NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
A TEST SET FOR DETERMINING THE COOK-OFF TEMPERATURES OF POWER CARTRIDGES

by

J. Miller, Jr.

and

S. T. Fox

Warhead and Terminal Ballistics Laboratory

U. S. NAVAL WEAPONS LABORATORY
DAHLGREN, VIRGINIA
A Test Set for Determining the Cook-Off
Temperatures of Power Cartridges

by

J. Miller, Jr.
and
S. T. Fox

Warhead and Terminal Ballistics Laboratory

NWL Report No. 1858
Task Assignment No. RMMO-33-020/210-1/P008-11-001
28 May 1963

Released to ASTIA without restriction or limitation.
CONTENTS

Abstract .. ii
Foreword .. iii
Introduction ... 1
Description of the Test Cartridges ... 3
Description of the Cook-off Test Set 3
Test Procedure, Results and Discussion 5
Conclusions .. 8
Reference .. 9
Appendices:
 A. Graphs (Figures 8 through 26)
 B. Distribution

Figures:
1. Separation Cartridge, MARK 13 MOD 0 with Thermocouples Installed
2. Test Tank Assembly - Cover in Raised Position
3. Interior View - Test Tank Assembly
4. Test Tank Assembly with Silicone Fluid
5. Test Tank Assembly - Cover in Lower Position
6. Temperature Controlling and Recording Equipment
7. Block Diagram of Temperature Control System
8. Computed vs Recorded Temperature-Time Curve for 5°F/min Rate-of-Rise Cam
9. Computed vs Recorded Temperature-Time Curve for 10°F/min Rate-of-Rise Cam
10. Computed vs Recorded Temperature-Time Curve for 20°F/min Rate-of-Rise Cam
11-14. Temperature-Time Curves Controlled by 5°F/min Rate-of-Rise Cam
15-18. Temperature-Time Curves Controlled by 10°F/min Rate-of-Rise Cam
19-21. Temperature-Time Curves Controlled by 20°F/min Rate-of-Rise Cam
22-25. Temperature-Time Curves Constant Temperature Test
26. Temperature-Time Curve Summary of Dynamic and Static Tests
ABSTRACT

A power cartridge cook-off test set is described, tests conducted to check out the test set are summarized, and a procedure for obtaining power cartridge cook-off data is outlined.
FOREWORD

This is the final report on the design, construction and testing of a power cartridge cook-off test set and on the development of a procedure for obtaining cook-off data on power cartridges from this test set. This work was conducted under Problem Assignment No. 1 of WEPTASK NO. RMRO-33-020/210-1/F008-11-001. The cook-off test set was designed and constructed by the Armour Research Foundation of Illinois Institute of Technology under NWL Contract No. NI78-7643 during September 1959 to May 1960. The test set was received and installed at the Naval Weapons Laboratory during May 1960 to September 1961. Tests leading to the acceptance of the test set and the development of a procedure for obtaining cook-off data on power cartridges from this device were performed during September 1961 to May 1962.

This report was reviewed by the following personnel of the Warhead and Terminal Ballistics Laboratory:

S. E. HEDDEN, Head, Research Branch, Cartridge Actuated Devices Division
J. J. GLANCY, Head, Cartridge Actuated Devices Division
R. I. ROSSBACHER, Director

APPROVED FOR RELEASE:

/s/ R. H. LYDDANE
Technical Director
INTRODUCTION

The cook-off test set was designed and built as a device for determining the temperatures and times at which complete power cartridges "cook off" when exposed to temperature-time environments simulating in so far as practical those encountered by cartridges installed in devices under service conditions. The answers to two interrelated questions were sought: (1) at what temperature will a cartridge cook off when subjected to a temperature environment in which the temperature is increased at given fixed rates of rise; and (2) at what time will a cartridge cook off when subjected to a temperature environment in which the temperature is held constant at a given level.

The term "cook-off" as applied in this report to power cartridges is used with the following connotations:

Cook-off is to denote the initiation and deflagration or explosion of one or more explosive components of the cartridge as a direct result of the complete cartridge having been exposed to a given temperature-time environment. In general, the energy output derived from the cartridge would be expected to approximate that obtained when the cartridge is ignited in its normal manner. However, depending upon the inherent characteristics of the explosives used, this cook-off energy output may be modified as a result of the exposure of the explosives to the temperature-time environment. A simple venting of a cartridge, such as that resulting from a pressure build-up generated by heating of entrapped air and other gases within the cartridge, but not accompanied by any appreciable chemical energy release from the explosive components, is not considered a true cook-off.

