)} \right]_o \sqrt{\frac{\text{d}H}{\text{d}s^2}}_c < \frac{-1}{1 + \sqrt{\frac{1 + \frac{m_c}{1 + 2m_c}}{1 + \frac{m_c}{1 + 2m_c}}}}
\]

These upper bounds are compared in Figure 6. It is interesting to note that the \(M^* \) function is necessary for a circular limit cycle, i.e. \(M^* = 0 \) does not satisfy Inequality (61).

5. ALMOST PLANAR MOTION

Another important special type of motion is almost planar motion \((K_1 = K_2) \). For this case somewhat more lengthy algebra is required but fairly general results are attainable. For planar motion \(K_1 = K_2 = K_p \) and

\[
\phi_p^2 = 2K_p^2 \left(1 + \cos \phi \right)
\]

\[
\left(\phi_p^2 \right)' = -2K_p^2 \phi_p^4 \sin \phi
\]

\[
\phi_p^4 = \sqrt{M_o (4 + 3m_p)}
\]

where \(m_p = \frac{4M_x K_p^2}{M_o} \)

If \(H \) and \(M^* \) are differentiable functions, they can be expanded about planar motion with amplitude \(2K_p \).
where the subscript \(p \) denotes quantities evaluated for planar motion with \(\delta^2 = \delta^2_p \) and \((\delta^2)' = (\delta^2)'_p \).

For a nonspinning missile,

\[
\lambda_1^* = \frac{1}{4\pi} \int_0^{2\pi} \left\{ \lambda^* \left[1 + \frac{\phi_2'K_2}{\phi_1'K_1} \cos \hat{\phi} \right] + M^* \left(\frac{K_2}{\phi_1'K_1} \right) \sin \hat{\phi} \right\} d\phi
\]

(67)

In order to determine the character of a planar singularity amplitude plane, differential equations should be derived for the neighborhood of the singularity. The variables \(\epsilon_1 \) and \(\epsilon_2 \) are introduced for this purpose and squares of these variables will be omitted in comparison with the variables themselves.

\[
K_j = K_p (1 + \epsilon_j)
\]

(68)

\[
\delta^2 - \delta^2_p = 2K_p^2 (1 + \cos \hat{\phi}) \left(\epsilon_1 + \epsilon_2 \right)
\]

(69)

\[
\hat{\phi}' = \phi_1' - \phi_2'
\]

\[
= (1/2) \left[\sqrt{\frac{J_m \left(3 + 6 \epsilon_1 + 8 \epsilon_2 \right)}{K_p \left(3 + 4 \epsilon_1 + 2 \epsilon_2 \right)}} + \sqrt{\frac{M \left(3 + 6 \epsilon_1 + 8 \epsilon_2 \right)}{K_p \left(3 + 4 \epsilon_1 + 2 \epsilon_2 \right)}} \right]
\]

\[
= \phi_p' \left[1 + \frac{3\rho_p}{8 + 5\epsilon_p} (\epsilon_1 + \epsilon_2) \right]
\]

(70)

\[
(\delta^2)' - (\delta^2)'_p = \left[- 2K_p \phi_2' \sin \hat{\phi} \right] - \left[- 2K_p \phi_2' \sin \hat{\phi} \right]
\]

\[
= - K_p \phi_2' \sin \hat{\phi} \left(\frac{8 + 9\epsilon_p}{4 + 5\epsilon_p} \right) (\epsilon_1 + \epsilon_2)
\]

(71)
\[
\frac{\phi_2 K_2}{\phi_1 K_1} = 1 + \left[\frac{4 + 2m_p}{4 + 3m_p} \right] (\epsilon_1 - \epsilon_2)
\] (72)

[Equation continued...]

\[
\lambda_1 = \lambda_p - \frac{1}{4\pi} \int_0^{2\pi} \left\{ \left[\frac{dH}{d\phi} \right]_p K_p^2 (\epsilon_1 + \epsilon_2) \sin^2 \phi - \frac{2M_p^* \left[4(1 + m_p)\epsilon_1 - (4 + m_p)\epsilon_2 \right] \sin \phi}{\phi_p(4 + 3m_p)} \right. \\
+ 2 \left[\frac{dM^*}{d(\delta^2)} \right]_p \left\{ \left[(8 + 9m_p)\epsilon_1 + m_p \epsilon_2 \right] + \left[\frac{m_p \epsilon_1 + (16 + 11m_p)\epsilon_2}{\phi_p} \right] \right. \\
- \left. \left[(16 + 17m_p)\epsilon_1 + 7m_p \epsilon_2 \right] \right\} d\phi
\] (73)

where \(\lambda_p = -\frac{1}{4\pi} \int_0^{2\pi} \left[(H_p)(1 - \cos \phi) + (M_p^*) \left(\frac{2 \sin \phi}{\phi_p} \right) \right] d\phi \)

