NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TENSILE AND CREEP-RUPTURE PROPERTIES OF DISILICIDE-
COATED UNALLOYED MOLYBDENUM SHEET
AT 2800°, 3000°, AND 3200°F
UNCLASSIFIED

(Title -- Unclassified)
TENSILE AND CREEP-RUPTURE PROPERTIES OF DISILICIDE-
COATED UNALLOYED MOLYBDENUM SHEET
AT 2800°, 3000°, AND 3200° F

Contract AF 33(657)-8706
Project 281

PREPARED BY
A. S. Rabensteine
A. S. Rabensteine

CHECKED BY
J. W. Chambers
Project Engineer

APPROVED BY
M. J. Albom, Manager
Materials and Process Section

UNCLASSIFIED

THE Marquardt CORPORATION
YAN NUTS, CALIFORNIA
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>III TEST PROCEDURES</td>
<td>1</td>
</tr>
<tr>
<td>A. Preparation of Test Specimens</td>
<td>1</td>
</tr>
<tr>
<td>B. Test Equipment</td>
<td>1</td>
</tr>
<tr>
<td>C. Temperature Measurement</td>
<td>2</td>
</tr>
<tr>
<td>IV TEST RESULTS</td>
<td>2</td>
</tr>
<tr>
<td>V DISCUSSION</td>
<td>2</td>
</tr>
<tr>
<td>VI CONCLUSIONS</td>
<td>3</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>12</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>I</td>
<td>Tensile Properties of Disilicide-Coated Unalloyed Molybdenum Sheet</td>
</tr>
<tr>
<td>II</td>
<td>Creep-Rupture Properties of Disilicide-Coated Unalloyed Molybdenum Sheet</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Marquardt Elevated Temperature Test Machine TM-1A.</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Creep-Rupture Properties of Disilicide-Coated Unalloyed Molybdenum at 2800°F</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Creep-Rupture Properties of Disilicide-Coated Unalloyed Molybdenum at 3000°F</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Creep-Rupture Properties of Disilicide-Coated Unalloyed Molybdenum at 3200°F</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Creep-Rupture Properties of Disilicide-Coated Unalloyed Molybdenum</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td>Two Percent Creep Properties of Disilicide-Coated Unalloyed Molybdenum</td>
<td>11</td>
</tr>
</tbody>
</table>
I. SUMMARY

Tensile and creep-rupture properties were obtained for disilicide-coated unalloyed molybdenum sheet (0.040 inch) at 2800°, 3000°, and 3200°F. The base metal substrate was disilicide coated approximately 0.0025-inch thick. A two-color Shawmeter (optical pyrometer) provided an accurate and convenient method to determine and to control test temperatures on the coated specimens. The ultimate tensile strengths at 2800°, 3000°, and 3200°F were approximately 12, 11, and 10 Ksi, respectively. The stress values to cause 2 percent creep in 2 hours at 2800°, 3000°, and 3200°F were 4.3, 3.8, and 3.0 Ksi.

II. INTRODUCTION

In aerospace applications, almost all refractory metal usage is in an oxidizing environment. One of the most widely used refractory metals is commercially pure molybdenum, and the coating system that has found the greatest favor for protection against oxidation is the disilicide coating.

The mechanical properties of commercially pure molybdenum have been well documented. However, as the disilicide coating is a diffusion type, the effect of such a protective system on the mechanical properties of the bare metal is of great importance.

The program reported herein was conducted to determine the tensile and creep-rupture properties of disilicide-coated unalloyed molybdenum sheet (0.040 inch) at 2800°, 3000°, and 3200°F.

III. TEST PROCEDURES

A. Preparation of Test Specimens

Tensile and creep-rupture test specimens were prepared from 0.040-inch thick unalloyed molybdenum (AMS 7800). A finish of 32 rms or better was given to all surfaces. Special consideration was given to the edge radius in the reduced section of the specimens. The specimens were lightly vapor-honed, degreased, and then disilicide coated approximately 0.0025 inch thick. After coating, the specimens were oxidation tested in air at 2500°F for five minutes. None of the specimens failed in this test.