The cook-off test set was not designed as an instrument for determining either the autoignition temperatures of discrete explosive materials or the spontaneous combustion temperatures of other combustible materials contained in the cartridge, although it could be used to generate these data.

The term "cook-off temperature" is restricted herein to designate the temperature of the environment of the cartridges at time of cook-off without regard for temperatures existing within the cartridge at this time. In the cook-off test set, the cook-off temperature is that of the oil bath at time of cartridge cook-off.
Similarly, the term "cook-off time" is restricted to mean the
time from initial exposure of a cartridge to a given temperature-
time environment to cartridge cook-off.

Rather than attempt to directly simulate temperature-time
environment which might be encountered by power cartridges
installed in devices in service conditions, an approach considered
impractical in view of the wide variety of cartridges, devices and
environments which would have to be considered, the following
approach was followed: The cook-off test set was so designed that
the temperature-time environment encountered by cartridges in the
device could be expected to exceed in severity by a reasonable
margin in most cases at least, those encountered in actual service
applications. To be more specific, the rate of heat transfer to
the cartridge when installed in the cook-off test set would equal
or exceed that to be expected to exist in actual devices in service
conditions. By this approach, it would be expected that the data
generated in the cook-off test set would provide upper limits, and
hence some margin of safety, in extrapolating from the test set to
service applications. By this approach, it could be expected that
if a cartridge cooked off at an environmental temperature of 425°F
when the rate of rise in temperature is 10°F/min in the cook-off
test set, then in a service condition entailing an equal rate of
rise in temperature, cook-off would not be expected to occur at an
environmental temperature less than 425°F and probably at a some-
what higher temperature. Similarly, a cartridge exposed to a
constant temperature environment in the cook-off test set could be
expected to cook-off in a somewhat shorter time than it would in a
service condition at the same environmental temperature.

In the cook-off test set, the rate of heat transfer to the
cartridge was maximized by using materials having high thermal
conductivity for cartridge chambers, by sand blasting and black
anodizing the outside surfaces of these chambers, and by using a
circulated oil bath as the temperature environment. Cartridge
chambers in the test set can conform dimensionally as closely as
required to cartridge chambers in service devices.

To check out the operation of the test set and to develop a
general procedure for the acquisition of cartridge cook-off data
a series of tests were conducted with MARK 13-0 separation
cartridges.
DESCRIPTION OF THE TEST CARTRIDGES

The MARK 13 MOD 0 separation cartridges contain the MARK II electric ignition element and a main charge of 0.42 gram of a single base propellant (SPDN 8880 or 7807). Each cartridge was instrumented with two iron-constantan thermocouples as shown in Figure 1. One thermocouple junction was held in contact with the outer shell of the ignition element by the ignition retaining bushing. A second thermocouple junction was located in the propellant bed at the approximate center of the main charge cavity of the cartridge.

DESCRIPTION OF THE COOK-OFF TEST SET

The cook-off test set is divided into two major subassemblies: (1) the test tank assembly shown in Figures 2 through 5, and (2) the temperature control system shown in Figure 6. These figures show the equipment installed at the Naval Weapons Laboratory.

The test tank assembly consists of a 13.5 gallon stainless steel insulated tank containing General Electric 81644 silicone fluid, the heating elements, the agitator, and the tank cover. The heating elements consist of 25, 1-kw, tubular, quartz infrared lamps vertically mounted and equally spaced radially between two concentric copper contact rings. Each ring is connected to the power source and properly insulated from the tank.

A 7-inch diameter, 7-bladed aluminum agitator is centrally located in the base of the tank. The agitator shaft extends through a sealed bearing capsule mounted in the tank and is driven by a 1/8 hp motor. The motor speed can be varied by a variable voltage transformer.

The tank cover provides an insulated cover for the tank and contains the five cartridge chambers and the vent and collar assembly. The tank cover, chambers and vent assembly are raised and lowered by means of two cushioned air cylinders. These air cylinders are mounted vertically to the base plate.

Pneumatic actuation of the raising and lowering of the tank cover assembly can be accomplished either through the switch in the panel box on the base plate or remotely by means of a switch located outside the test cell. The needle valves on the 3-way, solenoid-actuated valve mounted on the base plate may be adjusted.
to vary the raising and lowering speed. The tank cover may be
retained in the top position, as shown in Figure 2, by inserting
dowel pins through holes in the legs and under the tank cover
guide shafts.