The terms involving \(\left[\frac{dH}{d\phi^2} \right]_p \) and \(M_p^* \) may be integrated by parts and the result reduced by routine algebra so that Equation (73) assumes the much simpler form

\[
\lambda_1 = \lambda_p - \frac{1}{4(4 + 3m_p)} \left\{ \left[(8 + 5m_p)\epsilon_1 + m_p \epsilon_2 \right] + \left[\frac{m_p \epsilon_1 + (16 + 11m_p)\epsilon_2}{\phi_p} \right] \right. \\
- \left. \left[(16 + 17m_p)\epsilon_1 + 7m_p \epsilon_2 \right] \right\} r_0
\] (74)

where \(r_j = \frac{\left[\frac{dM^*}{d(\delta^2)} \right]_j K_p^2}{\left[H \right]_1} \), \(j = 0, 2 \).
\[
\frac{dM^*}{d(\theta^2)}_j = \frac{1}{\pi} \int_0^{2\pi} \left[\frac{dM^*}{d(\theta^2)} \right]_p \cos j\theta \, d\theta , \quad j = 0, 2
\]

\[
[H]_1 = \frac{1}{\pi} \int_0^{2\pi} H_p \cos \theta d\theta
\]

Similarly

\[
\lambda_2^* = \lambda_p^* - \frac{[H]_1}{4(4 + 3m_p)} \left\{ \left[m_p \epsilon_1 + (8 + 5m_p)\epsilon_2 \right] \right. \\
- \left. \left[7m_p \epsilon_1 + (16 + 17m_p)\epsilon_2 \right] r_2 \right\}
\]

The numerical subscript on the outside of the bracketed expressions in the definition of \(\lambda_j^*\) identifies that expression as a particular Fourier cosine coefficient. It is quite surprising that the influence of \(H\) on \(\lambda_1^*\) is completely determined by its first order Fourier cosine coefficient. The influence of \(M^*\), however, is specified by the zeroth and second order Fourier cosine coefficients of its first derivative. These coefficients are computed for fixed modal amplitudes, \(K_j\), and therefore, are functions of these amplitudes.

For a planar singularity \(\lambda_p^* = 0\) and \(\lambda_j^*\) can be computed from the following special form of Equation (17)

\[
\lambda_j^* = a_{11}\lambda_1^* + a_{12}\lambda_2^*
\]

where

\[
a_{11} = a_{22} = \frac{2(4 + 3m_p)(8 + 7m_p)}{(8 + 9m_p)(8 + 5m_p)}
\]

\[
a_{12} = a_{21} = \frac{-4m_p(4 + 3m_p)}{(8 + 9m_p)(8 + 5m_p)}
\]
\[\lambda_1 = -\frac{[H]}{2(8 + 5m_p)(8 + 9m_p)} \left[b \varepsilon_1 + a \varepsilon_2 \right] \]

(77)

\[\lambda_2 = -\frac{[H]}{2(8 + 5m_p)(8 + 9m_p)} \left[a \varepsilon_1 + b \varepsilon_2 \right] \]

(78)

where

\[a = -m_p(8 + 3m_p) + (128 + 200m_p + 75m_p^2) r_0 \]

\[- (24m_p + 15m_p^2) r_2 \]

\[b = 64 + 96m_p + 33m_p^2 - 3m_p(8 + 5m_p) r_0 \]

\[- (128 + 248m_p + 105m_p^2) r_2 \]

The differential equation for solution curves in the vicinity of a planar singularity in the amplitude plane is

\[\frac{d\varepsilon_2}{d\varepsilon_1} = \frac{\lambda_2}{\lambda_1} = \frac{a \varepsilon_1 + b \varepsilon_2}{b \varepsilon_1 + a \varepsilon_2} \]

(79)