B. Test Equipment

Tests were conducted on the Marquardt Elevated Temperature Test Machine (Figure 1) in a still air atmosphere. Specimens were self-resistance-heated to test temperature and held at temperature for five minutes prior to loading. Strain rates were controlled using a calibrated load cell. A Marquardt-developed electromechanical extensometer was used for strain measurement. Dead weight loading was used during the creep tests.
C. Temperature Measurement

A two-color Shawmeter (optical pyrometer) was used to measure test temperatures. The Shawmeter was calibrated against a special battery-operated calibration unit using a standard tungsten filament calibration lamp (G.E.) before each test, and at approximately one-hour intervals during the creep tests.

IV. TEST RESULTS

Tensile properties of disilicide-coated unalloyed molybdenum sheet obtained at test temperatures of 2800°, 3000°, and 3200°F are presented in Table I. Creep-rupture properties obtained at 2800°, 3000°, and 3200°F are presented in Table II. These data are shown graphically in Figures 2 through 6.

The ultimate tensile strengths at 2800°, 3000°, and 3200°F were approximately 12, 11, and 10 Ksi, respectively. Yield strengths were approximately 8, 7, and 6 Ksi. The stress values to cause rupture in 2 hours at 2800°, 3000°, and 3200°F were 4.17, 3.7, and 3.15 Ksi, respectively. The stress values to cause 2 percent creep in 2 hours were 4.3, 3.8, and 3.0 Ksi.

V. DISCUSSION

Tensile and creep-rupture testing of the disilicide-coated molybdenum presented special problems in the area of high temperature measurement. With uncoated specimens, temperature can be measured up to 5000°F in an inert atmosphere by the use of thermocouples. However, thermocouples cannot be directly welded to a coated specimen (as is the procedure for testing specimens of bare metal.)

The Shawmeter was utilized in this program because it is not dependent on known emittance values of the disilicide coating as is required in the use of the Micro-Optical Pyrometer (one-color pyrometer). The exact emittance of the coated molybdenum was unknown, and the emittance varied with time at the elevated test temperature investigated.

Prior to tensile and creep-rupture testing, the following steps were taken to improve the Shawmeter technique:

1. The addition of a meter to allow incident energy input to be adjusted to the same value for all test and calibration readings.

2. A table of tungsten calibration lamp and color temperatures was programmed for IBM and run off to obtain a compilation of brightness, color, and contrast values at 1° intervals over the test temperature range.

3. A special battery-operated calibration unit utilizing a standard tungsten filament calibration lamp (G.E.) was used to calibrate the Shawmeter.
4. The Shawmeter was calibrated at one-hour intervals during the test runs. The maximum drift in one hour was no more than ±20°F.

5. During test runs, the Shawmeter was positioned far enough away from the heated test specimen to insure that the viewing window did not become coated.

VI. CONCLUSIONS

The scatter of both the tensile and creep data was quite small, indicating that the raw material properties were uniform. In addition, the coating process was reproducible, and temperature control was uniform.

The Shawmeter was capable of accurate temperature measurements on the disilicide-coated molybdenum specimens within ±50° at 3200°F.

The optical pyrometer cannot be used on coatings for long periods of time unless the effect of time on the coating's emissivity is known.
TABLE I

TENSILE PROPERTIES OF DISILICIDE-COATED UNALLOYED MOLYBDENUM SHEET

<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Test Temperature (°F)</th>
<th>0.2% Yield Strength (Ksi)</th>
<th>Ultimate Tensile Strength (Ksi)</th>
<th>Elongation in 1 inch (%)</th>
<th>Young's Modulus (10^6 psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>831H</td>
<td>2800</td>
<td>7.5</td>
<td>12.3</td>
<td>4.0</td>
<td>--</td>
</tr>
<tr>
<td>832H</td>
<td>2800</td>
<td>8.2</td>
<td>11.8</td>
<td>4.2</td>
<td>8.0</td>
</tr>
<tr>
<td>829H</td>
<td>3000</td>
<td>7.5</td>
<td>11.0</td>
<td>9.9</td>
<td>5.7</td>
</tr>
<tr>
<td>826H</td>
<td>3000</td>
<td>6.8</td>
<td>10.7</td>
<td>9.6</td>
<td>5.1</td>
</tr>
<tr>
<td>824H</td>
<td>3000</td>
<td>7.4</td>
<td>12.3</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>858H</td>
<td>3200</td>
<td>6.2</td>
<td>10.0</td>
<td>9.6</td>
<td>--</td>
</tr>
<tr>
<td>859H</td>
<td>3200</td>
<td>6.1</td>
<td>10.0</td>
<td>11.5</td>
<td>4.8</td>
</tr>
<tr>
<td>860H</td>
<td>3200</td>
<td>6.3</td>
<td>10.4</td>
<td>11.8</td>
<td>--</td>
</tr>
</tbody>
</table>

