NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
HOT CYCLE ROTOR DUCT CLOSURE VALVE SYSTEM

Task 1D121401D14403
(Formerly Task 9X38-01-020-03)
Contract DA 44-177-TC-832
March 1963

prepared by:

HUGHES TOOL COMPANY
Aircraft Division
Culver City, California
DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

* * *

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

* * *

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.

* * *

The information contained herein will not be used for advertising purposes.

* * *

The findings and recommendations contained in this report are those of the contractor and do not necessarily reflect the views of the U. S. Army Mobility Command, the U. S. Army Materiel Command, or the Department of the Army.
HEADQUARTERS
U. S. ARMY TRANSPORTATION RESEARCH COMMAND
Fort Eustis, Virginia

Under the terms of Contract DA 44-177-TC-832, Hughes Tool Company, Aircraft Division, has conducted the detailed analysis, design and operation of a hot cycle rotor duct closure valve system for single-engine operation of the rotor system fabricated under Air Force Contract AF 33(600)-30271.

The conclusions presented in this report are concurred in by the U. S. Army Transportation Research Command, Fort Eustis, Virginia, the cognizant agency for the contract.

FOR THE COMMANDER:

KENNETH B. ABEL
Captain USA
Adjutant

APPROVED BY:

H. S. JOHNSON
USATRECOM Project Engineer
HOT CYCLE ROTOR DUCT CLOSURE VALVE SYSTEM

Report No. 62-32

Prepared by

Hughes Tool Company, Aircraft Division
Culver City, California

for

U. S. ARMY TRANSPORTATION RESEARCH COMMAND
FORT EUSTIS, VIRGINIA
Prepared by:
E. Sallows, Aeronautical Engineer
R. Boudreaux, Chief Aerodynamic Section
J. McDermott, Structures Analysis Engineer
R. Sullivan, Helicopter Research Engineer
FOREWORD

This report has been prepared by Hughes Tool Company - Aircraft Division under Army Contract DA 44-177-TC-832, Clause 2 Paragraph c, which requires a report containing the detailed analysis, design and operation of a Hot Cycle Rotor Duct Closure Valve System for single engine operation.

Design work presented in this report is a continuation of a previous preliminary study covering the need, possible designs, and location of duct closure valves. That study was made and reported in the "Hot Cycle Rotor System Engine-Rotor Control Study", Reference No. 1, prepared under Contract AF 33(600)-30271.

This work was performed at the Hughes Tool Company - Aircraft Division, Culver City, California, under the direction of Mr. H.O. Nay, Manager, Transport Helicopter Department, and under the direct supervision of Mr. J.L. Velazquez, Senior Project Engineer, Hot Cycle Program.

The Contract was effective on December 29, 1961. The work was completed on June 22, 1962.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>DUCT VALVE CONFIGURATION SELECTION</td>
<td>5</td>
</tr>
<tr>
<td>MECHANICAL DESIGN</td>
<td>7</td>
</tr>
<tr>
<td>INFLUENCE OF VALVE GEOMETRY AND LOCATION ON ROTOR PERFORMANCE</td>
<td>25</td>
</tr>
<tr>
<td>VALVE AERODYNAMIC LOADS AND TEMPERATURE GRADIENTS</td>
<td>29</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>37</td>
</tr>
<tr>
<td>APPENDIX A - STRESS ANALYSIS</td>
<td>39</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>81</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Layout-Cascade Valve.</td>
<td>9</td>
</tr>
<tr>
<td>2a</td>
<td>Tip Assembly-Forward, Sheet 1</td>
<td>11</td>
</tr>
<tr>
<td>2b</td>
<td>Tip Assembly-Forward, Sheet 2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Cascade Valve, Forward Duct</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Cascade Valve, Aft Duct</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Sector-Forward Duct Cascade Valve</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Lever-Aft Duct Cascade Valve</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Maximum Rotor Power for Various Modes of Single-Engine Operation</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Pressure Differentials Along Edges of Vanes</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Total Moment About the Forward Vane</td>
<td>32</td>
</tr>
</tbody>
</table>
1. **SUMMARY**

A detailed study of various methods for changing the effective nozzle area of the hot cycle rotor system to provide acceptable single-engine operation has been made using preliminary concepts developed in Reference 1. Thermodynamic, aerodynamic, structural and economic considerations led to the selection of outboard duct closure valves mounted in both ducts adjacent to the blade tip cascade. A description of the mechanical design and operation is given, and the structural integrity is substantiated by a detailed stress analysis.
The need of a blade duct closure valve for the hot cycle research aircraft was established in the "Hot Cycle Rotor System Engine-Rotor Control Study", Reference No. 1. The research aircraft, the preliminary design of which has been completed under the present Army Contract DA 44-177-TC-832, uses two gas generator versions of the General Electric T64 engine. In order to sustain flight with one engine inoperative, flow must be restricted to approximately 50 percent of the rotor tip nozzle area in order to achieve maximum power from the remaining operating engine. After studying several valve configurations, a design was selected that closes off a portion of each rotor blade nozzle by means of a pivoted vane at the outboard end of each duct. For single-engine operation, these vanes rotate and close off 50 percent of the total tip nozzle exhaust area. The following sections of this report contain the configuration selection, detailed design, operation, and stress analysis of these valves.
3. DUCT VALVE CONFIGURATION SELECTION

Section 4 of Reference 1 discusses the requirement and function of blade duct valves. It also discusses two general types of possible valve configurations; namely, (1) root valve, and (2) blade tip cascade closure valve, along with some of their advantages and disadvantages. It further states that a final choice of blade duct valve location must be based on further study.

Since the writing of Reference 1, a study has been conducted of both configurations with respect to their detail design, function, effect on propulsive efficiency, and effect on blade structural integrity. This study has resulted in the selection and final detail design of the blade tip cascade valve.

Initial thinking pointed toward the design of a valve to be installed in the blade root where the lower centrifugal g field would simplify the mechanical design. However, investigation showed that this type of installation would give rise to structural and performance problems in the blade when the inboard valve was actuated to close off one duct. The structural problems arose from stresses produced by differential pressure and temperature considerations. Static pressure in the active duct of approximately 24 psig combines with approximately -6 psig in the closed off duct to produce in the order of 30 psig pressure difference between the two ducts. The negative pressure in the closed off duct results from centrifugal pumping and tip vortex negative pressure field. This 30-psig pressure difference would overstress the structure separating the ducts. An additional overstress results from thermal stresses produced by the temperature difference between the ducts of approximately 1000 degrees Fahrenheit. In order to solve these structural problems, substantial redesign and modification work would be required on the present rotor at a cost that would be unacceptable within the funding limitations of this project.

From the thermodynamic efficiency point of view, it has been determined that allowing both ducts to function during single-engine operation yields 35 percent more available power than that available by restricting the flow to one duct. This improvement results from the elimination of leakage from one duct to the other and the lower friction losses associated with using both ducts for the gas flow from one engine.
Summarizing, the selected design of the blade tip cascade valves, by closing off one-half of each cascade exit and allowing equal temperatures, pressures, and mass flow to exist in each duct, eliminates unacceptable structural and thermodynamic features of the root installation. Effects of the higher centrifugal forces at the tip on design complexity are offset by improved accessibility and simplified work required for modification to the existing blades.
4. MECHANICAL DESIGN

The blade tip cascade valves will be either fully closed or open, depending upon whether one engine or two engines are operating. Their functioning will be automatic with manual override. A pressure sensor will compare total engine discharge pressures. Following a pressure drop due to engine failure, an electrical actuator will be energized which will operate the linkage to close the valves. The pilot can, by manual switch selection, return the valves to the open position when dual-engine operation has been restored. The pilot will also have the capability of closing the valves in the event of the malfunction of the automatic system.

Mechanical design of the rotor blade duct closure valves, as located close to the tip cascade, is influenced by: (a) a high g field (857 g max.), (b) a high operating temperature (1200 degrees Fahrenheit), and (c) the necessity for a seal to operate at approximately 30 psi. The following drawings show the layout and details of the valves.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Layout-Cascade Valve</td>
</tr>
<tr>
<td>2</td>
<td>Tip Assembly, Sheets 1 and 2</td>
</tr>
<tr>
<td>3</td>
<td>Forward Duct Valve</td>
</tr>
<tr>
<td>4</td>
<td>Aft Duct Valve</td>
</tr>
<tr>
<td>5</td>
<td>Forward Duct Sector</td>
</tr>
<tr>
<td>6</td>
<td>Aft Duct Lever</td>
</tr>
</tbody>
</table>

With an operating temperature of 1200 degrees Fahrenheit, a nickel base high-temperature alloy, René 41, was selected for use for almost all components. This metal has performed quite well in the hot cycle rotor ducting system. (See Reference 2). René 41 corrosion resistant steel in the aged condition has an ultimate strength of 194,000 psi, and a yield strength of 145,000 psi at 1200 degrees Fahrenheit. In addition to high strength, using the same metal throughout minimizes the possibility of interference of moving parts due to thermal expansion. From recent experience with the hot cycle rotor sealing problems as reported in Reference 2, it has been found that heat cycling tends to cause warpage of most metals. This action could also cause interference or seizure of moving parts. To minimize this problem, the room temperature clearances of all moving parts is made as large as possible.
Figure 1. Layout-Cascade Valve.
Figure 2a. Tip Assembly, Sheet 1.
Figure 2b. Tip Assembly, Sheet 2.
Figure 3. Forward Duct Valve.
INTERNAL SPLINE DATA

<table>
<thead>
<tr>
<th>FLAT ROOT SIDE FIT</th>
<th>NO. OF TEETH</th>
<th>PITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ANGLE</th>
<th>A MOD. DIA.</th>
<th>L RADIUS DIA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°</td>
<td>.3448 .2182</td>
<td>.4082 .4111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D RADIUS BETWEEN PLUS MAX .3591 MIN .6354 IF ALL SPLINE SURFACES</th>
</tr>
</thead>
</table>

REVISIONS

<table>
<thead>
<tr>
<th>SYM</th>
<th>E.O.'S</th>
<th>DESCRIPTION</th>
<th>DRN & APP'D. DATE</th>
</tr>
</thead>
</table>

LIST OF MATERIAL

<table>
<thead>
<tr>
<th>RECOMM. PART NO.</th>
<th>PART NO.</th>
<th>NAME</th>
<th>SIZE</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
</table>

CASCASE VALVE - FORWARD DUCT.

MACHINED SURFACES,

- SKIN B-7 & 9 SEALS TO -3 FRAME WITH LIGNEON-SNOW RULING MATERIAL.
- RINSE, ASS THE ALUM. AT 140°F - 150°F, AIR COOL.
- -3 FRAME MATERIAL IN THE TREATED & ASBESTOS CONDITION.
Figure 4. Aft Duct Valve.
Figure 5. Forward Duct Sector.
EXTERNAL SPLINE DATA

<table>
<thead>
<tr>
<th>FLAT ROOT SIDE FIT</th>
<th>NO. OF TEETH</th>
<th>(\theta)</th>
<th>(\phi)</th>
<th>A</th>
<th>MIN. DIA.</th>
<th>B</th>
<th>MIN. DIA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Root</td>
<td>7</td>
<td>30°</td>
<td>3°</td>
<td>.655</td>
<td>1.404</td>
<td>.980</td>
<td>2.856</td>
</tr>
</tbody>
</table>

HUGHES TOOL COMPANY

SECTOR - FORWARD DUCT CASCADE VALVE.