According to Reference 6, the singularity must be either a saddle point or a node. It is a node if \(a^2 - b^2 \) is negative and a saddle if \(a^2 - b^2 \) is positive.

\[a^2 - b^2 = (a + b)(a - b) \]

\[= -4(8 + 5m_p)(8 + 9m_p) \left[2(2 + m_p) - (r_0 + r_2)(8 + 5m_p) \right] \]

\[\times \left[(4 + 3m_p)(1 + 2r_o) - 4(2 + 3m_p) r_2 \right] \]

(80)

Note that if \(r_0 \) and \(r_2 \) vanish and \(m_p \) is outside the interval (-2, -8/9), \(a^2 - b^2 \) is negative. Thus, if the aerodynamic moment coefficients are functions of \(\delta^2 \) alone and not functions of \((\delta^2)\)'s, all planar singularities
are nodes and almost planar motions near a planar singular motion will tend
to the planar singular motion if neighboring planar motions tend to the planar
singular motion.*

Another interesting special case is that when the moment coefficients
are precisely those defined by Equations (47-48)

\[
\begin{align*}
\left[\frac{d^2}{d\theta^2} \right]_1 &= 2(H_2 + M_{11})K_p^2 \\
\left[\frac{dM^*}{d\theta^2} \right]_0 &= 2M_{11} \\
\left[\frac{dM^*}{d\theta^2} \right]_2 &= 0 \\
\therefore \ r_0 &= -\frac{M_{11}}{H_2 + M_{11}} \\
r_2 &= 0
\end{align*}
\]

Therefore, a planar singularity is a node if

\[
(8 + 9m_p)(8 + 5m_p)(4 + 3m_p)(1 + 2r_0) \left[4 + 2m_p - r_0(8 + 5m_p) \right] > 0
\]

When \(m_p \) is outside the interval \((-2, -8/9)\) this Inequality is equivalent
to

\[
-1 < -\frac{M_{11}}{H_2} < \frac{4 + 2m_p}{12 + 7m_p}
\]

* For circular singularities, Equation (60) shows the circular singularities
are always saddles if the moment coefficients are functions of \(\theta^2 \) alone,
i.e.,

\[
M_{11} = \left[\frac{dM^*}{d\theta^2} \right]_c = 0
\]
In Reference 3, the perturbation method was applied to almost planar motion and after considerable tedious algebra, inequalities like (87) were obtained. The lower bounds are identical but the perturbation method's upper bound is expressed in terms of complete elliptic integrals and differs from that of Inequality (87) when \(m_p \neq 0 \). These two boundary curves are compared in Figure 7. The much more easily derived bound of Inequality (87) is surprisingly good.

SUMMARY

1. A quasi-linear substitution method has been derived on plausible assumptions and compared with the more exact results of the more complicated perturbation method.

2. The planar motion predictions are good when \(m \) is not near \(-8/9\).

3. The damping of the dominant mode of almost circular motion is exactly predicted while the damping of the other mode yields approximately correct stability boundaries.

4. The character of planar singularities can be reasonably well determined by this method.

5. In view of the above, the algebraically much simpler quasi-linear method can be used to obtain approximate stability boundaries in the presence of a strongly nonlinear static moment.

[Signature]

Charles H. Murphy

CHARLES H. MURPHY
REFERENCES

COMPARISON OF PLANAR DAMPING MOMENT COEFFICIENTS TYPE (a)

\[\lambda_1 = \lambda_2 = \left[\frac{H_0}{2} + \frac{\tilde{\sigma}}{4} \right] A \]

FIG. 2
COMPARISON OF PLANAR DAMPING MOMENT COEFFICIENTS TYPE (b)

\[\lambda_1 = \lambda_2 = \left[\frac{H \Omega}{2} + \frac{\sigma}{4} \right] A \]
COMPARISON OF PLANAR DAMPING MOMENT COEFFICIENTS TYPE (c)

\[\lambda_1 = \lambda_2 = \left[\frac{H_0}{2} + \frac{\tilde{\sigma}}{4} \right] A \]

FIG. 4
COMPARISON OF UPPER BOUNDS
FOR CIRCULAR NODES

\[\frac{\hat{p}(2T_0 - H_0)}{2H_0} \]

- - - PERTURBATION
- - - QUASI-LINEAR

NO CIRCULAR MOTION POSSIBLE

\[|1 + m_c|^\frac{1}{2} \]