Test Conditions

- **Sheet thickness**: 0.040 inch
- **Machine**: Marquardt ETM
- **Strain rates**: 0.001 in./in./sec to yield, 0.01 in./in./sec to rupture.
- **Hold time**: 5 minutes
- **Temperature indicator**: Shawmeter
- **Test atmosphere**: Air
TABLE II
CREEP-RUPTURE PROPERTIES OF DISILICIDE-COATED UNALLOYED MOLYBDENUM SHEET

Test Conditions
- Sheet thickness = 0.040-inch
- Machine = Marquardt ETIM
- Test indicator = Shawmeter
- Test atmosphere = Air

<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Test Temperature (°F)</th>
<th>Creep Stress (Ksi)</th>
<th>Time to Reach Creep Strain (seconds)</th>
<th>Rupture Time (seconds)</th>
<th>Elongation in 1 inch (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>839H</td>
<td>2800</td>
<td>4.5</td>
<td>13 0.0% 16 0.2% 105 0.5% 5 1.0% 16 2.0% 7 4.0%</td>
<td>10,235 4,720 9,175</td>
<td>6.0</td>
</tr>
<tr>
<td>849H</td>
<td>2800</td>
<td>4.15</td>
<td>16 0.0% 161 0.2% 660 0.5% 2,770 1.0%</td>
<td>-- 12,120 20,650</td>
<td>--</td>
</tr>
<tr>
<td>841H</td>
<td>2800</td>
<td>4.0</td>
<td>105 0.0% 770 0.2% 3,060 0.5% 5,450 1.0%</td>
<td>-- 12,120 20,650</td>
<td>--</td>
</tr>
<tr>
<td>838H</td>
<td>2800</td>
<td>4.75</td>
<td>5 0.0% 42 0.2% 360 0.5% 1,670 1.0%</td>
<td>-- 7,800</td>
<td>5.5</td>
</tr>
<tr>
<td>853H</td>
<td>3000</td>
<td>4.0</td>
<td>7 0.0% 34 0.2% 140 0.5% 445 1.0%</td>
<td>-- 12,813 5.0</td>
<td></td>
</tr>
<tr>
<td>854H</td>
<td>3000</td>
<td>3.0</td>
<td>265 0.0% 1,120 0.2% 3,720 0.5% 14,400 1.0%</td>
<td>-- 12,813 5.0</td>
<td></td>
</tr>
<tr>
<td>855H</td>
<td>3000</td>
<td>3.75</td>
<td>95 0.0% 670 0.2% 2,280 0.5% 5,400 1.0%</td>
<td>-- 9,875</td>
<td>--</td>
</tr>
<tr>
<td>856H</td>
<td>3000</td>
<td>3.5</td>
<td>25 0.0% 230 0.2% 840 0.5% 2,180 1.0%</td>
<td>-- 5,315 11,860</td>
<td></td>
</tr>
<tr>
<td>857H</td>
<td>3000</td>
<td>3.7</td>
<td>20 0.0% 201 0.2% 800 0.5% 2,350 1.0%</td>
<td>-- 6,660 14,115</td>
<td></td>
</tr>
<tr>
<td>835H</td>
<td>3200</td>
<td>2.75</td>
<td>70 0.0% 945 0.2% 3,450 0.5% 7,620 1.0%</td>
<td>25,290 24,925</td>
<td></td>
</tr>
<tr>
<td>836H</td>
<td>3200</td>
<td>3.35</td>
<td>15 0.0% 140 0.2% 575 0.5% 1,315 1.0%</td>
<td>7,564 5.5</td>
<td></td>
</tr>
<tr>
<td>861H</td>
<td>3200</td>
<td>3.05</td>
<td>120 0.0% 552 0.2% 1,580 0.5% 3,755 1.0%</td>
<td>12,646 4.7</td>
<td></td>
</tr>
</tbody>
</table>
CREEP-RUPTURE PROPERTIES OF DISILICIDE-COATED UNALLOYED MOLYBDENUM
AT 3000°F