<table>
<thead>
<tr>
<th>SHEET REF.</th>
<th>385-1106</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>385-1106</td>
</tr>
<tr>
<td>NAME</td>
<td>385-1106</td>
</tr>
<tr>
<td>SIZE</td>
<td>385-1106</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>SECTOR - FORWARD DUCT CASCADE VALVE.</td>
</tr>
<tr>
<td>SPECIFICATION</td>
<td>385-1106</td>
</tr>
</tbody>
</table>

LIST OF MATERIAL

<table>
<thead>
<tr>
<th>REQD PART NO.</th>
<th>REQD PART NO.</th>
<th>NAME</th>
<th>SIZE</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS TO BE MET BEFORE PLATING

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>±.005</td>
</tr>
<tr>
<td>2</td>
<td>±.005</td>
</tr>
</tbody>
</table>

NOTE ON ALL MACHINE SURFACES.

SCALE FULL

<table>
<thead>
<tr>
<th>CODE</th>
<th>SHEET OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>02731</td>
<td>385-1106</td>
</tr>
</tbody>
</table>
1. 125/125 FINISH ON ALL MACHINE SURFACES.

NOTES:

Figure 6. Aft Duct Lever.
EXTERNAL SPLINE DATA

<table>
<thead>
<tr>
<th>Flat Root Side Fit</th>
<th>No. of Teeth</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>32(1/4)</td>
<td></td>
</tr>
<tr>
<td>Pressure Angle</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>A. Major Dia.</td>
<td>.412 - .471</td>
<td></td>
</tr>
<tr>
<td>B. Minor Dia.</td>
<td>.390 - .396</td>
<td></td>
</tr>
<tr>
<td>C. Pitch Dia.</td>
<td>.437 .5</td>
<td></td>
</tr>
<tr>
<td>D. Measurement Over Pins. Min.</td>
<td>.354 Ømax</td>
<td></td>
</tr>
</tbody>
</table>

Ref all Spline Surfaces

DIMENSIONAL TOLERANCES

CK HUGHES TOL COMPANY
3 Place Decimal
.10

LEVER - AFT
DUCT CASCADE VALVE

Hughes Tool Company
Aircraft Division
Culver City, California

385-1105

Scale

CODE 0273 SHEET OF
Before proceeding too far into the actual valve design, a study was made of the pressure loading involved. These loads are reported in the aerodynamic section of this report. As stated on page 31, the valve pivot point is located a short distance aft of the aerodynamic center and this location creates an unstable loading condition during the initial starting period. To correct this instability, springs are added to the forward duct sector (Figure 3) to hold both forward and aft valves in a steady state open position.

The valves, Figures 3 and 4, are fabricated from a machined framework covered with an 0.10-inch skin which is brazed to the framework. (Along the upper and lower edge and leading edge, a 0.006-inch thick lip-type seal is brazed in place. All seals are designed so that gas pressure aids in the sealing action.) A nickel-silicon-boron brazing material has been selected which becomes a liquid at approximately 1900 degrees Fahrenheit. After brazing, the assembly is aged at 1400 degrees Fahrenheit for 16 hours and air cooled to give maximum strength.

As mentioned previously, the valves are actuated by electrical actuators located at the inboard end of the blade. Present plans, formulated for expediency and lower cost advantages, call for the off-the-shelf purchase of electrical actuators to operate from a 28-volt DC supply source, have a travel of ±3, and exert a force of 680 pounds ±25 percent. These actuators will not be irreversible and will be self-locking, thus preventing the valves from returning to the open position in case of electrical power failure. Upon being energized by the engine failure sensor, these actuators apply a tension force to the long rods running along the front spars. Each of these rods in turn pulls on a load-equalizing pulley cable system at the rotor blade tip. (See Figure 1.) The cable, by pulling on the forward sector and aft lever, rotates both forward and aft valves to the closed position. All driving components are symmetrical; that is, there is an upper and lower cable, sector, connecting rod, and aft lever.

Returning the valves to the open position is accomplished as follows. First, the inboard actuators release their pull; then, if the blades are rotating, gas pressure and centrifugal force are sufficient to force the valves to the open position. In the absence of gas pressure and centrifugal force, the two springs pulling on the section shown in Figure 5 return both valves to their open position.
5. INFLUENCE OF VALVE GEOMETRY AND LOCATION ON ROTOR PERFORMANCE

An aerothermal study to determine the most suitable geometry and location of a valve to provide optimum rotor performance for a one-engine-out emergency condition is summarized in Figure 7. The systems consider partial blockage of each duct at the blade tips (point a); a complete blockage of one duct per blade at the blade roots, with (curve b) and without (curve c) low-pressure duct ventilation to relieve base pressure at the exit of the blocked duct; separate ducts for each engine and also tip blockage of one duct for one engine out and no duct interleakage (point d); a sonic throat at the engine exit to maintain the required engine pressure for on-line operation (point e); and a design which provides no mechanical means to improve rotor power for a one-engine-failed condition (point f).

The gas generator discharge conditions were taken from Reference 3 with the basic twin engine military power operating point corresponding to maximum operating level at the operating limit (maximum allowable turbine inlet temperature and cycle pressure ratio). Gas flow rate and total pressure at the blade tips were found from consideration of tip nozzle flow characteristics, engine operating characteristics, duct losses and centrifugal pumping effects. The losses are related to the duct Mach number and are based on 10 percent total pressure loss for the basic twin engine operating condition. Nozzle thrust efficiency and flow characteristics are taken from Reference 4. Corrections to rotor power are made for those cases in which base drag and/or internal drag are incurred.

Generally, to obtain maximum rotor power, the nozzle exhaust area should be that required to match the exhaust pressure for normal operation of the functioning T64 engine. Also, the used portion of the nozzle exhaust area should be as close to the blade tip as possible to provide the maximum moment arm, and duct pressure and leakage losses should be minimized. Since some of these requirements are mutually exclusive, a compromise is in order.

Utilization of the most outboard position of the cascade nozzle implies complete blockage of the trailing blade ducts since they exhaust inboard of the leading ducts. Blockage may be effected at either blade roots or tips. With the roots blocked, leakage from the forward duct to the rear duct through the flexible joints occurs. A leakage rate of roughly 5 percent is expected and results in a rotor power of 1060 horsepower (point g) compared to the 1380 horsepower available with no leakage (see Figure 7). With the rear duct tips blocked, the leakage
HOT CYCLE HELICOPTER
MAXIMUM ROTOR POWER \((1,2)\) FOR VARIOUS MODES
OF SINGLE ENGINE OPERATION \((3)\) S. L. STATIC ST'D DAY
TIP SPEED = 700 F. P. S.

TWIN ENGINE DUCT CONFIGURATION WITH ONE-HALF
OF EACH DUCT EXIT BLOCKED

SEPARATE DUCTING SYSTEM FOR EACH ENGINE.
ALSO, COMPLETE TIP BLOCKAGE OF ONE DUCT

GAS EXHAUSTED THROUGH ONE DUCT AND NOZZLE
IN EACH BLADE EXCEPT FOR LEAKAGE
(LOW PRESSURE DUCTS SEALED AT ROOTS).

CORRESPONDS TO MEASURED
LEAKAGE RATE ON ROTOR BLADES

GAS EXHAUSTED THROUGH ONE DUCT AND NOZZLE
IN EACH BLADE EXCEPT FOR LEAKAGE
(LOW PRESSURE DUCTS VENTED TO ATMOSPHERE AT ROOTS).

SONIC THROAT AT ENGINE
EXIT TO MAINTAIN ENGINE
OPERATING POINT, TWIN ENGINE
DUCT AND EXIT CONFIGURATION.

NO CHANGE FROM TWIN
ENGINE CONFIGURATION

THOSE POINTS IDENTIFIED BY \(\oplus\)
CORRESPOND TO PRESSURE EQUALIZATION
BETWEEN FORWARD AND REAR
DUCTS AND THEREFORE
NO INTERLEAKAGE.

1.) MAXIMUM POWER WITH TWO ENGINES AT SAME CONDITION = 2900 HP
2.) BASE DRAG OF EXITS WITH NO FLOW IS INCLUDED
3.) DEAD ENGINE IS ISOLATED BY DIVERTER VALVE

LEAKAGE FROM HIGH TO LOW PRESSURE DUCTS
(EXPRESS AS A FRACTION OF ONE ENGINE TOTAL FLOW)

Figure 7. Maximum Rotor Power for Various Modes of
Single-Engine Operation.
problem is solved. However, with complete blockage of one duct, all the flow passes through the remaining duct, causing the frictional pressure loss to be four times as great as if the same flow had been ducted through both ducts having half of their exit areas blocked. The latter system provides 1430 horsepower compared to 1380 horsepower for tip blockage (i.e., no leakage) of one duct. Additionally, the partial tip blockage of both ducts eliminates the interleakage problem and, due to reduced vane size, gives the advantage of smaller aerodynamic moments and loads at the valve axle.

The comparison cases for a system using no duct blockage, a sonic throat at engine exit to maintain on-line operation, and low-pressure duct ventilation to relieve base pressure at the exit of a blocked duct all show a drastic reduction in rotor power. Also, it is interesting to note that for a system employing separate ducting for each engine, the thrust corresponds to that of the single duct tip blockage case (1380 horsepower), 50 horsepower less than for the selected system.

The table below provides a comparison of the rotor power yielded by each system and shows the general advantage of the tip valve configuration which provides partial blockage of each duct.

<table>
<thead>
<tr>
<th>System</th>
<th>Available Rotor hp</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1430</td>
<td>Partial tip blockage of both ducts</td>
</tr>
<tr>
<td>2</td>
<td>1380</td>
<td>Separate duct system for each engine</td>
</tr>
<tr>
<td>3</td>
<td>1115</td>
<td>Gas exhausted through one duct, low pressure duct vented, no leakage</td>
</tr>
<tr>
<td>4</td>
<td>1060</td>
<td>Gas exhausted through one duct in each blade, 5% leakage</td>
</tr>
<tr>
<td>5</td>
<td>780</td>
<td>Sonic throat at engine exit</td>
</tr>
<tr>
<td>6</td>
<td>365</td>
<td>No change from twin engine configuration</td>
</tr>
</tbody>
</table>

Improvement from original System #4 to System #1 = \(\frac{1430 - 1060}{1060} = \frac{350}{1060} = 33\% \)
6. VALVE AERODYNAMIC LOADS AND TEMPERATURE GRADIENTS

Pressure Loads on Vane

The pressure loads on the closed cascade diverting vanes are almost entirely due to duct static pressure since the upstream static pressure is approximately 97 percent of the total pressure. A negative pressure gradient occurs on the vanes in the direction of flow due to the acceleration of fluid in passing from full duct area to the smaller area. This pressure gradient is assumed linear. Also, the rotor tip vortex causes a subambient pressure at the loaded rotor tip, resulting in a downstream pressure on the vanes to be estimated as \(P_{amb} - 1.5 \frac{q_{blade}}{\rho} \) at S. L. standard conditions; where \(q_{blade} \) is the dynamic pressure at the rotor tip at 240 rpm.