Sets of five aluminum chambers and caps are manufactured for
each type of cartridge to be tested. One set of chambers is made
to serve for testing families of cartridges varying only in total
length by making the chambers long enough to accommodate the
longest cartridge of the family. The outside diameters of the
chambers are sand blasted and black anodized to increase the
transfer of heat from the silicone bath through the chamber walls
to the cartridge.

The components required for the complete automatic time-
temperature control system are indicated on the block diagram of
Figure 7 (based on Figure 4 of reference (a)). This system was
supplied by the Barber-Coleman Company. The following description
of the operation of this system is excerpted from reference (a).

The Wheelco Chronotrol provides a complete automatic program
control to enforce a predetermined time-temperature cycle on the
heating equipment. After initiation, the program is maintained
without the need of further adjustment or supervision throughout
the complete operating cycle.

The simple program mechanism of the Chronotrol continuously
positions the control point of a "Resistance Thermotrol" so that
a heating cycle with holding periods at one or more levels may be
relayed into control action via a quick-acting linkage. The tem-
perature sensor, indicated in Figure 7, is the element which
produces the electrical impulse used as the Chronotrol sensing
unit. The program mechanism consists of a synchronous motor that
rotates at a constant but selected speed. The control setting
index of the instrument is mechanically coupled to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
The shape of this programmed disc corresponds to a lever arm
that rides on the contour of a disc cam mounted on the motor shaft.
Figure 1

Separation Cartridge MARK 13 MOD 0 With Thermocouples Installed
Test Tank Assembly - Cover in Raised Position
Interior View - Test Tank Assembly
Test Tank Assembly with Silicone Fluid
PHD-90040-12-62

Figure 5
7 December 1962

Test Tank Assembly - Cover in Lower Position
Figure 7
Block Diagram of Temperature Control System
The 22-kva saturable core reactor controls the power input to the 25, 1-kw, tubular, quartz infrared lamps mounted in the cook-off test tank. These reactors are devices similar to ordinary a.c. transformers, the essential difference being that they have extra d.c. windings called control windings. The control windings of a saturable core reactor regulate the degree of saturation of the core and thus the impedance of the a.c. winding. When the d.c. signal current is varied in a manner proportional to the deviation controlled variable with respect to the control set point, it is possible to use the saturable core reactor as variable impedance to control power input. The output of the saturable reactor can be varied through an infinite number of power levels from a maximum of 90% of rated capacity to a minimum of 3% as demands of the sensing unit vary from a maximum to a minimum.

The sensitivity of the control equipment is rated as a constant ±0.5°F/min band over the complete temperature-time cycle to 500°F.

The recording equipment used with the cook-off test set is a 24-channel strip chart potentiometer (Minneapolis Honeywell Model Electronic 15).

For detailed instructions for operating the test set in both the dynamic and static modes, reference should be made to reference (a) and to Naval Weapons Laboratory instructions on operation and safety procedures for the test set.

TEST PROCEDURE, RESULTS AND DISCUSSION

The following tests were performed in the power cartridge cook-off test set to check out the equipment and to establish a procedure for obtaining cook-off data on power cartridges.

a. As a precautionary measure and to check the accuracy of the available cams along with the capabilities of the test equipment, three trial runs were conducted with the 5, 10 and 20°F/min cams in which oil bath temperatures were recorded. See Figures 8 through 10 for results. Previous to these tests, difficulties were encountered with the stirrer bearing capsule assembly during high temperature operations. The stirrer shaft seized the bearing capsule interface. However, this problem was corrected by inserting a graphite bearing.
b. Four instrumented cartridges were simultaneously subjected to a temperature increasing from ambient at the rate of approximately 5°F/min. See Figures 11 through 14 for results.

c. Four instrumented cartridges were simultaneously subjected to a temperature increasing from ambient at the rate of approximately 10°F/min. See Figures 15 through 18 for results.

d. Three instrumented cartridges were simultaneously subjected to a temperature increasing from ambient at the rate of approximately 20°F/min. See Figures 19 through 21 for results.

e. The oil bath temperature was raised and held at 300°F and two instrumented cartridges immersed in the oil bath by remote control after the 300°F temperature was established. See Figures 22 and 23 for results.

f. The oil bath temperature was raised and held at 325°F and two instrumented cartridges immersed in the oil bath by remote control after establishing the 325°F temperature. See Figure 24 for results.

g. The oil bath temperature was raised and held at 350°F and two instrumented cartridges immersed in the oil bath by remote control after the 350°F temperature was established. See Figure 25 for results.

