AN ALTERNATE DERIVATION OF THE POLLACZEK-KHINTCHINE FORMULA

by

Robert M. Oliver

OPERATIONS RESEARCH CENTER

INSTITUTE OF ENGINEERING RESEARCH

UNIVERSITY OF CALIFORNIA - BERKELEY
AN ALTERNATE DERIVATION OF
THE POLLACZEK-KHINTCHINE FORMULA

by

Robert M. Oliver
Operations Research Center
University of California, Berkeley

15 April 1963

This research has been partially supported by the Office of Naval Research
under Contract Nonr-222(83) with the University of California. Reproduc-
tion in whole or in part is permitted for any purpose of the United States
Government.
AN ALTERNATE DERIVATION OF
THE POLLACZEK-KHINTCHINE FORMULA

A derivation of the Pollaczek-Khintchine formula follows from the results obtained by John D. C. Little \(^{(1)}\) in his proof that

\[L = \lambda W \]

where \(\lambda \) is the average rate of arrivals into a single-channel queue, \(W \) is the average delay, and \(L \) is the average number in the queueing system at a random instant of time. It is assumed that the queueing process is strictly stationary.

In this derivation we also assume that inter-arrival times and service times are independently sampled positive random variables. We use the notation

\[
\begin{align*}
\pi_0 &= \text{Pr (empty queueing system at a random instant of time)} \\
\lambda &= \text{Average arrival rate (a number)} \\
\frac{1}{\mu} &= \text{Average service time (a number)} \\
\sigma^2 &= \text{Variance of the service time (a number)} \\
X &= \text{Delay (> 0) in queue of a customer arriving at a random instant of time (a random variable)} \\
W_X &= \text{Expected value of } X \text{ (a number)} \\
Y &= \text{Time (≥0) required to complete the service of a customer in service at a random instant of time (a random variable)} \\
W_Y &= \text{Expected value of } Y \text{ (a number)} \\
Z &= \text{Time (≥0) to service the customers in queue at a random instant of time (a random variable)} \\
W_Z &= \text{Expected value of } Z
\end{align*}
\]
From the definitions it follows that

\begin{equation}
X = Y + Z \tag{2a}
\end{equation}

and that

\begin{equation}
W_x = W_y + W_z \tag{2b}
\end{equation}

Introducing the subscript x to denote averages in queue (i.e., exclusive of services) in Equation (1) and the assumption that service times are independent of the number in queue, the average time to service the number in queue at a random instant of time is

\begin{equation}
W_z = \frac{1}{\mu} (\lambda W_x) \tag{3}
\end{equation}

If the service facility is empty at the instant a customer arrives, $Y = 0$. If the service facility is busy, the expected value of the remaining service time of the customer in service is the expected value of the length-biased sampling distribution of service times.* Unconditionally,

\begin{equation}
W_y = \left(1 - \pi_o\right) \frac{\mu(\sigma^2 + \mu^{-2})}{\lambda} = \frac{\lambda(\sigma^2 + \mu^{-2})}{2} \tag{4}
\end{equation}

Substituting (3) and (4) into (2b) and solving for W_x gives the Pollaczek-Khintchine formula,

\begin{equation}
W_x = \frac{\lambda(\sigma^2 + \mu^{-2})}{2(1 - \lambda/\mu)} \tag{5}
\end{equation}

This derivation can be extended to those cases where mixed streams feed the service channel with different priorities of service.

*Reference 2, page 65.
REFERENCES

BASIC DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS

Professor R. Radner
Department of Economics
University of California
Berkeley 4, California

Professor Stanley Reiter
Department of Economics
Purdue University
Lafayette, Indiana

Professor Murray Rosenblatt
Department of Mathematics
Brown University
Providence 12, Rhode Island

Mr. J.R. Simpson
Bureau of Supplies and Accounts
Navy Department (Code W31)
Washington 25, D.C.

Professor A.W. Tucker
Department of Mathematics
Princeton University
Princeton, New Jersey

Professor J. Wolfowitz
Department of Mathematics
Lincoln Hall, Cornell University
Ithaca 1, New York

C.O., ONR Branch Office
346 Broadway, New York 13, New York
ATTN: J. Laderman

Professor Oskar Morgenstern
Economics Research Project
Princeton University
92 A Nassau Street
Princeton, New Jersey