The resulting pressure differentials at the edges of the vanes are given below for two power levels for the T64-GE-6 engine.

<table>
<thead>
<tr>
<th></th>
<th>Max. Power (psi)</th>
<th>Military Power (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream edge of vane in forward duct</td>
<td>32.2</td>
<td>30.8</td>
</tr>
<tr>
<td>Downstream edge of vane in forward duct</td>
<td>26.0</td>
<td>25.2</td>
</tr>
<tr>
<td>Upstream edge of vane in rear duct</td>
<td>32.2</td>
<td>30.8</td>
</tr>
<tr>
<td>Downstream edge of vane in rear duct</td>
<td>31.0</td>
<td>29.6</td>
</tr>
</tbody>
</table>

(Corresponding locations are shown in Figure 8.)

Aerodynamic and Inertia Moments

The forces acting on the cascade diverting vanes were computed to determine if the vanes will remain in the through position until manually closed for one-engine operation. The effects of the weights of the linkage and control system were also considered. Since both vanes are interconnected, the system was analyzed by taking a summation of moments about the forward diverter vane.
PRESSURE DIFFERENTIALS ALONG EDGES OF VANES

FORWARD DUCT

\[
\frac{A_{2F}}{A_{1F}} + \frac{A_{2R}}{A_{1R}} = \frac{1}{2.8} + \frac{1}{1.55} = 1.00
\]

\[
A_{2F} + A_{2R} = \frac{1}{2} \left[A_{1F} + A_{1R} \right] = A_{1F} = A_{2F}
\]

Figure 8. Pressure Differentials Along Edges of Vanes.
The conditions investigated are maximum power at 240 rotor rpm and maximum power at zero rotor rpm (conservative estimate simulating starting conditions).

Results indicate that the vane aerodynamic forces create a negative moment (nose down) about the pivot due to the pivot point being located aft of the aerodynamic center. However, as shown in Figure 9, the net resulting moment is positive due to the high moments from the centrifugal force of the mass of the linkage and control system. The large increase in positive moment at approximately 10 degrees vane angle is due to the aft shift of the aerodynamic center to approximately 50 percent chord resulting from vane stall.

The dash curve on Figure 9 shows the conservative estimate of the negative aerodynamic moments about the vane during a starting condition where the assumed gas velocities through the blade ducts are consistent with maximum engine power and zero rotor rpm.

The conditions investigated indicate that the vanes will remain in the through position except during the initial starting conditions.

Listed below are a few of the methods to overcome the negative aerodynamic moments of the vane during starting conditions.

a. Addition of a preload spring to maintain the vanes in the through position (approximately 100 inch-pounds preload).

b. Starting the rotor system on a single engine with vane closed until full rotor rpm is attained.

c. Relocating the vane pivot point forward of the aerodynamic center (1/4 chord).

Method "a" is the system selected for the research vehicle since "b" causes high thermal stresses across the vane and "c" causes a mismatch of present cascade geometry.

Temperature Gradients Across Vane

In order to estimate the temperature drop across the cascade valve, the following assumptions were made:

a. Valve closed after steady state has been reached (transient analysis showed this to be the most serious condition).

b. Temperature on the inboard side of the valve, \(T_1 = 1200 \) degrees Fahrenheit.
Figure 9. Total Moment About the Forward Vane.
c. Nozzle pressure ratio, NPR = 2.75, \(\gamma = 1.35 \).

d. Emissivity of all metal surfaces are equal, \(\varepsilon = 0.8 \).

e. Heat transmission between the valve and environment is by radiation only.

Extreme cases are analyzed with the environment temperature assumed at different levels to cover probable conditions. Effects of conduction and convection are counteracted by the conduction from hot parts and the leakage of hot gas. The isentropic exhaust conditions corresponding to a nozzle pressure ratio = 2.75 are Mach number = 1.31 and temperature ratio \(\left(\frac{T_4}{T} \right) = 1.3 \).

Thus, the temperature of the exit jet is \(T_4 = 1280 \) degrees R or 820 degrees Fahrenheit.

Nomenclature

- \(T_1 \) = Temperature of the inboard wall of the valve
- \(T_2 \) = Temperature of the outboard wall of the valve
- \(T_3 \) = Temperature of the cascade and vicinity
- \(T_4 \) = Temperature of the jet
- \(q/A \) = Heat transfer quantity per unit area
- \(\sigma \) = Stefan Boltzman constant

Case 1. No shielding from exhaust jet by cascade.

\[
T_1 = 1200^\circ F
\]
\[
T_3 = 820^\circ F; \text{ equal to the temperature of the jet}
\]
\[
T_3 = T_4
\]
\[
\frac{q}{A_2} = T_1^4 - T_2^4 = T_2^4 - T_3^4
\]
\[
T_2^4 = \frac{T_1^4 + T_3^4}{2} = \frac{7.57 + 2.69}{2} \times 10^{12} = 5.13 \times 10^{12}
\]
\[T_2 = 1510^\circ R \text{ or } 1050^\circ F \]
\[\Delta T = T_1 - T_2 = 1200 - 1050 = 150^\circ F \]

Case 2. Complete shielding from exhaust jet by cascade which is assumed to be at 600°F.

\[T_1 = 1200^\circ F \]
\[T_3 = 600^\circ F \]
\[T_2^4 = \frac{7.57 + 1.27}{2} \times 10^{12}; \]
\[T_2 = 1450^\circ R \text{ or } 990^\circ F \]
\[\Delta T = T_1 - T_2 = 1200 - 990 = 210^\circ F \]

Case 3. Complete shielding by cascade assumed to be at 400°F.

\[T_1 = 1200^\circ F \]
\[T_3 = 400^\circ F \text{ or } 860^\circ R \]
\[T_2^4 = \frac{7.57 - 0.55}{2} \times 10^{12} = 1.37 \times 10^{12} \]
\[T_2 = 1370^\circ R \text{ or } 910^\circ F \]
\[\Delta T = T_1 - T_2 = 1200 - 910 = 290^\circ F \]

Case 4. Complete shielding by cascade which exchanges radiation with the exhaust gas. (For this case, radiation of the hot gas is taken into account). \(T_2 \) and \(T_3 \) are unknown.

\[T_1 = 1200^\circ F \]
\[T_4 = 820^\circ F \]

It is also assumed that the cascade (represented by \(T_3 \)) on the outside exchanges radiation with the hot gas only.

\[\frac{q}{A_0} = 0.8(T_1^4 - T_2^4) = 0.8(T_2^4 - T_3^4) \text{ then } T_3^4 = 2T_2^4 - T_1^4 \]

also (see Reference 5 for definition of constants)

34
\[
\frac{q}{A\sigma} = e' \left[G T_4^4 - \alpha G T^4_S \right] = \frac{0.8 + 1}{2} \left[0.1 T_4^4 - 0.9 T_3^4 \right] \\
= 0.9 \left[0.1 T_4^4 - 0.9 T_3^4 \right] = 0.9 \left[0.1 T_4^4 - 0.9 (2 T_2^4 - T_1^4) \right]
\]

\[
T_2 = 1490^\circ R = 1030^\circ F \\
\Delta T = T_1 - T_2 = 1200 - 1030 = 170^\circ F
\]

On the basis of calculations of Case 1 through Case 4 with assumptions as stated, the temperature difference between the valve walls between the ribs does not exceed 300 degrees Fahrenheit. The temperature difference on the ribs of the valve is estimated not to exceed 200 degrees Fahrenheit.
7. REFERENCES

APPENDIX A

STRESS ANALYSIS

Duct Closure Valves

The following pages contain the stress analysis of the cascade closure valves and the operating mechanism. Loads on the valves are due to

i) Pressure

ii) Centrifugal effects

iii) Thermal gradients.

Information on (i) was obtained from Reference 12.
Information on (ii) was obtained from Reference 10.
Information on (iii) was obtained from Pages 33-35.

Analysis of the basic tip structure was made where this varied from the previous configuration, particularly in the areas where the valves are mounted. However, a general analysis of the structure inboard of the new tip assembly (which will have increased centrifugal loadings, due to increase of tip weight) has not been performed at this date and will be part of the redesign to steel spars.

Concept of Single Valve Located Inboard

The analysis of one duct operating alone, based on the concept of a valve located inboard, is found on page 80. This analysis indicates that the basic support structure for the duct is under strength for such a configuration.
Forces on Aft Vane

Two Conditions Considered

i) Max. Power + Over Rev.
ii) Max. Power + Zero RPM.

\[\text{Vane in Closed Position.} \]

\[\text{Rod \ (} \frac{3}{8} \ \text{in} \times 0.032 \ \text{in.} \text{)} \]

\[\theta = 7.5^\circ \]

\[P = 32.2 \ \text{psi \ (Limit)} \times 2.0 = 64.4 \ \text{psi \ (Ult.)} \]

\[P = 31.0 \ \text{psi \ (Limit)} \times 2.0 = 62.0 \ \text{psi \ (Ult.)} \]

\[F = \text{Centrifugal Force of Rod} \]

\[W_c = \text{Aft Vane Weighs \ 27 lbs} \]

\[\text{Rod Weighs \ 040 lbs} \]

\[\text{Pressure Loadings} \]

\[\text{Ref \ #12} \]

Centrifugal Loading

\[\text{At Sta. 333}^\circ \]

\[\text{"g" \ Factor = 857} \]

\[F_c = \frac{857 \times 0.44}{2} = 176 \ \text{lbs \ (Limit)} \times 1.5 = 255 \ \text{lbs \ (Ult.)} \]

\[\text{(Per Rod)} \]

\[W_c = 857 \times 0.27 = 231 \ \text{lbs \ (Limit)} \times 1.5 = 347 \ \text{lbs \ (Ult.)} \]

\[\text{(Total)} \]
AFT VANES (Cont'd)

Cond (i) Max Power + 240 rpm.

Pressure Load at Pivot

\[P_0 = 62.0 + \left(\frac{64.4 - 62.0}{5.31} \right) \times (6.31 - 2.02) \]

\[= \frac{68.49}{\text{lbs}} \]

Moments about Pivot \((M = \gamma + \psi) \)

\[\frac{64.4 + 63.49}{2} = 63.94 \text{ lbs} \] \(\text{(Avg. Pressure Point of Pivot)} \)

\[A = \frac{4.025 \times 2.02}{2} = 8.14 \text{ in}^2 \]

\[\bar{z} = 8.14 \times 1.01 = 8.23 \text{ in} \]

\[-0.72 \times 1.62 = 1.165 \text{ in} \]

\[\bar{z} = 7.065 \times 8.23 = 952 \text{ in} \]

\[M_0 = 7.065 \times 63.94 = 452 \text{ lbs in} \]

Cond (ii) \(\gamma = 7.42 \text{ in} \)

\[\text{Area Aft of Pivot} \quad 3.25 \times 4.025 = 13.25 \text{ in}^2 \]

\[P = \frac{13.45 + 62.00}{2} = \frac{61.745}{\text{lbs}} \]

\[\bar{z} = 1.464 \text{ in} \]

\[A \bar{z} = 21.80 \text{ in} \]

\[F_e = 25.5 \text{ lbs} \]

\[M_0 = 25.5 \times 0.30 \times 2 = 15 \text{ lbs in} \] \(\text{(Two Rods)} \)

\[W_0 = 34.7 \text{ lbs} \]

\[M_0 = 3.47 \times 0.23 = 80 \text{ lbs in} \]

Totals,

\[\text{Cond (i)} \quad 1345 - 452 + 15 + 80 = 988 \text{ lbs in} \quad P = 791 \text{ lbs} \]

\[\text{Cond (ii)} \quad 1345 - 452 = 893 \text{ lbs in} \quad P = 715 \text{ lbs} \]

\(P = \text{load in Two Rods} \)
Forces on Fwd Vane (Vane in Closed Position)

Two Conditions Considered

(i) Max Power + Over Rev.
(ii) Max Power + Zero Rpm.