As indicated above, the results of individual tests are presented in Figures 8 through 25. Figure 26 is a composite graph summarizing the results from tests (b) through (g).

a. The average rates of rise of the oil bath temperature, as determined by straight lines visually fitted to the data obtained from the three trial runs, were as follows:

<table>
<thead>
<tr>
<th>Rate (°F/min)</th>
<th>Average Rate (°F/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.1</td>
</tr>
<tr>
<td>10</td>
<td>9.2</td>
</tr>
<tr>
<td>20</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Maximum deviations from the visually fitted lines were approximately as follows:

<table>
<thead>
<tr>
<th>Rate (°F/min)</th>
<th>Deviation (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>
These deviations from linearity in temperature rises are insignificant in their effects on the data obtained on cook-off temperatures.

The above two sets of data may be taken as an approximate measure of the accuracy with which the present cams were cut superimposed on the capability of the control equipment to maintain a constant rate of temperature rise.

b. The temperature-time curves presented in Figures 11 through 26 were produced from data recorded from a thermocouple in the oil bath and from the two thermocouples in the cartridges located as shown in Figure 1. Temperatures were recorded at approximately 14 second intervals from these thermocouples by means of an automatic multichannel temperature recorder. The two cartridge thermocouples, while not required for determining the cook-off temperatures and times of cartridges as defined in the Introduction, provided an indication of the temperature lags in the cartridges compared to that of the oil bath. Also, the thermocouple within the propellant bed provided a convenient means of recording the times of cook-off on the temperature-time recordings, though this could be done by other means. The cartridge thermocouples, particularly that in the propellant bed, provide information on the initiation of exothermic reaction within the main charge and of the transition of these into deflagrations. However, it is considered that these data as recorded on these tests is too gross to permit a precise determination of autoignition temperature of specific explosive components contained in the cartridges.

c. In the 300°F constant temperature test, the oil bath temperature was increased at 20°F/min after 58 minutes. This induced cook-off in about 3 minutes at an oil bath temperature of about 360°F, which is comparable to the oil bath temperature at cook-off on the 20°F/min test.

On the basis of the tests conducted, the following cook-off data are established for the MARK 13 cartridge as tested.

Dynamic Cook-Off Temperatures:

<table>
<thead>
<tr>
<th>Temperature Rate</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°F/min</td>
<td>330°F</td>
</tr>
<tr>
<td>10°F/min</td>
<td>343°F</td>
</tr>
<tr>
<td>20°F/min</td>
<td>362°F</td>
</tr>
</tbody>
</table>

Static Cook-Off Time:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>300°F</td>
<td>> 60 min</td>
</tr>
<tr>
<td>325°F</td>
<td>7 min</td>
</tr>
<tr>
<td>350°F</td>
<td>3 min</td>
</tr>
</tbody>
</table>
CONCLUSIONS

On the basis of the tests reported herein, it is concluded that the power cartridge cook-off test set has the following capabilities:

a. General capabilities - To determine and record (1) the temperature at which power cartridges cook off when subjected to linear rates of temperature increase, and (2) the times required to cook off power cartridges when subjected to various fixed environmental temperatures.

b. Specific capabilities - (1) Cartridges varying in size from 0.25 inch diameter by 0.5 inch long to 3 inches diameter by 6 inches long containing charges equivalent to 150 grams of nitrocellulose propellant can be tested. (2) The temperature of the cartridge environment can be increased at essentially linear rates of temperature increase ranging between 5°F/min and 20°F/min. Temperatures will not deviate from these linear rates of rise by more than about 3 to 4°F at any time of the heating cycle. (3) The temperature of the cartridge environment can be maintained at fixed temperatures up to a maximum of 500°F for periods up to 6 hours. Fixed temperatures are held to within approximately ±2°F. (4) Cartridges can be inserted into and removed from the temperature environment by remote control to reduce the hazards to which the operator might be subjected.

However, the capabilities of the equipment could be improved with the installation of a heat exchanger to cool the oil after each test run. This would increase the number of tests that could be conducted daily.