FIG. 5

41
CIRCULAR SINGULARITIES
FOR
NONLINEAR DAMPING MOMENTS

\[
\left[\frac{d^2 H}{\partial t^2} \right]_c > 0
\]

\[
\left[\frac{d^2 H}{\partial t^2} \right]_u / \left[\frac{d^2 H}{\partial t^2} \right]_c
\]

\[
- \left[\frac{K}{\mu \Omega} \right]^{1/2}
\]

\[
- \left[\frac{1}{\Omega \left(1 - \frac{K}{\mu \Omega} \right)} \right]^{1/2}
\]

STABLE NODE

PERTURBATION

QUASI-LINEAR

UNSTABLE NODE

FIG. 6

42
COMPARISON OF UPPER BOUNDS FOR PLANAR NODES

\[\frac{-M_{11}}{H_2} \]

FIG. 7

PERTURBATION
QUASI-LINEAR
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Commander Armed Services Technical Information Agency ATTN: TIPCR Arlington Hall Station Arlington 12, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>Research Analysis Corporation ATTN: Document Control Office 6935 Arlington Road Bethesda, Maryland Washington 14, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Army Research Office 3045 Columbia Pike Arlington, Virginia</td>
</tr>
<tr>
<td>2</td>
<td>Commanding Officer Army Research Office (Durham) ATTN: ORDOR 10, Cases 940-942 Box CM, Duke Station Durham, North Carolina</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer Picatinny Arsenal ATTN: Feltman Research and Engineering Laboratories Dover, New Jersey</td>
</tr>
<tr>
<td>4</td>
<td>Chief of Research and Development ATTN: Director/Special Weapons Missiles & Space Division Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer Harry Diamond Laboratories ATTN: Technical Information Office, Branch 012 Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer U. S. Army Missile Command ATTN: Deputy Commanding General for Ballistic Missiles Redstone Arsenal, Alabama</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General U. S. Army Missile Command ATTN: Deputy Commanding General for Guided Missiles Mr. A. Jenkins Redstone Arsenal, Alabama</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Ordnance Laboratory White Oak Silver Spring 19, Maryland</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Missile Center Point Mugu, California</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer U. S. Naval Air Development Center Johnsville, Pennsylvania</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U. S. Naval Ordnance Test Station</td>
</tr>
<tr>
<td></td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td></td>
<td>Aeroballistics Laboratory, Code 5034</td>
</tr>
<tr>
<td></td>
<td>Dr. William Haseltine</td>
</tr>
<tr>
<td></td>
<td>China Lake, California</td>
</tr>
<tr>
<td>2</td>
<td>Superintendent</td>
</tr>
<tr>
<td></td>
<td>U. S. Naval Postgraduate School</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. Head</td>
</tr>
<tr>
<td></td>
<td>Monterey, California</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U. S. Naval Weapons Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. C. Cohen</td>
</tr>
<tr>
<td></td>
<td>Dahlgren, Virginia</td>
</tr>
<tr>
<td>4</td>
<td>AFSC</td>
</tr>
<tr>
<td></td>
<td>Andrews Air Force Base</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>AEDC</td>
</tr>
<tr>
<td></td>
<td>ATTN: Deputy Chief of Staff, R&D</td>
</tr>
<tr>
<td></td>
<td>Arnold Air Force Station</td>
</tr>
<tr>
<td></td>
<td>Tullahoma, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>APGC (PGAPI)</td>
</tr>
<tr>
<td></td>
<td>Eglin Air Force Base</td>
</tr>
<tr>
<td></td>
<td>Florida</td>
</tr>
<tr>
<td>1</td>
<td>Air Force Plant Representative</td>
</tr>
<tr>
<td></td>
<td>Republic Aviation Corporation</td>
</tr>
<tr>
<td></td>
<td>Farmingdale, Long Island, New York</td>
</tr>
<tr>
<td>3</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. A. Sieff</td>
</tr>
<tr>
<td></td>
<td>Mr. H. J. Allen</td>
</tr>
<tr>
<td></td>
<td>Mr. M. Tobak</td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, California</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Alpha Research, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td></td>
<td>1266 Coast Village Road</td>
</tr>
<tr>
<td></td>
<td>Santa Barbara, California</td>
</tr>
<tr>
<td>1</td>
<td>CONVAIR, A Division of General Dynamics Corporation</td>
</tr>
<tr>
<td></td>
<td>Ordnance Aerophysics Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. J. E. Arnold</td>
</tr>
<tr>
<td></td>
<td>Daingerfield, Texas</td>
</tr>
<tr>
<td>1</td>