$P =$ Load in Rods from Aft Vane

Neglect F_c (Acts Nearly Through the Pivot Point)

$W_c =$ Centrifugal Force of Vane

$T =$ Tension in Cables

Weight of Vane = 128 lbs

Pressure Loads on Vane
(Ref #12)

$P_1 = 32.2 \text{ psi (limit)} \times 2.0 = 64.4 \frac{\text{psi}}{\text{in}^2}$

$P_2 = 26.0 \text{ psi (limit)} \times 2.0 = 52 \frac{\text{psi}}{\text{in}^2}$

$P_o (at \ pivot) = 52.0 + \frac{(64.4 - 52) \times 3.84}{5.82} = 52.0 + 8.45 = 60.45 \frac{\text{psi}}{\text{in}^2}$

Average Pressure on Nose Portion $= \frac{64.4 + 60.45}{2} = 62.42 \frac{\text{psi}}{\text{in}^2}$

Average Pressure on Aft Portion $= \frac{52.0 + 60.45}{2} = 56.22 \frac{\text{psi}}{\text{in}^2}$

Centre of Load Line for Aft Portion
Assumed to lie on Centroid of Aft Portion (Conservative)
FWD. VANE (CONT.)

Nose Portion

\[A = 4.075 \times 1.78 = 7.26 \]
\[.60 \times .75 = .45 \]
\[\frac{7.26 - .45}{6.81} = .85 \text{ in}^2 \]

\[A_E = 7.26 \times .85 = 6.06 \]
\[.45 \times 1.53 = 1.89 \]
\[\frac{7.77}{6} = .85 \]

\[M_0 = 5.77 \times 62.42 \approx 360 \text{ lbs} \]

Aft Portion

\[A = 3.84 \times 4.075 = 15.65 \text{ in}^2 \]
\[A_E = 15.65 \times 1.92 \approx 30.00 \text{ in}^2 \]

\[M_0 = 30 \times 56.22 \approx 1685 \text{ lbs} \]

Nett Pressure

\[M_0 = 1685 - 360 = 1325 \text{ lbs} \]

\[W_c = 857 \times .28 = 240 \text{ lbs (limit)} \]
\[= 360 \text{ lbs (ult)} \]

\[P = 791 \text{ (cond i)} = 715 \text{ (cond ii)} \]
\[M_0 = 791 \times .65 = 514 \text{ lbs} \]
\[M_0 = 715 \times .65 = 464 \text{ lbs} \]

Totals.

\[\text{Cond (i)}: M_0 = 1325 + 356 + 514 = 2195 \text{ lbs. ins} \]
\[\text{Cond (ii)}: M_0 = 1325 + 464 = 1789 \text{ lbs. ins} \]

Tension in Cables. (T = Load in Two Cables)

\[\text{Cond (i)}: T = 1250 \text{ lbs (ult)} \]
\[\text{Cond (ii)}: T = 1023 \text{ lbs (ult)} \]

Limit Load (for actuator) = \(\frac{988 + 95}{2} \times .65 + \frac{1325 + 356}{2} \times \frac{1.75}{1.5} \approx 680 \text{ lbs} \)
Loads on Pivot Points

1) Forward Vane

Note: These are total loads to pivot (not split into top & bottom reactions)

Cond (i)

\[T = 1250 \text{ lb} \]

\[P = 781 \text{ lb}, \text{ Resultant 740 lb} \]

Cond (ii)

\[T = 1023 \text{ lb} \]

\[P = 715 \text{ lb}, \text{ Resultant 800 lb} \]

Pressure 1205 lb
LOADS ON PIVOT POINTS

6) AFT VANE

Note: These are total pivot loads (not split in top & bottom reactions)

Cond (i)

Cond (ii)

P = 791#

Ref. Axis Vane

P = 715#

Ref. Axis Vane

Pressure Load 1294#

Resultant 1375 lb

Pressure Load 1294#

Resultant 1040#
Stress Analysis of Vanes

Forward Vane — DWG. No 385-1104
Aft. Vane — DWG. No 385-1107

From an examination of size, overhang from pivot, and general loading, it can be seen that the forward vane is the more critical of the two. The analysis of the forward vane covers the aft vane as the sections of ribs, spars, etc., were made similar.

Since the analysis of the fwd. vane was completed, an increase in vane thickness has taken place. This means that the torsion box sizes have increased and the shears determined on page will be decreased. This change has not been corrected and so the torsion shears are conservative. However, the increased size has been used for checking of rib sections for bending (etc.).

The material of the vanes is Rene' 41, the skins being brazed to the machined framework, information on this brazing was taken from the catalogue ref. # 9. This gives the shear strength of a lap joint as 30,000 psi. at 1200°F. Because of — 1) The lack of information on creep-rupture strength of this braze
2) Improbability of obtaining 100% surface bonding with small overlap distances
3) Catalogue allowables are for the brazing stainless steels. We are using Rene' 41 which may lower the braze alloy strength.

— the allowable braze shear strength was taken to be 10,000 psi. This is thought to be conservative.
Forward Vane

Thermal Stresses

a) **Temp on Inside = 1200°F**

b) **Temp Gradient Across Vane = 200°F**

Since the structure is not restrained (i.e., it is free to deflect in bending) and the temperature gradient is linear, the thermal stresses are theoretically zero.

However, there is a small gradient between the center of the panels and the edges, on the hot side of the vanes.

Assume

i) Fully Restrained Panel

ii) **Gradient = 50°F**

\[\alpha = 8 \times 10^{-6} \text{ in/°F} \]

\[\delta = 8 \times 50 \times 10^{-6} \times \Delta T \]

\[\frac{f_c l}{E} = \delta \]

\[f_c = E \times 8 \times 50 \times 10^{-6} \]

\[E = 24 \times 10^6 \]

\[f_c = 24 \times 400 \]

\[= 9600 \text{ lb/} \text{in}^2 \]

Thermal Stresses Would Relieve the Stresses Due to Pressure Loads.

As the Thermal Stresses are Low, This Relief Will Be Neglected.
Forward Vane (Cont'd)

Euler \(P_{cr} \) = \(\frac{2\pi^2}{\frac{1}{3}} \) = 15.2 lbs per 1" strip

\[A = 0.10 \quad \therefore \quad f_{cr} = \frac{15.2}{0.10} = 152 \text{ psi.} \]

This indicates that the skin doesn't buckle under the thermal stresses, (if fully restrained at edges)

Section of Vane

\[A_1 = \text{Area - Nose Torsion Box} - \frac{16 \times 0.4}{2} = 0.32 \text{ in}^2 \]

\[A_2 = \text{Area - Aft Torsion Box} - \frac{36 \times 0.4}{2} = 0.72 \text{ in}^2 \]

Relative Stiffness Determines Distribution of Torque

Total Torque = \(T_1 \)
Nosebox Torque = \(T_1 \)

\[\frac{T_1}{T_o} = \frac{a_{12} \mu_1 + a_2}{\alpha_1 \gamma_1^2 + a_2 + a_{12} \mu_1^2} \]

\[a_{12} = \frac{P_{12}}{G_{12} \mu_{12}} = \frac{4}{G_{12} \cdot 1.2} \]

\[a_1 = \frac{P_1}{G_{12} \mu_{12}} = \frac{3.2}{G_{12} \cdot 0.1} \]

\[a_2 = \frac{P_2}{G_{12} \mu_{12}} = \frac{7.2}{G_{12} \cdot 0.1} \]

\[a_{12} = 3.83 \quad a_1 = 320 \quad a_2 = 720 \]
FWD VANE (Cont'd)

\[\frac{y_1}{A_1} = \frac{0.32}{A_1} = 0.25 \quad y_1^2 = 5.05 \]

\[\mu_1 = 1 + \frac{A_1}{A_1} = 3.25 \quad \mu_1^2 = 10.6 \]

\[\frac{T_1}{T_0} = \frac{3.33 \times 3.25 + 720}{320 \times 5.05 + 720 + 3.33 \times 10.6} = 0.272 \]

\[T_1 = 0.272 T_0 \quad \frac{y_1}{2A_1} = \frac{272 T_0}{44} = 6.35 T_0 \]

\[T_2 = 728 T_0 \quad \frac{y_2}{2A_2} = \frac{728 T_0}{144} = 5.05 T_0 \]

Pressure Loading on Ribs.

The Centrifugal loading will be distributed in a similar way.

Total \(W_c = 360 \text{ lbs} \). **Resolve @ 40°** \(W_c \sin 40° = \frac{272}{6} \text{ lbs} \)

Root Rib \(W = \frac{46.3}{6} \text{ lbs} \) \(\frac{46.3}{6} = 9.3 \% \)

Int. Rib \(W = \frac{91}{3} \text{ lbs} \) \(\frac{91}{3} = 16.2 \% \)

These values will be added to pressure loading.
Forward Vane (Cont?)