On the basis of this series of tests on the MARK 13 cartridge, the following procedures appear reasonable for obtaining cook-off data on power cartridges generally. These procedures may be modified later on the basis of accumulated experience.

a. Instrument all test cartridges with at least one thermocouple located in the geometric center of the main propellant charge.

b. Perform a dynamic cook-off test at the 5, 10 and 20°F/min rate using five instrumented cartridges for each test. Record temperatures from the thermocouple in the oil bath and from the thermocouples in the cartridges until after cook-off has occurred or until all reaction within the cartridge has ceased.
c. Perform a static cook-off test at a temperature approximately 25°F below the indicated cook-off temperature of the 5°F/min dynamic test. Record temperatures from the thermocouples in the oil bath and cartridges and time to cook-off. Continue test to cook-off or to one hour whichever transpires first. Perform additional static tests at 25°F increments above and below that of the first test until the following temperature limits are established: (1) static temperature which will induce cook-off within 5 minutes and, (2) static temperature which the cartridges will sustain for one hour without cook-off.

d. Tabulation of the results may be in the following form:

CARTRIDGE COOK-OFF DATA

<table>
<thead>
<tr>
<th>Cartridge (official designation)</th>
<th></th>
</tr>
</thead>
</table>

Dynamic Cook-Off Temperatures:

- At 5°F/min
- At 10°F/min
- At 20°F/min

Static Cook-Off Times:

- At ______°F
- At ______°F
- At ______°F

REFERENCE

(a) Armour Research Foundation of Illinois Institute of Technology
Final Report ARF 8183-7 of May 1960
Figure 8

Computed vs Recorded Temperature-Time Curve for 5°F/min Rate-of-Rise Cam
Computed vs Recorded Temperature-Time Curve for 20°F/min Rate-of-Rise Cam
Figure 11
Temperature-Time Curve Controlled By 5°F/min Rate-of-Rise Cam
Figure 12
Temperature-Time Curve Controlled By 5°F/min Rate-of-Rise Cam
Figure 15
Temperature-Time Curve Controlled By 10°F/min Rate-of-Rise Cam
Figure 17
Temperature-Time Curve Controlled By 10°F/min Rate-of-Rise Cam

Dynamic Test (10 °F/min)
Cartridge #3
Thermocouple #5 (under clamp)
Thermocouple #5 (in the propellant)
Oil Bath Temperature
Figure 19
Temperature-Time Curve Controlled By 20°F/min Rate-of-Rise Cam
Figure 20

Temperature-Time Curve Controlled By 20°F/min Rate-of-Rise Cam
Figure 25
Temperature-Time Curve Constant Temperature Test
DISTRIBUTION

Bureau of Naval Weapons:

DLI-31
RMMO-3
RMMO-33
RMMO-332
RMMO-432
RAAV-50
RAAV-53
RAAE-2
RAAE-23
SP-20

Commander
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR

Commanding General
Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Technical Information Section
Development and Proof Services

Commander, Operational Test and Evaluation Force
Norfolk 11, Virginia

Office of Technical Services
Department of Commerce
Washington 25, D. C.

Commanding Officer
U. S. Army Chemical Center
Weapons Systems Engineering Directorate
Edgewood, Maryland
Attn: Chief, Standardization Branch

Army Rocket and Guided Missile Agency
Redstone Arsenal, Alabama
Attn: Technical Library
Commanding General
Air Proving Ground Command
Eglin Air Force Base, Florida
Attn: ASQWA (E. T. Westman)

Commanding General
Frankford Arsenal
Bridge and Tacony Streets
Philadelphia 37, Pennsylvania
Attn: Library

Commanding Officer
U. S. Naval Weapons Evaluation Facility
Kirtland Air Force Base
Alburquerque, New Mexico
Attn: Code SWVSM 1
Mr. G. N. Bell 1

National Aeronautics and Space Administration
Langley Field, Virginia
Attn: E. R. Bryant (IRD-GMI) 1
R. E. Clickner (Dynamics Model Engr. Section) 1
I. W. Ramsey 1

Commanding Officer
Naval Air Development Center
Johnsville, Pennsylvania
Attn: S. S. Kress 1
J. R. Hess 1

Commanding Officer, Naval Air Material Center
Attn: Director
Naval Air Engineering Laboratory (Ship Installations)
Philadelphia 12, Pennsylvania 1

Commanding Officer
Air Crew Equipment Laboratory
Naval Air Material Center
Philadelphia 12, Pennsylvania
Attn: C. T. Koochembere 1

Commander
Naval Air Test Center
Patuxent River, Maryland
Attn: A. E. Adams, Armament Test Division 1
DISTRIBUTION (Continued)

Commanding Officer
Naval Ammunition Depot
Crane, Indiana
Commander
Naval Ordnance Laboratory
Corona, California
Attn: Code 552
Code 561

Commander Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland

Commanding Officer
Naval Ordnance Plant
Macon, Georgia
Attn: L. Pertsch, Development Engineering Division

