NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Propulsion Research Program
Propellant Performance Calculation Program

SEMIANNUAL TECHNICAL REPORT
(1 January – 30 June 1962)

31 AUGUST 1962

Prepared by P. C. HANZEL
Aerodynamics and Propulsion Research Laboratory

Prepared for DEPUTY COMMANDER AEROSPACE SYSTEMS
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Inglewood, California

LAMORATORIES DIVISION • AEROSPACE CORPORATION
CONTRACT NO. AF 04(695)-69
PROPULSION RESEARCH PROGRAM
Propellant Performance Calculation Program,

SEMIANNUAL TECHNICAL REPORT
(1 January - 30 June 1962),

Prepared by
P. C. Hanzel
Aerodynamics and Propulsion Research Laboratory

AEROSPACE CORPORATION
El Segundo, California

Contract No. AF 04(695)-59

31 August 1962.

Prepared for
DEPUTY COMMANDER AEROSPACE SYSTEMS
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Inglewood, California
PROPELLION RESEARCH PROGRAM
Propellant Performance Calculation Program

SEMIANNUAL TECHNICAL REPORT
(1 January - 30 June 1962)

Prepared

P. C. Hanzei
Chemical Propulsion Department

Approved

J. G. Logan
Director
Aerodynamics and Propulsion Research Laboratory

AEROSPACE CORPORATION
El Segundo, California
ABSTRACT

The results of the computer program for the calculation of theoretical performance of rocket propellants are in good agreement with values computed by other programs for selected simple propellant formulations. Data for some 500 products of reaction among eighteen chemical elements are available for use in these calculations. An experienced version of the program is in preparation for external distribution.
CONTENTS

I. INTRODUCTION.......................... 1
II. DISCUSSION.............................. 1
I. INTRODUCTION

The computer program has been used for calculation of the theoretical performance of rocket propellants. Values of computed results are in good agreement with those obtained using other programs employing the JANAF data. The writing of a somewhat more extended version of this program is nearing completion. The extended version is expected to be made available for external distribution.

II. DISCUSSION

The program capabilities are essentially those described in the Semiannual Technical Report of 2 February 1962.*

Intensive checkout of the program is in progress, employing the most difficult problems, in an attempt to find those areas where the computer program will currently fail to provide a solution to thermodynamic problems. Such areas have been found and to date have been corrected by minor changes in the Fortran program. These changes usually involve fine adjustment in convergence criteria to ensure maximum accuracy, combined with a capability of reaching a solution to an arbitrary thermodynamic problem. Occasionally, an error in logic, to be expected in a computer program of this magnitude, has been found and corrected. The program will be released when a high confidence level of capability is attained.

The speed of the machine program is less than had been anticipated, but it is expected to increase once certain empirical forcing parameters are better determined.

International Business Machine data cards are now available for the program for some 500 products of reaction involving the elements of hydrogen, helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, sodium, magnesium, aluminum, silicon, sulfur, chlorine, potassium, bromine, and iodine.

The extended version of this program, which is nearing completion, will be checked against the current version when applicable, then fully documented for release. Thermodynamic data will continue to be collected for future use. The calculation of propellant performance will continue.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The results of the computer program for the calculation of theoretical performance of rocket propellants are in good agreement with values computed by other programs for selected simple propellant formulations. Data for some 500 products of reaction among eighteen chemical elements are now available for use in these calculations. An improved version of the program is in preparation for external distribution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The results of the computer program for the calculation of theoretical performance of rocket propellants are in good agreement with values computed by other programs for selected simple propellant formulations. Data for some 500 products of reaction among eighteen chemical elements are now available for use in these calculations. An improved version of the program is in preparation for external distribution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The results of the computer program for the calculation of theoretical performance of rocket propellants are in good agreement with values computed by other programs for selected simple propellant formulations. Data for some 500 products of reaction among eighteen chemical elements are now available for use in these calculations. An improved version of the program is in preparation for external distribution.</td>
</tr>
</tbody>
</table>