Intermediate Ribs

LE. Load = $1.35 \times 64.4 = 87 \text{k}\% + 16.2 = 103.2 \text{k}\%$

TE. Load = $1.35 \times 52.0 = 70.2 \text{k}\% + 16.2 = 86.2 \text{k}\%$

\[
R = 86.2 \left(1.78 + 3.84\right) + \frac{(103.2 - 86.2)(3.84 + 1.78)}{2}
\]

\[= 486 + 48 = 534 \text{ lb}\]

\[
R_x = 486 \times 2.81 + 48 \times 1.873 = 1367 + 90 = 1457 \text{ lb}
\]

\[
\bar{z} = 2.73^\circ
\]

\[
T_o = (2.73 - 1.78) \times 534 = 506 \text{ lb} \text{ in}
\]

\[
q_1 = 0.435 T_o = 220 \text{ lb/ft}
\]

\[
q_2 = 0.505 T_o = 256 \text{ lb/ft}
\]

Direct Shear Load (on spar) = 534 lbs.

\[
6^\circ \text{ deep} \quad q_5 = 534 \times \frac{50}{50} = 1068 \text{ lb/ft}
\]

\[
\text{Kn Rib Shear} = \frac{103.2 \times 26.4 \times 1.6 + 14 \times 220}{2}
\]

\[= \frac{162 + 88}{2} = 250 \text{ lbs}
\]
FWD VANE (Cont'd) INTERMEDIATE RIBS

Rib Shear, \(\beta B \) (3.6 Fwd of T.E.)

\[
\beta B = \frac{98.4 + 86.2 \times 3.6 \times 4 \times 256}{2} = 332 - 102 = 230 \text{ lb}.
\]

Bending Moments

\[
M_{xx} = 2M_{g} + 162 \times 9 \text{ (approx)}
\]

\[
= 2 \times 32 \times 220 + 146 = 287 \text{ lb}.\text{in}.
\]

\[
M_{yy} = 2M_{g} - 332 \times 1.8 \text{ (approx)}
\]

\[
= 2 \times 72 \times 256 - 597 = 228 \text{ lb}.\text{in}.
\]

Section WW

\[
I = 0.003 \times 2 \times 275^2 + \frac{0.55 \times 0.06}{12}
\]

\[
= 0.00454 + 0.00833 = 0.00523 \text{ in.}^4
\]

\[
f = \frac{M_{c}}{I} = \frac{287 \times 275}{0.00523} = 61,000 \text{ lb/}^2
\]

M.S. High

Braze Shear

\[
q = \frac{V_{0}}{I}
\]

\[
q = 0.003 \times 275 = 0.825 \text{ lb/in.}
\]

\[
q = \frac{250 \times 0.00825}{0.00523} = 159 \text{ lb/in.}
\]

+ Torque Shear 220 lb/in.

Total = 220 + 159 = 379 lb/in.

\[
f_s = \frac{379}{0.06} = 6,320 \text{ psi}
\]

Allowable 10,000 psi. **M.S. + 58**

Note Braze Allowable is conservatively estimated from Vendor Data. (See Reference # 9.)
Forward Vanes (Cont'd)

END RIBS

LE Pressure Load = 46.4 x 68 = 43.9 + 83 = **52.2**

TE Pressure Load = 52.0 x 68 = 35.3 + 83 = **45.6**

![Diagram of vanes]

Nosebox Torque From Int. Rib = 141 lb.in.

New Torque Box Area = .254 sq.

\[\theta_1 = \frac{141}{2 \times 254} = 278 \text{ lb/in.} \]

\[R = 45.6 \times 4.84 + 7.6 \times 4.84 = 221 + 18 = 239 \text{ lb.} \]

\[R_z = \frac{221 \times 2.42 + 18 \times 1.61}{2} = 535 + 29 = 564 \text{ lb-inci.} \]

\[M_0 = 506 + 239 \times 1.36 = 325 + 506 = 831 \text{ lb-inci.} \]

\[S = 267 + 267 + 239 = 775 \text{ lb.} \]

Shear at \(\theta_\theta \)

\[V = \frac{51.25 + 45.6 \times 3.6 + 4 \times 256}{2} = 174 + 102 = 276 \text{ lb.} \]

Bending Moments

\[M_\theta = 2A_\theta q_2 + 174 \times 1.8 \text{ (Air)} \]

\[= 2 \times .72 \times 256 + 313 = 682 \text{ lb-in.} \]
Forward Vane (Cont.)

End Ribs

Section BB.

\[I_{MA} = 2 \times 00275 \times 275^2 + \frac{125 \times 55^2}{12} \]
\[= 0.00416 + 0.00174 \]
\[= 0.002156 \text{ in}^4 \]

\[f = \frac{M_e}{I} = \frac{682 \times 275}{0.002156} = 87,000 \text{ in}^3/\text{lbf} \]

Braze Shear
\[\frac{q}{W} = \frac{V_0}{I} = 0.00275 \times 275 \]
\[q = \frac{276 \times 0.00275}{0.002156} = 57 \text{ lbs/in} \]

+ Torque Shear

Total = 57 + 256 = 353 lbs/in

To this must be added the Membrane Pull (Page 14)

\[w = 421 \text{ lbs/in} \]

\[z = \frac{55 \times 125^2}{6} = 96,750 \text{ lbs/in} \]

Total Braze Shear = 481 + 353 = 834 lbs/in

\[f_s = 4400 \text{ lbs/in} \]

Section Across Splines

Nett \[M_e = \frac{2A_y}{2} + 186 \times 1.9 \]
\[+ 267 \times 24 \]
\[- 930 \]
\[= 369 + 333 + 64 - 915 \]
\[= 371 \text{ lbs in} \]

\[M = \frac{371}{.50} = 742 \text{ lbs} \]

\[P = \frac{103,000}{159,000} \text{ lbs/in}^2 \]

\[A = .06 \times 12 = .0072 \text{ in}^2 \]

\[@ 159,000 \text{ M.S. + 45} \]
Forward Vane (Cont'd)

Central Spar

\[M = 534 \times 1.35 = 720 \text{ lbs. in.} \]
\[S = 534 \text{ lbs.} \]
\[g = \frac{524}{12} = 890 \text{ ft/}^2 \]

Section

\[I_{na} = 2 \times 10 \times 0.1 \times 0.3^2 + \frac{60^3 \times 10}{12} \]

\[= 0.0072 + 0.015 = 0.0225 \text{ in.} \]

\[f = \frac{M_{c}}{I} = \frac{720 \times 0.3}{0.0225} = 81,000 \text{ in.} \]

\[Q = 0.004 \times 3 = .012 \text{ ft} \]

Braze Shear

\[\frac{VQ}{I} = \frac{534 \times 0.012}{0.0225} = 254 \text{ ft/}^2 \]

**Braze t_s = 2.540 ft/}^2 \]

Reducing the Section to .06

\[I = 0.006 \times 0.3^2 + 0.06 \times 0.6^2 \]

\[= 0.0054 + 0.00108 = 0.00652 \text{ in.} \]

\[f = \frac{720 \times 0.3}{0.00652} = 133,000 \text{ in.} \]

Braze Shear

\[\frac{VQ}{I} = \frac{534 \times 0.003 \times 0.3}{0.00652} = 297 \text{ ft/}^2 \]

**Braze t_s = 4.950 \text{ ft/}^2 \]

\[\frac{f_s \text{ on spar}}{46} = \frac{890}{46} = 14,800 \text{ ft/}^2 \]

55
Shears

\(\gamma_i = \text{Torque Shear} = 256 \text{ kips} \)

\[b = 1.35 \quad a = 1.8 \quad b/a = 0.70 \quad K = 0.70 \quad E = 25 \times 10^6 \text{ kips/ft}^2 \]

\[f_{cr} = 25K \left(\frac{1000t}{b} \right)^2 = 9600 \text{ kips/ft} \]

\[\frac{w}{f_{cr}} = 2.66 \]

\[f_s = \frac{25600}{12}/t^2 \text{ Diag. Tens Factor} \]

\[w = 0.20 \times 256 = 51.2 \text{ kips} \]

Pressure Stresses

(Ref # 8, p. 1724)

\[\frac{P}{E} = \frac{44.4 \times 10^{-6}}{25} = 2.58 \times 10^{-6} \]

\[\left(\frac{b}{t} \right)^2 = 1.82 \times 10^{-6} \]

\[\left(\frac{b}{t} \right)^4 = 3.32 \times 10^{-6} \]

\[\alpha = 1.33 \quad P/E \left(\frac{b}{t} \right)^4 = 855 \quad \text{Extrapolated} \quad (\text{conservatively}) \]

* Max Stress \(\sigma_1 = \frac{60 \times 25 \times 10^{-6}}{1.82 \times 10^{-6}} = \frac{37000 \text{ kips/ft}^2}{370 \text{ kips/ft}^2} = 3700 \text{ ksi} \)

Membrane Stress \(\sigma_3 = \frac{27 \times 25 \times 10^{-6}}{1.82 \times 10^{-6}} = \frac{37000 \text{ kips/ft}^2}{370 \text{ kips/ft}^2} = 370 \text{ ksi} \)

Membranepull = 370 ksi + 51.2 (TF) = 421.2 ksi

This is Max in mid span, decreasing to zero at ends.

To simplify, replace by equiv. point load at mid span

\[W = \frac{1.8 \times 421}{2} = 380.1 \text{ kips} \]

* \(\sigma_1 = \text{Max Stress - Simply Supported Edges} \)

56
SKINS (CONT'D)

Stiffness Factors

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE_1</td>
<td>$3EI_1$</td>
<td>$3EI_2$</td>
</tr>
<tr>
<td>L_1</td>
<td>L_2</td>
<td>L_2</td>
</tr>
</tbody>
</table>

Fixing Moments

$$\frac{WL}{8} = \frac{380 \times 1.8}{8} = 86 \text{ ft-lb}$$

![Hardy-Cross Moment Diagram]

<table>
<thead>
<tr>
<th>Moment</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-86</td>
<td>86</td>
<td>86</td>
<td>+36</td>
</tr>
<tr>
<td>-43</td>
<td>+86</td>
<td>-12</td>
<td>-86</td>
</tr>
<tr>
<td>+15</td>
<td>+31</td>
<td>+12</td>
<td>0</td>
</tr>
<tr>
<td>-71</td>
<td>+117</td>
<td>-117</td>
<td>0</td>
</tr>
</tbody>
</table>

FREE BM = 190 \times 0.9 = 171

![BM Diagram]

Section AA

$$Z = \frac{425^2 \times 0.27}{6} = 0.00070 \text{ in}^2$$

$$M = \frac{113}{0.0007} = 160,000 \text{ psi}$$

M.S. = 0.06

Assuming 1.10 Plastic Bending Factor (Conservative)

Allowable = 1.1 \times 160,000 = 176,000
Pivot MTG. FORWARD VANE

Moment = 830 lbf in.

Min Section
- \(0.375\) in.
- \(0.184\) in.

Polar I

\[
I_p = \frac{\pi (D^2 - d^2)}{32} = \frac{\pi}{32} (0.375^2 - 0.184^2)
\]

\[
I_p = 0.001802, \quad D = 0.375
\]

\[
Z_p = 0.0096 - \frac{2}{3}
\]

\[
\tau_0 = \frac{I_p}{Z_p} = \frac{830}{0.0096} = 86,500 \text{ lbf in}^2
\]

Pivot Load

\[
\frac{1875}{2} = 688 \text{ lbf}
\]

\[
A = 110 - 0.029
\]

\[
= 0.081
\]

\[
\tau_0 = \frac{688}{0.081} = 8,500 \text{ psi}
\]

Total \(\tau_0 = 86,500 + 8,500 = 95,000 \text{ psi}

Allowable \(\tau_0 = 110,000 \text{ psi}.