Commander
Naval Ordnance Test Station
China Lake, California
Attn: Code 4543 (J. Sherman)
Code 5563 (W. P. Koontz)
Code 4572 (R. Smith)
Code 4552
Code 4508
Code 5562

Officer in Charge
Naval Explosive Ordnance Disposal Facility
Naval Propellant Plant
Indian Head, Maryland

Commander
Naval Research Laboratory
Mechanics Division
Washington 25, D. C.
Attn: C. H. Kingsbury, Ballistics Branch

Commanding Officer
Naval Training Device Center
Port Washington, New York
Attn: D. D. Mangieri

3
DISTRIBUTION (Continued)

Commanding Officer
Naval Underwater Ordnance Station
Newport, Rhode Island
Attn: En/b4 1

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Technical Information Section 1

Commander
Army Rocket and Guided Missile Agency
Propulsion Laboratory
Research and Development Operations
Redstone Arsenal, Alabama
Attn: R. E. Betts 1

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Dayton, Ohio
Attn: WCLEHR
SCLSFF-30 1

Advanced Systems Development Division
Cleveland Pneumatic Industries, Inc.
1301 East El Segundo Boulevard
El Segundo, California
Attn: G. T. Lampton 1

Aerojet-General Corporation
11711 Woodruff Avenue
Downey, California
Attn: T. W. Royer, Ordnance Division 1

Aerojet-General Corporation
P.O. Box 1947
Sacramento, California
Attn: Dept. 56-60 (John J. Fabish) 1

Aircraft Armaments, Incorporated
Cockeysville, Maryland 1
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Attn:</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Machine and Foundry Company</td>
<td>7501 North Natchez Avenue, Niles, Illinois</td>
<td>D. L. Areson, Mechanics Research Division</td>
<td>1</td>
</tr>
<tr>
<td>Armour Research Foundation</td>
<td>10 W. 35th Street, Chicago 16, Illinois</td>
<td>Library, Mr. K. G. Johnson</td>
<td>1</td>
</tr>
<tr>
<td>Atlantic Research Corporation</td>
<td>Edsall Road and Shirley Highway, Alexandria, Virginia</td>
<td>G. V. Emerson</td>
<td>1</td>
</tr>
<tr>
<td>Beckman and Whitley, Incorporated</td>
<td>985 E. San Carlos Avenue, San Carlos, California</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Beech Aircraft Corporation</td>
<td>9709 East Central, Wichita 1, Kansas</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bell Aircraft</td>
<td>Design Engineering Aircrew Equipment</td>
<td>F. J. Mambretti</td>
<td>1</td>
</tr>
<tr>
<td>Bermite Powder Company</td>
<td>Soledad Canyon Road, Saugus, California</td>
<td>L. LoFiego</td>
<td>1</td>
</tr>
<tr>
<td>Breeze Corporation, Incorporated</td>
<td>700 Liberty Avenue, Union, New Jersey</td>
<td>A. Lardin</td>
<td>1</td>
</tr>
</tbody>
</table>
DISTRIBUTION (Continued)

Dayton T. Brown, Incorporated
1305 Strong Road
Copiague, Long Island, New York
Attn: Explosives and Bomb Racks Group

Mr. G. R. Nice
BJSM
British Embassy
Washington, D. C.
Attn: D. G. T. Colebrooke

Chance Vought Corporation
P. O. Box 5907
Dallas, Texas
Attn: C. C. Cox (Armament Staff, Group 53140)
R. D. Henry

Cook Research Laboratories
Cook Technological Center
6401 Oakton Street
Morton Grove, Illinois
Attn: M. A. Broderick, Project Engineer

Convair
A division of General Dynamics Corporation
Fort Worth, Texas
Attn: K. G. Brown, Division Research Librarian

Douglas Aircraft Company, Incorporated
6979 Cherry Avenue
Long Beach, California
Attn: R. G. McIntyre
Armament Group
Hydraulic Group
Engineering Library

Denver Research Institute
University of Denver
University Park Station
Denver 10, Colorado
Attn: R. B. Feagin

DISTRIBUTION (Continued)

Edo Corporation
13 - 10 111th Street
College Point 56, New York

Federal Laboratories Incorporated
Saltsburg, Pennsylvania
Attn: R. B. Reynolds

The Franklin Institute of the State of Pennsylvania
Philadelphia 3, Pennsylvania
Attn: C. T. Davey

Fulton-Irgon Corporation
Box 591
Dover, New Jersey

General Electric Company
Burlington, Vermont

General Electric Company
100 Plastics Avenue
Pittsfield, Massachusetts

Grumman Aircraft Engineering Corporation
Bethpage, Long Island, New York
Attn: R. Howell