<td>CONVAIR, A Division of General Dynamics Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: Wallace W. Short</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1950</td>
</tr>
<tr>
<td></td>
<td>San Diego 12, California</td>
</tr>
<tr>
<td>1</td>
<td>Cornell Aeronautical Laboratory, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. Joseph Desmond, Librarian</td>
</tr>
<tr>
<td></td>
<td>Buffalo, New York</td>
</tr>
<tr>
<td></td>
<td>Sunnyvale, California</td>
</tr>
<tr>
<td>1</td>
<td>Douglas Aircraft Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Hines, A260</td>
</tr>
<tr>
<td></td>
<td>500 Ocean Park Boulevard</td>
</tr>
<tr>
<td></td>
<td>Santa Monica, California</td>
</tr>
<tr>
<td>3</td>
<td>General Electric Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. Smith - MSVD Library</td>
</tr>
<tr>
<td></td>
<td>3198 Chestnut Street</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td>1</td>
<td>General Motors Corporation</td>
</tr>
<tr>
<td></td>
<td>Defense Systems Division, Box T</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. A. C. Charters</td>
</tr>
<tr>
<td></td>
<td>Santa Barbara, California</td>
</tr>
<tr>
<td>1</td>
<td>Goodyear Aircraft Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: Jay R. McKee, Librarian</td>
</tr>
<tr>
<td></td>
<td>Akron 15, Ohio</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applied Physics Laboratory</td>
</tr>
<tr>
<td></td>
<td>The Johns Hopkins University</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. G. L. Seielstad</td>
</tr>
<tr>
<td></td>
<td>8621 Georgia Avenue</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: Irl E. Newlan, Chief Reports Group</td>
</tr>
<tr>
<td></td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td></td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>1</td>
<td>University of Michigan Willow Run Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. J. E. Corey</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 2008</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, Michigan</td>
</tr>
<tr>
<td>1</td>
<td>University of Southern California Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. H. R. Saffell, Director</td>
</tr>
<tr>
<td></td>
<td>Los Angeles 7, California</td>
</tr>
<tr>
<td>1</td>
<td>Stanford University Department of Aeronautical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. C. Sabin</td>
</tr>
<tr>
<td></td>
<td>Stanford, California</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Professor George F. Carrier Harvard University Division of Engineering and Applied Physics</td>
</tr>
<tr>
<td></td>
<td>Cambridge 38, Massachusetts</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Professor Francis H. Clauser, Jr. Chairman, Department of Aeronautics The Johns Hopkins University Baltimore 18, Maryland</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Professor John Frasier Brown University Providence, Rhode Island</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Professor E. V. Laitone University of California Berkeley, California</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>The Scientific Information Officer</td>
</tr>
<tr>
<td></td>
<td>Defence Research Staff</td>
</tr>
<tr>
<td></td>
<td>British Embassy</td>
</tr>
<tr>
<td></td>
<td>3100 Massachusetts Avenue, N. W.</td>
</tr>
<tr>
<td></td>
<td>Washington 8, D. C.</td>
</tr>
<tr>
<td>4</td>
<td>Defence Research Member</td>
</tr>
<tr>
<td></td>
<td>Canadian Joint Staff</td>
</tr>
<tr>
<td></td>
<td>2450 Massachusetts Avenue, N. W.</td>
</tr>
<tr>
<td></td>
<td>Washington 8, D. C.</td>
</tr>
</tbody>
</table>
An improved quasi-linear substitution method is developed to treat properly the influence of a cubic static moment on the modal damping of a missile acted on by quite general nonlinear damping and Magnus moments. The predictions of this method are compared for various special cases with those of the more accurate but much more complicated perturbation method. The new quasi-linear theory predicts boundary curves for planar motion, almost circular motion and almost planar motion which are quite close to those of the perturbation theory. An original result of the theory is that all planar singular points for a non-spinning missile whose moment coefficients are only functions of the total angle of attack are nodes. That is, almost planar motion with amplitude close to that of a stable planar limit motion will tend to that motion.