M.S. + 0.05

Connecting Rod

\[
P = 396 \text{ lbf}, \quad A = 0.0156 \text{ in.}^2, \quad \frac{P}{A} = 25,400 \text{ psi}
\]

\[
e = 0.16, \quad M = 0.16 \times 396 = 63.4 \text{ lbf in} * \text{ SEE NEXT PAGE}
\]

\[
I = \frac{\pi}{64} (D^4 - d^4) = \frac{\pi}{64} (0.375^4 - 0.184^4) = 0.00005 \text{ in.}^4
\]

\[
(50 \times 10^{-6})
\]

58
Connecting Rod

\[\text{Section Modulus} = \frac{0.00035}{0.935} = 0.000384 \]

\[f = \frac{P + M}{A} = 25,400 + 105,000 \]

* \[M = 396 (1.16 - 0.02) = 56 \text{ kips} \]

\[f = 180,400 \frac{\mu \text{in}}{3 154,000} \]

Deflection Under Limit Loads

Center Portion \[M = 40 \text{ kips in} \] (I constant)

1st Approx.

\[\Sigma M_{\text{max}} = 40 \times 2 = 80 \]

\[\Sigma E M_{\text{max}} = 80 \times 2 = 80 \]

\[\delta = \frac{80}{EI} = \frac{80}{25 \times 50} = 0.004' \]

M would decrease to \[10 \times 20 = 20 \text{ kips in} \]

2nd Approx.

\[\Sigma M = 20 \]

\[\Sigma E M = 20 \]

\[\delta = 0.006' \]

3rd Approx.

\[M = 30 \]

\[\Sigma M = 30 \]

\[\Sigma E M = 124 \]

\[M = 26 \text{ kips in} \]

4th Approx.

\[M = 25 \]

\[\delta = \frac{28}{25 \times 50} = 0.022 \]

\[M = 27.6 \text{ kips in} \]

* (Limit)

5th Approx.

\[\delta = 0.023' \text{ Approx.} \]

\[\theta = \frac{0.023}{2} = 0.0115 \text{ rad.} \]

\[\theta = 0.002 = 0.006' \]

Total stretch = \[\frac{P l}{AE} + 2 \times 0.001 \]

\[= \frac{200 \times 8}{15600 \times 25} + 0.002 \]

\[= 0.004 + 0.002 = 0.006' \]
LEVER — AFT VANE

\[
\begin{align*}
F_v &= 3240 \text{ lb} \\
F_n &= 2270 \text{ lb} \\
M_{wK} &= 324 \text{ kips-in} \\
Z_{xx} &= 2 \times \frac{3^2}{2} = 0.003 \\
M &= \frac{105,000 \text{ kips} \cdot \text{in}^2}{0.01} = 5,800 \text{ kips} \cdot \text{in}^2 \\
M_a &= 324 \times 1.5 = 485 \text{ kips-in} \\
\text{Total} &= \frac{111,800 \text{ kips} \cdot \text{in}^2}{120,000} = \text{M.S. + 34} \\
\text{Section BB} \\
M &= 3 \times 324 = 972 \text{ kips-in} \\
\frac{Z}{P} &= \frac{48.6 \text{ kips}}{227} = 0.0064 \text{ in}^2/\text{lb} \\
\frac{M}{Z} &= \frac{48.5}{0.0064} = 7,600 \text{ kips-in} \\
\frac{P}{A} &= \frac{227}{2 \times 0.4 \times 0.31} = 9,100 \text{ kips-in}^2 \\
\text{Total} &= 85,100 \text{ kips-in}^2 = \text{M.S. HIGH} \\
\text{Section XX} \\
\text{Torque} &= 485 \text{ kips-in} \\
Z' &= 32 \text{ kips-in} (\text{Ref. P. 19}) \\
\tau &= 59,500 \text{ kips-in}^2 \\
\text{M.S. HIGH — DIAS. MADE THE SAME AS THE FWD MTG. TO KEEP SAME SIZE OF SPLINES (SIMPLICITY OF MACHINING)} \\
\frac{\text{3/16 Dia Pin}}{\text{Ref # 6, Page 212, Single Shear 5/16, DS = 910, MS High}}
\end{align*}
\]
Tip Structure

a) Fwd Vane Pivot

\[q = \frac{200}{3.75} \text{ lb/in.} \]

Bearing of Bush

\[f_s = \frac{58}{.032} = 1,850 \text{ psi} \]

\[f_y = \frac{400}{.125 \times .032} = 20,000 \text{ psi} \]

M.S. High
Loads To Ribs Tip - Fwd Portion

-39 Rib

-37 Rib

-35 Rib
loads on outer ribs (cont'd)

-30 Rib will be most critical of three (propped cantile)

Limit Pressure = 32 psi; **Load Factor 1.5**

\[\frac{1.5 \times 32}{7} = 48 \text{ psi.} \]

\[\omega_1 = 48 \times 1.25 = 60 \text{ kips.} \]

\[\omega_2 = 48 \times (1.125 + 2.00) = 126 \text{ kips.} \]

\[P = \frac{66 \times 3.6 \times 3}{8} = 51 \text{ lbs.} \]

\[\frac{P}{2} = 40 \text{ lbs. (App.)} \]

\[M_0 = 60 \text{ kips} \]

\[P_1 = 40 \text{ lbs.} \]

\[P_2 = 38 \text{ lbs.} \]

\[R_0 = 126 \text{ lbs.} \]

Approximation

\[60 \times 7.4 = 444 \text{ lbs.} \]

\[16 \times 3.8 = 251 \text{ lbs.} \]

\[M_0 = \frac{444 \times 7.4}{8} + \frac{3 \times 40 \times 7.4}{16} + \frac{251 \times 5.5 \times 13}{2} \left(\frac{2 - 5.5}{7.4} \right) \]

\[= 441 + 55.6 + 228 = 624 \text{ lbs. in.} \]

\[R_0 = \frac{444 \times 3.7 + 251 \times 5.5 + 40 \times 3.6 - 624}{7.4} \]

\[= 1640 + 1380 + 144 - 624 = 2474 \text{ lbs. in.} \]

\[R_0 = 334 \text{ lbs.} \]

Check

\[R_0 = \frac{3 \times 444}{8} + \frac{5 \times 40}{16} + \frac{251 \times (5.5)^2}{2} \left(\frac{3 - 5.5}{7.4} \right) \]

\[= 167 + 12 + 169 = 348 \text{ lbs.} \]

\[\frac{1}{2} E \frac{R}{L} = 340 \text{ lbs.} \]

\[M = 630 \text{ lbs. in.} \]

Max El due to \(q \) = 20 lbs

\[F = 200 - 27 \times 3.8 = 100 \text{ lbs. (App.)} \]

Tension

63
Duct Closure Valve System
-39 Rib CONT'D

\[\begin{align*}
\text{Max. } y &= \frac{540}{7} = 77.1 \text{ in} \\
\text{t} &= 0.20 \\
\end{align*}\]

\[f_2 = 24,000 \text{ psi}^2\]

Spanwise EM across 93 FWD FLANGE

\[M = 40 \times 2 = 80 \text{ kip in}^2\]

Section (Mid Span)

\[\begin{align*}
\frac{M}{A} &= 160 \text{ kip in}^2 \\
A &= 0.25 \times 0.032 + 0.50 \times 0.010 \\
&= 0.008 + 0.005 = 0.013 \\
f &= \frac{160}{0.013} = 12,300 \text{ kip/in}^2 \\
\text{M.S. High.}
\end{align*}\]
-39 Rib Cont'd.

Section AA.

\[M = 275 \text{ kips} \]

Assumption

Thermal Stresses in (\(\alpha \) + \(\beta \))

Same as for Section BB.

\[= 50,000 \text{ ksi}^2 \]

<table>
<thead>
<tr>
<th>(f)</th>
<th>(a)</th>
<th>(b)</th>
<th>(A)</th>
<th>(h)</th>
<th>(A_h)</th>
<th>(y)</th>
<th>(y^2)</th>
<th>(A_y)</th>
<th>(ab^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.250</td>
<td>.30</td>
<td>.0075</td>
<td>.015</td>
<td>.00012</td>
<td>.318</td>
<td>.072</td>
<td>.00454</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.200</td>
<td>.20</td>
<td>.0040</td>
<td>.015</td>
<td>.00014</td>
<td>.269</td>
<td>.062</td>
<td>.00425</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.220</td>
<td>.16</td>
<td>.0036</td>
<td>.120</td>
<td>.00043</td>
<td>.164</td>
<td>.027</td>
<td>.00010</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.220</td>
<td>.360</td>
<td>.0076</td>
<td>.120</td>
<td>.00043</td>
<td>.164</td>
<td>.027</td>
<td>.00010</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.120</td>
<td>.00</td>
<td>.0038</td>
<td>.420</td>
<td>.00167</td>
<td>.186</td>
<td>.018</td>
<td>.00003</td>
<td>.00009</td>
</tr>
<tr>
<td>6</td>
<td>.500</td>
<td>.028</td>
<td>.0234</td>
<td>.420</td>
<td>.00167</td>
<td>.186</td>
<td>.018</td>
<td>.00003</td>
<td>.00009</td>
</tr>
</tbody>
</table>

\[y_c = .284 \]

\[Z_c = .0058 \text{ in}^3 \]

Total

\[I = .00165 \text{ in}^4 \]

\[\frac{M}{Z} = \frac{275}{165} = \frac{47,400}{M.S.} \text{ in}^2 \]

Total

\[f_c = 47,400 + 50,000 \]

\[= 97,400 \text{ ksi}^2 \]

Allowable \[106,000 \text{ ksi}^2 \]

Ref. \#11 p. 5.2.5.10.
Section B-B (Max BM)

M = 460 lbs. ins.

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>b</th>
<th>Ax</th>
<th>bx</th>
<th>(\Delta T \times 10^6)</th>
<th>(E \times b)</th>
<th>(\Delta P \times \frac{10^3}{E})</th>
<th>(\frac{\Delta P}{b})</th>
<th>Res. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.55</td>
<td>.010</td>
<td>.0055</td>
<td>.005</td>
<td>.0003</td>
<td>343</td>
<td>.15</td>
<td>.00065</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.20</td>
<td>.020</td>
<td>.0040</td>
<td>.020</td>
<td>.0002</td>
<td>228</td>
<td>.105</td>
<td>.00043</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.27</td>
<td>.032</td>
<td>.0086</td>
<td>.026</td>
<td>.0002</td>
<td>228</td>
<td>.104</td>
<td>.00059</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.32</td>
<td>.052</td>
<td>.0167</td>
<td>.062</td>
<td>.0020</td>
<td>646</td>
<td>.021</td>
<td>.0003</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.20</td>
<td>.040</td>
<td>.0112</td>
<td>.090</td>
<td>.0025</td>
<td>322</td>
<td>.014</td>
<td>.00022</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.10</td>
<td>.020</td>
<td>.0035</td>
<td>.400</td>
<td>.0028</td>
<td>252</td>
<td>.014</td>
<td>.00024</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.60</td>
<td>.026</td>
<td>.9284</td>
<td>.484</td>
<td>.0140</td>
<td>276</td>
<td>.010</td>
<td>.00070</td>
<td></td>
</tr>
</tbody>
</table>