Hanley Industries, Incorporated
6143 Bartmer Street
St. Louis 14, Missouri
Attn: T. G. Blake, President

Hercules Powder Company
Ballistics Department
Kenvil, New Jersey
Attn: D. S. Simpson

Holex Incorporated
2751 San Juan Road
P. O. Box 148
Hollister, California
Attn: E. W. Place
DISTRIBUTION (Continued)

Horkey-Moore Associates
24660 South Crenshaw
Torrance, California 1

Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attn: R. E. Kemelhor 1

Kaman Aircraft Corporation
Old Windsor Road
Bloomfield, Connecticut 1

Lambert Engineering Company
1100 Macklind Avenue
St. Louis 10, Missouri
Attn: J. T. Thorp, Jr. 1

Lockheed Aircraft Corporation
P. O. Box 551
Burbank, California
Attn: Staff Engineering 1

Lockheed Aircraft Corporation
Technical Data Services
Dept. 72 - 75, Plant B-1
Burbank, California
Attn: C. C. Butterfield 1

Lockheed Aircraft Corporation
Georgia Division
Marietta, Georgia 1

Lockheed Missile and Space Division
Santa Cruz Test Base
Santa Cruz, California
Attn: L. V. Giladett 1

Lockheed Aircraft Corporation
P. O. Box 504
Sunnyvale, California
Attn: Librarian 1
DISTRIBUTION (Continued)

Lockheed Missile and Space Division
7701 Woodley Avenue
Van Nuys, California
Attn: J. Gurskis, Jr., Dept. 36 - 10 1

The Martin Company
Baltimore 3, Maryland 1

The Martin Company
Orlando, Florida
Attn: Wyatt Joiner, Mail 62 1

The Martin Company
Research Library
P. O. Box 179
Denver, Colorado
Attn: Acquisition Unit 1

McCormick-Selph Associates
P. O. Box 6
Hollister Airport
Hollister, California
Attn: F. LaHaye 1

McDonnell Aircraft Corporation
P. O. Box 516
St. Louis 66, Missouri
Attn: Engineering Library, Dept. 644
V. W. Drexelius 1

Miller Research Laboratories Division
Miller Metal Products, Incorporated
2215 Russell Street
Baltimore 30, Maryland 1

Mine Safety Appliances Company
201 North Braddock Avenue
Pittsburgh 8, Pennsylvania
Attn: W. T. Cofer, Jr. 1

Modern Metal Crafts Company
222 Diamond Street
Philadelphia 22, Pennsylvania 1
DISTRIBUTION (Continued)

National Aeronautics and Space Administration
1520 8th Street, N. W.
Washington, D. C. 1

National Northern Corporation
King Street
West Hanover, Massachusetts
Attn: Mr. N. Nero 1

North American Aviation, Incorporated
Columbus 16, Ohio
Attn: Chief Librarian 1

North American Aviation, Incorporated
9150 E. Imperial Highway
Downey, California 1

Olin Matheison Chemical Corporation
Winchester Western Division
East Alton, Illinois
Attn: W. B. Drakes 1

Olin Mathieson Chemical Corporation
New Haven 4, Connecticut
Attn: A. S. Cogan 1

Ordnance Associates, Incorporated
845 El Centro Street
South Pasadena, California 1

Ordnance Engineering Associates, Incorporated
407 South Dearborn Street
Chicago 5, Illinois 1