Pressure Stresses

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>(A_x)</th>
<th>(h)</th>
<th>(\Delta L)</th>
<th>(\Delta L^2)</th>
<th>(A_y)</th>
<th>(\Delta L^2)</th>
<th>(\Delta P)</th>
<th>(\frac{\Delta P}{b})</th>
<th>Res. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.55</td>
<td>.010</td>
<td>.0055</td>
<td>.005</td>
<td>.0003</td>
<td>343</td>
<td>.15</td>
<td>.00065</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.20</td>
<td>.020</td>
<td>.0040</td>
<td>.020</td>
<td>.0002</td>
<td>228</td>
<td>.105</td>
<td>.00043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.27</td>
<td>.032</td>
<td>.0086</td>
<td>.026</td>
<td>.0002</td>
<td>228</td>
<td>.104</td>
<td>.00059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.32</td>
<td>.052</td>
<td>.0167</td>
<td>.062</td>
<td>.0020</td>
<td>646</td>
<td>.021</td>
<td>.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.20</td>
<td>.040</td>
<td>.0112</td>
<td>.090</td>
<td>.0025</td>
<td>322</td>
<td>.014</td>
<td>.00022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.10</td>
<td>.020</td>
<td>.0035</td>
<td>.400</td>
<td>.0028</td>
<td>252</td>
<td>.014</td>
<td>.00024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.60</td>
<td>.026</td>
<td>.9284</td>
<td>.484</td>
<td>.0140</td>
<td>276</td>
<td>.010</td>
<td>.00070</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\frac{\Delta P}{b} = 0.822 \quad Z_x = 0.158 \quad \text{Total I} = 0.004626 \]

\[\frac{\Delta P}{b} = 0.348 \quad Z_c = 0.133 \]

\[f_{\text{max}} = \frac{460}{0.155} + 43,000 = 72,100 \quad \frac{\Delta P}{b} \]

\[f_{\text{max}} = \frac{460}{0.133} + 49,000 = 83,600 \quad \frac{\Delta P}{b} \]

\[f_c = 106,000 \quad \frac{\Delta P}{b} \]

\[\text{M.S. + 27} \]

\[\frac{\Delta P}{b} \frac{\Delta L}{L} \]

Local Instability

Ref: II, p. 525. 10
-39 Pie (Cont'd)

SECTION C-C — (REVISED)

M = 375 kip in

Assume Thermal Stresses

\[\Delta = \frac{500 \text{kips}}{A} \]

I = Element (1)

<table>
<thead>
<tr>
<th>f</th>
<th>a</th>
<th>b</th>
<th>A</th>
<th>h</th>
<th>Ah</th>
<th>y</th>
<th>y'</th>
<th>Ay^2</th>
<th>ab^2/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.31</td>
<td>.030</td>
<td>.0031</td>
<td>.015</td>
<td>.00186</td>
<td>.312</td>
<td>.087</td>
<td>.00082</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.02</td>
<td>.46</td>
<td>.0082</td>
<td>.260</td>
<td>.00232</td>
<td>.947</td>
<td>.0045</td>
<td>.00004</td>
<td>.00015</td>
</tr>
<tr>
<td>3</td>
<td>.02</td>
<td>.43</td>
<td>.0086</td>
<td>.260</td>
<td>.00224</td>
<td>.667</td>
<td>.0045</td>
<td>.00004</td>
<td>.00013</td>
</tr>
<tr>
<td>4</td>
<td>.032</td>
<td>.43</td>
<td>.0138</td>
<td>.260</td>
<td>.00359</td>
<td>.667</td>
<td>.0045</td>
<td>.00004</td>
<td>.00021</td>
</tr>
<tr>
<td>5</td>
<td>1.9</td>
<td>.42</td>
<td>.0083</td>
<td>.500</td>
<td>.0019</td>
<td>.173</td>
<td>.030</td>
<td>.00011</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.80</td>
<td>.028</td>
<td>.1224</td>
<td>.520</td>
<td>.0116</td>
<td>.153</td>
<td>.0371</td>
<td>.00083</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Yc = .327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zc = .0075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total I = 5024.6 in^4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{M}{Z} = 50,000 \text{ kip in})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total f_c = 100,000 \text{ kip in})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable 106,000 \text{ kip in})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Local Instability)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF # 11 p. 5.2.3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pivot Mounting — Aft. Vane

\[
\frac{1375}{2} = 687 \text{ lbs.}
\]

\[
F_v = 688 \times 60\degree 20' = 688 \times 0.327 = 229.3 \text{ lbs.}
\]

\[
F_H = 688 \times 60\degree 20' = 688 \times 0.342 = 235 \text{ lbs.}
\]

\[
F_{H/2} = 115 \text{ lbs.}
\]

\[
R_1 = \frac{15 \times 645}{2.5} = 287 \text{ lbs.}
\]

\[
R_2 = 258 \text{ lbs.}
\]

Kick Loads Due to Transfer of \(F_v \) to Skin:

\[
d = \frac{62}{R_1} = \frac{62}{745} \text{ for } R_2
\]

\[
M_1 = R_1 \times \frac{62}{2} = 240 \text{ lbs in.}
\]

\[
P_1 = \frac{240}{3.5} = 69 \text{ lbs}
\]

\[
M_2 = R_2 \times \frac{45}{3.5} = 116 \text{ lbs in.}
\]

\[
P_2 = \frac{116}{3.5} = 33 \text{ lbs}
\]
AFT. MOUNTING

-33 Rib.

Loads To Ribs

\[A \]

\[63 \text{ lbs} + F \]

\[2 \text{ lbs} \]

\[38 \text{"} \]

\[\theta \]

\[118 \text{ lbs} \]

\[\theta_2 \]

\[60 \% \]

\[\omega_2 = 45 \left(105 + 1.75\right) = 114 \text{ lbs}\]

\[63 + F = 126 \text{ lbs} \]

\[M_0 \text{(De to 118 lbs)} = 6 \times 118 = 708 \text{ lbs-in} \]

-31 Rib.

\[2F \]

\[\omega_T = 60 \% \]

\[2F = \frac{\theta}{8} \times 38 \times 60 = 114 \text{ lbs} \]

-29 Rib.

\[\omega_2 = 60 \% \]

\[A_2 = 114 \% \]
AFT MTH — RIB LOADING CONT'D

- 3rd Rib Most Critical of the Three

\[M_o = \frac{372 \times 6.2}{8} + \frac{126 \times 3.5 \times 2.4}{6.2} \left(\frac{2 - 3.6}{2} \right) + \frac{130 \times 5 \times 12}{6.2} \left(\frac{2 - 5.0}{2} \right) - \frac{70.8}{6.2} \left[1 - 3 \left(\frac{2.4}{6.2} \right)^2 \right] \]

\[= \frac{286}{16} = 18 \text{ in-lbs} \]

Total \(M_o = 472 \text{ in-lbs} \)

\[6.2R_o = (372 \times 3.1) + (126 \times 3.6) + 70.8 + (130 \times 5.0) - 472 \]
\[= 1152 + 460 + 71 + 650 - 472 = 1881 \]

\[R_o = 304 \text{ lbs}, \quad R_p = 324 \text{ lbs} \]

BM Diagram Plotted on Next Page

SECTION AA \(M = 110 \text{ lbs-in}. \) Thermal Stresses \(f = 60,000 \text{ psi} \) (Conservative)

\[M = \frac{110}{4} = 27.5 \text{ lbs} \]

\[A = .02 \times 2 + .03 \times 2 = .044 + .066 = .110 \]

\[f = 27,600 \text{ lbs/in}^2 \]

Total = 87,600 \text{ lbs/in}^2

Not Critical
Duct Closure Valve System
Pressure Panel Formed By Box-93 & Duct

Panel \(3.5 \times 4.0'' \)

\[t = 0.010 + 0.032 = 0.042'' \]

\[\frac{b}{t} = \frac{3.5}{0.042} = 83.4 \]

\[\rho = 64.4 \frac{lb}{ft^2} \]

\[\left(\frac{b}{t} \right)^2 = 69.2 \times 10^2 \]

\[\left(\frac{b}{t} \right)^4 = 48 \times 10^6 \]

\[\frac{E(t)}{E} \left(\frac{b}{t} \right)^4 = \frac{64.4 \times 48 \times 10^6}{25 \times 10^6} = 124 \]

\[\frac{a}{b} = 1.0 \]

\[\frac{c_2}{E} \left(\frac{b}{t} \right)^4 = 32 \]

\[c_2 = \frac{32 \times 25 \times 10^6}{692 \times 10^2} = 115,000 \text{ psi} \]

M.S. @ 154,000 + 33

-61 Fixed Vane

\[T = 64.4 \times 2.7 = 87 \frac{lb}{in.} \]

\[\frac{t}{t} = \frac{5.77}{0.05} = 4300^\circ \]

Panel Size \(4'' \times 1'' \)

Membrane Tension = 51,110 \(\frac{lb}{in.} \)

(Ref. Page)

Bending of Stiffeners:

\[VDL = 36 \frac{lb}{in.} (L.F. 1.5) \]

\[L = 4'' \]

\[\frac{wL^2}{8} = \frac{36 \times 4 \times 4}{8} \]

\[= 72 \text{ lbs} \text{ ms} \]
Fixed Vane - 61

Pressure = 32 psi Limit = 48 psi U.F.

Load Factor 1.5

Load on Stiffener A-E.

\[
M = \frac{W A^2}{8} = \frac{36 \times 4.13^2}{8} = 76.9 \text{ kips} \text{ ft}
\]

Stiffener Section

\[
M = \frac{76.9 \text{ kips} \text{ ft}}{Z} = 79.6 \text{ kips} / \text{in}^2
\]
-GL - FIXED VANES (CONT)

THERMAL STRESSES ON STIFFENER

<table>
<thead>
<tr>
<th>#</th>
<th>A</th>
<th>ΔT</th>
<th>θ</th>
<th>E</th>
<th>f'</th>
<th>ΔP</th>
<th>f = ΔP/ΔA</th>
<th>f abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.003</td>
<td>1130</td>
<td>↑</td>
<td>160</td>
<td>220,000</td>
<td>160</td>
<td>↑</td>
<td>→ -20,000</td>
</tr>
<tr>
<td>2</td>
<td>0.006</td>
<td>1130</td>
<td>↑</td>
<td>250</td>
<td>220,000</td>
<td>724</td>
<td>↑</td>
<td>→ -20,000</td>
</tr>
<tr>
<td>3</td>
<td>0.006</td>
<td>1030</td>
<td>↑</td>
<td>250</td>
<td>201,000</td>
<td>523</td>
<td>↓</td>
<td>→ 0</td>
</tr>
<tr>
<td>4</td>
<td>0.006</td>
<td>930</td>
<td>↑</td>
<td>181,100</td>
<td>651</td>
<td>↓</td>
<td></td>
<td>→ +19,000</td>
</tr>
<tr>
<td>5</td>
<td>0.003</td>
<td>830</td>
<td>↓</td>
<td>181,100</td>
<td>544</td>
<td>↓</td>
<td></td>
<td>→ +19,000</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3172</td>
</tr>
</tbody>
</table>

\[\frac{b}{t} = 15 \] 9
\[\frac{L}{t} = 120 \] 100

\[\text{Temp. Red. Factor} = 0.6 \]

\[f = \frac{15}{120} = 0.125 \text{ in.} \]

\[\frac{1}{b^2} \text{ in.} \]

\[\text{(Ref. 8 Page 224)} \]

Pressures loads in Stiffener
\[b = 75 \text{ in.} \]
\[a = 1.0 \text{ in.} \]
\[\frac{b}{t} = \text{in.} \]
\[\frac{(b)^2}{t^2} = 5.6 \times 10^5 \]
\[\left(\frac{b}{t} \right)^2 = 3.13 \times 10^4 \]

\[\frac{b}{t} = 25 \text{ in.} \]

\[\frac{b}{t} = 64 \text{ in.} \]

\[\frac{b}{t} = 31.3 \text{ in.} \]

\[\text{Membrane Stress} \]
\[\frac{b}{t} = 32 \]

\[\text{Membrane Stress} \]
\[\frac{b}{t} = 32 \]

\[\sigma_3 = \frac{25 \times 3 \times 10^6}{56 \times 11^2} = 13,400 \text{ N/ft}^2 \]

\[\frac{W}{L} = 2 \times 13 \text{ in.} \]

\[M = \frac{W L}{8} = 268 \times 2 \text{ in.} \]

\[M = 67 \text{ in.} \text{ in.} \]

\[Z = 35^2 \times 0.08 = 0.0076 \]

\[M = 95 \text{,000 N/ft}^2 \]
Loads on Tip Reference No 11 Page 5.2.5.5

<table>
<thead>
<tr>
<th>ITEM</th>
<th>WT</th>
<th>Vat Inertia gi</th>
<th>Vat Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasube</td>
<td>575</td>
<td>1275</td>
<td>7350 Lb</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td>1300 Lb</td>
</tr>
<tr>
<td>Main Segment 106</td>
<td>1275</td>
<td></td>
<td>13,500 Lb</td>
</tr>
<tr>
<td>Trailing Edge</td>
<td>1.0</td>
<td>1275</td>
<td>1,275 Lb</td>
</tr>
<tr>
<td>Leading Edge</td>
<td>9</td>
<td>1275</td>
<td>1,150 Lb</td>
</tr>
</tbody>
</table>

Total Forward $\frac{1960}{2} = 980 Lb$. Total $\frac{7g}{2} = \frac{2680}{2} = 1300$.

76
Loads on Tip (Continued)

Moments About F/Spar

<table>
<thead>
<tr>
<th>Item</th>
<th>(x)</th>
<th>(F_x)</th>
<th>(M)</th>
<th>(y)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td></td>
<td></td>
<td>7330 k</td>
<td>7.5</td>
<td>55000</td>
</tr>
<tr>
<td>Main Segment</td>
<td></td>
<td></td>
<td>13500 k</td>
<td>6.5</td>
<td>87000</td>
</tr>
<tr>
<td>Trailing Edge</td>
<td></td>
<td></td>
<td>1275 k</td>
<td>15</td>
<td>23250</td>
</tr>
<tr>
<td>Leading Edge</td>
<td></td>
<td></td>
<td>1150 k</td>
<td>7.0</td>
<td>-1150</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>114750</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure (Yoke Loads Etc.)

<table>
<thead>
<tr>
<th>Item</th>
<th>(x)</th>
<th>(F_x)</th>
<th>(M)</th>
<th>(y)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux. Pivot</td>
<td>-670</td>
<td>5.5</td>
<td>+2500</td>
<td>*1250</td>
<td>14</td>
</tr>
<tr>
<td>Fwd. Pivot</td>
<td>-380</td>
<td>11.0</td>
<td>-7500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aux. Duct</td>
<td>+1200</td>
<td>3.0</td>
<td>+10800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd. Duct</td>
<td>+950</td>
<td>12.0</td>
<td>+11400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aux. Cascade</td>
<td>+490</td>
<td>10.0</td>
<td>+4000</td>
<td>+650</td>
<td>10</td>
</tr>
<tr>
<td>Fwd. Cascade</td>
<td>+490</td>
<td>15.0</td>
<td>+7350</td>
<td>+650</td>
<td>1.5</td>
</tr>
<tr>
<td>Cable Loads</td>
<td>-385</td>
<td>6.0</td>
<td>-5310</td>
<td>-365</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>975</td>
<td>+23730</td>
<td>+2225</td>
<td>+2575</td>
</tr>
</tbody>
</table>

Total \(M = 7330 + 25.575 + 114.750 \) = 214055 kips

\[R_a = \frac{214055}{15} = 14300 \text{ kips.} \]

\[R_f = 34255 + 2225 - 14300 = 22180 \text{ kips.} \]

Max Skin \(\gamma = \frac{14300}{2 \times 0.5} = 1100 \text{ kips/ft} \) (per skin)

\(t = 0.26 \)

\[f_s = \frac{39200}{2 \times 0.26} = 58400 \text{ psi.} \]

MS. + 50
AFT Web

\[P = 1100 \, \text{lb} \]
\[t = 0.02 \]
\[f_c = 55000 \, \text{psi} \]
\[f_{tu} = 58400 \, \text{psi} \]

\[M.S. + 0.06 \]

Attach to Spar

\[P = 14300 \, \text{lbs} \]
3 - 3/16 Bolts

\[\text{Load/Bolt} = 4767 \, \text{lbs} \]

From Ref # II Page 5.2.5.9

\[f_{ty} = \frac{4767}{0.33 \times 0.71} = 214,000 \, \text{psi} \]

Ref # II Page 5.2.5.9

\[T = 460^\circ \]

\[\frac{f_{bm}}{f_{ty}} = \frac{300 \times 0.71}{(\text{Ref # 6 Page 35})} = 214,000 \, \text{psi} \]

M.S. 0.00
DUCT PRESSURE AND THERMAL ANALYSIS (INB VALVE CONCEPT)

The following analysis is based on the concept of a closure valve located at the inner end of the dual ducts. This concept was abandoned in favor of the tip valves, because of excessive stress in the structure as indicated below.

Rib Analysis

i) Constant Section.

Temperature differential across center post section AA
700°F
(1200 → 500°F)

<table>
<thead>
<tr>
<th>Section A.A.</th>
<th>Thermal Stresses</th>
<th>f'</th>
<th>ΔP</th>
<th>t''</th>
<th>t₂, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f' = \Delta A \cdot \Delta T \cdot \kappa \cdot E \]
\[\kappa = 7.4 \times 10^{-6} \]
\[E = 27 \times 10^6 \]
\[\Delta E = 200 \]

Pressure Bending

\[M = \frac{W \cdot L^2}{2h} \]
\[P_{allow} = \frac{15}{0.30} = 50 \text{ kips} \]
\[h = 1.33 \times \delta = 0.01 = 0.040 \text{ in} \]
\[f = 15,200 \text{ kips} \]

Total = 84,200 kips (limit) Flange inst. \(\frac{W}{L} = 19 \]
\[f = 66,000 \text{ at RT} \]
\[f = 57,000 \text{ kips at } 1200°F \]

Flange would buckle under limit loads

ii) Transition Area

From analysis similar to constant section (above)

\[f_{thermal} = 65,000 \text{ kips} \]
\[f_{pressure} = 43,200 \text{ kips} \]
Flange would buckle under limit loads
<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>USCONARC 3</td>
</tr>
<tr>
<td>First US Army 3</td>
</tr>
<tr>
<td>Second US Army 2</td>
</tr>
<tr>
<td>Third US Army 2</td>
</tr>
<tr>
<td>Fourth US Army 1</td>
</tr>
<tr>
<td>Sixth US Army 1</td>
</tr>
<tr>
<td>USAIC 2</td>
</tr>
<tr>
<td>USACGSC 1</td>
</tr>
<tr>
<td>USAWC 1</td>
</tr>
<tr>
<td>USAATBD 1</td>
</tr>
<tr>
<td>USAARMBD 1</td>
</tr>
<tr>
<td>USAAVNBG 1</td>
</tr>
<tr>
<td>USATMC(FTZAT), ATO 1</td>
</tr>
<tr>
<td>USAPRDC 1</td>
</tr>
<tr>
<td>DCSLOG 2</td>
</tr>
<tr>
<td>Rsch Anal Corp 1</td>
</tr>
<tr>
<td>ARO, Durham 2</td>
</tr>
<tr>
<td>OCRD, DA 1</td>
</tr>
<tr>
<td>USATMC Nav Coord Ofc 1</td>
</tr>
<tr>
<td>NATC 2</td>
</tr>
<tr>
<td>CRD, Earth Scn Div 1</td>
</tr>
<tr>
<td>USAAVNS, CDO 1</td>
</tr>
<tr>
<td>DCSOPS 1</td>
</tr>
<tr>
<td>OrdBd 1</td>
</tr>
<tr>
<td>USAQMCDA 1</td>
</tr>
<tr>
<td>QMFS A 1</td>
</tr>
<tr>
<td>CECDA 1</td>
</tr>
<tr>
<td>USATB 1</td>
</tr>
<tr>
<td>USATCDA 1</td>
</tr>
<tr>
<td>USATMC 20</td>
</tr>
<tr>
<td>USATC&FE 4</td>
</tr>
<tr>
<td>USATSCH 3</td>
</tr>
<tr>
<td>USATRECOM 17</td>
</tr>
<tr>
<td>USATTCA 1</td>
</tr>
<tr>
<td>USA Tri-Ser Proj Off 1</td>
</tr>
<tr>
<td>TCLO, USAABELCTBD 1</td>
</tr>
<tr>
<td>USASRDL LO, USCONARC 2</td>
</tr>
<tr>
<td>USATTCP 1</td>
</tr>
<tr>
<td>OUSARMA 1</td>
</tr>
<tr>
<td>USATRECOM LO, USARDG (EUR) 1</td>
</tr>
</tbody>
</table>
USAEWES 1
TCL0, USAAVNS 1
USATDS 5
USARPAC 1
EUSA 1
USARYIS/IX CORPS 2
USATAJ 6
USARHAW 3
ALFSEE 2
USACOMZEUR 3
USARCARIB 4
AFSC (SCS-3) 1
APGC (PGAPI) 1
Air Univ Lib 1
AFSC (Aero Sys Div) 2
ASD (ASRMPT) 1
CNO 1
ONR 3
BUWEP5, DN 5
ACRD(OW), DN 1
BUY&D, DN 1
USNPGSCH 1
CMC 1
MCLFDC 1
MCEC 1
MCLO, USATSCH 1
USCG 1
NAFEC 3
Langley Rsch Cen, NASA 2
Geo C. Marshall Sp Flt Cen, NASA 1
MSC, NASA 1
Ames Rsch Cen, NASA 2
Lewis Rsch Cen, NASA 1
Sci & Tech Info Fac 1
USGPO 1
ASTIA 10
ASD, FCL 1
HumRRO 2
US Patent Ofc, Scn Lib 1
USAMOCOM 3
USSTRICOM 1
USAMC 1
Hughes Tool Co 10

Unclassified Report
A detailed analysis of the design and operation of a hot cycle rotor duct closure valve system has been (over)

Unclassified Report
A detailed analysis of the design and operation of a hot cycle rotor duct closure valve system has been (over)

1. Hot Cycle Rotor Duct Closure Valve System
2. Contract DA 44-177-TC-832

1. Hot Cycle Rotor Duct Closure Valve System
2. Contract DA 44-177-TC-832
completed. The analysis has resulted in detailed design drawings. This duct closure valve system is an effective means for varying the nozzle area of a hot cycle rotor system to provide acceptable single-engine operation.