Pacific Scientific Company
10242 Placentia Avenue
Anaheim, California 1

Pelmec
Division of Quantic Industries, Incorporated
1010 Commercial Street
San Carlos, California
Attn: I. W. Halland, Ch. Engineer 1
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Attn</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propellex Chemical Corporation</td>
<td>P. O. Box 187, Edwardsville, Illinois</td>
<td>E. H. Williams</td>
<td>1</td>
</tr>
<tr>
<td>Reaction Motors, Incorporated</td>
<td>Denville, N. J.</td>
<td>Oswald Williams</td>
<td>1</td>
</tr>
<tr>
<td>Republic Aviation Corporation</td>
<td>Farmingdale, New York</td>
<td>R. E. Fidoten</td>
<td>1</td>
</tr>
<tr>
<td>Republic Aviation Corporation</td>
<td>223 Jericho Turnpike, Mineola, New York</td>
<td>H. H. Shea, Missile Systems Division</td>
<td>1</td>
</tr>
<tr>
<td>Rocketdyne</td>
<td>Canoga Park, California</td>
<td>C. Fingarhood, Dept. 591 - 368</td>
<td>1</td>
</tr>
<tr>
<td>Ryan Aeronautical Company</td>
<td>Engineering Department, San Diego, California</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sandia Corporation</td>
<td>Alburquerque, New Mexico</td>
<td>K. A. Sarason, Div. 1283-1</td>
<td>1</td>
</tr>
<tr>
<td>Sikorsky Aircraft Division</td>
<td>United Aircraft Corporation, Stratford, Connecticut</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Space Recovery Systems, Incorporated</td>
<td>140 Oregon Street, El Segundo, California</td>
<td>J. A. Wells, Applied Projects</td>
<td>1</td>
</tr>
<tr>
<td>Stanley Aviation Corporation</td>
<td>2501 Dallas Street, Denver 8, Colorado</td>
<td>J. B. Misner</td>
<td>1</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Attention</td>
<td>Quantity</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Rocket Power/Talco</td>
<td>P. O. Box 231, Mesa, Arizona</td>
<td>B. P. Barnes</td>
<td>1</td>
</tr>
<tr>
<td>Talley Industries</td>
<td>P. O. Box 876, Mesa, Arizona</td>
<td>G. E. Hirt</td>
<td>1</td>
</tr>
<tr>
<td>Temco Aircraft Corporation</td>
<td>P. O. Box 6191, Dallas 22, Texas</td>
<td>J. T. Brewer</td>
<td>1</td>
</tr>
<tr>
<td>Thiokol Chemical Corporation</td>
<td>Hunter-Bristol Division, P. O. Box 27</td>
<td>R. F. Morris</td>
<td>1</td>
</tr>
<tr>
<td>Thiokol Chemical Corporation</td>
<td>Elkton Division, Elkton, Maryland</td>
<td>M. D. Rosenberg</td>
<td>1</td>
</tr>
<tr>
<td>United States Flare Corporation</td>
<td>19701 West Goodvale Road, Saugus, California</td>
<td>N. C. Eckert</td>
<td>1</td>
</tr>
<tr>
<td>Universal Match Corporation</td>
<td>Box 231, Marion, Illinois</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Universal Match Corporation</td>
<td>Armament Division, 4407 Cook Avenue, St. Louis 13, Missouri</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
DISTRIBUTION (Continued)

Walter Kidde Company
675 Main Street,
Belleville, New Jersey
Attn: C. Morgan, Dev. Eng. 1

Westinghouse Electric Corporation
Air Crew Engineering Library
Mail Stop 417
P. O. Box 746
Baltimore 3, Maryland 1

Hydro-Space Technology Incorporated
Clinton Road and Route 46
West Caldwell, New Jersey
Attn: Library 1

Local:
T 1
TC 2
TCA 3
TCD 3
TCR 25
TCS 1
WW-3 2
WWI 2
ACL 7
File 1
<table>
<thead>
<tr>
<th>SOURCE</th>
<th>CODE</th>
<th>DESCRIPTR</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWL Report</td>
<td>NPGA</td>
<td>SECURITY CLASSIFICATION AND CODE COUNT</td>
<td>U009</td>
</tr>
<tr>
<td>REPORT NUMBER</td>
<td>1858</td>
<td>CIRCULATION LIMITATION</td>
<td></td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>May 1963</td>
<td>CIRCULATION LIMITATION OR BIBLIOGRAPHIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIBLIOGRAPHIC (Supp., Vol., etc.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTOR</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test set</td>
<td>TESR</td>
</tr>
<tr>
<td>Cook-off</td>
<td>COOK</td>
</tr>
<tr>
<td>Temperature(tes)</td>
<td>TEMPT</td>
</tr>
<tr>
<td>Cartridges (tes)</td>
<td>CARIT</td>
</tr>
<tr>
<td>Power</td>
<td>POWR</td>
</tr>
<tr>
<td>Actuated</td>
<td>ACTA</td>
</tr>
<tr>
<td>Devices</td>
<td>DEVI</td>
</tr>
<tr>
<td>Mark</td>
<td>MARK</td>
</tr>
<tr>
<td>13 mod0)</td>
<td>13MO</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A power cartridge cook-off test set is described, tests conducted to check out the test set are summarized, and a procedure for obtaining power cartridge cook-off data is outlined.</td>
<td></td>
</tr>
</tbody>
</table>
A TEST SET FOR DETERMINING THE COOK-OFF TEMPERATURES OF POWER CARTRIDGES

NWL REPORT NO. 1858