NOTES
1. RESISTANCE HEATING
2. STILL AIR ATMOSPHERE
3. TEMPERATURE MEASURED WITH THERMOCOUPLE

STRESS - ksi
5.0
4.5
4.0
3.5
3.0
2.5
10
100
1000
10,000
100,000

TIME - seconds
0.05% MIN. R
t 0.1% MIN.
0.5% MIN.
1.0% MIN.
2.0% MIN.
5 HR.
10 HR.
XR

LEGEND
EX - 0.05
O - 0.1
O - 0.5
O - 1.0
X - 4.0
R - RUPTURE

28B430 UNCLASSIFIED - 8 -
CREEP-RUPTURE PROPERTIES OF DISILICIDE-COATED UNALLOYED MOLYBDENUM
AT 3200°F

NOTES
1. RESISTANCE HEATED
2. STILL AIR ATMOSPHERE
3. TEMPERATURE MEASURED WITH TWO-COLOR SHAWMETER
4. 0.040-INCH THICK SHEET

LEGEND
PERCENT CREEP
○ - 0.05
□ - 0.1
◊ - 0.2
△ - 0.5
○ - 1.0
■ - 2.0
◇ - 4.0
R - RUPTURE

STRESS - ksi

10
100
1000
10,000
100,000

TIME - seconds
CREEP-RUPTURE PROPERTIES
OF DISILICIDE-COATED UNALLOYED MOLYBDENUM

NOTES
1. RESISTANCE HEATING
2. STILL AIR ATMOSPHERE
3. TEMPERATURE MEASURED WITH TWO-COLOR SHAWMETER

CREEP IN 2 HOURS

TEMPERATURE - °F

CREEP STRESS - ksi

RUPTURE

2800 3000 3200
TWO PERCENT CREEP PROPERTIES
OF DISILICIDE-COATED UNALLOYED MOLYBDENUM

TIME REQUIRED TO
REACH 2% CREEP
(HOURS)

1.0
2.0
4.0

CREEP STRESS - Ksi

2800 3000 3200

TEMPERATURE - °F

NOTES
1. RESISTANCE HEATED
2. STILL AIR ATMOSPHERE
3. TEMPERATURE MEASURED WITH TWO-COLOR SHAWMETER
DISTRIBUTION

<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Transmitted to</th>
</tr>
</thead>
</table>
| 1. | Syracuse University Research Institute
Department of Chemical Eng. & Metallurgy
Syracuse 10, N. Y.
Attn.: Dr. Volker Weiss |
| 2. | Syracuse University Research Institute
Box 145, University Station
Syracuse 10, N. Y.
Attn.: Dr. C. S. Grove, Jr. |
| 3. | Defense Metals Information Center
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio |
| 4, 5. | Commander
Aeronautical Systems Division
Directorate of Materials & Processes
Wright-Patterson AFB, Ohio
Attn.: ASRCME-1 |
| 6. | Thermophysical Properties Research Center
School of Mechanical Engineering
Lafayette, Indiana
Attn.: Dr. Y. S. Touloukian |
| 7. | Plastec
Picatinny Arsenal
Dover, New Jersey |
Suttons Bay, Michigan
Attn.: Albert J. Belfour |
| 9. | Hughes Aircraft Company
Florence and Teale Streets
Culver City, California
Attn.: E. M. Wallace, Library Services |
| 10. | Commander
Aeronautical Systems Division
Directorate of Materials & Processes
Wright-Patterson AFB, Ohio
Attn.: ASRCME |
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Transmitted to</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 to 20</td>
<td>Armed Services Technical Information Agency</td>
</tr>
<tr>
<td></td>
<td>Arlington Hall Station</td>
</tr>
<tr>
<td></td>
<td>Arlington 12, Virginia</td>
</tr>
<tr>
<td></td>
<td>Attn.: TIPA</td>
</tr>
<tr>
<td>21</td>
<td>Forest Products Laboratory</td>
</tr>
<tr>
<td></td>
<td>Madison 5, Wisconsin</td>
</tr>
<tr>
<td></td>
<td>Attn.: Mr. Fred Werren</td>
</tr>
<tr>
<td>22</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Aeronautical Systems Division</td>
</tr>
<tr>
<td></td>
<td>Directorate of Materials and Processes</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB, Ohio</td>
</tr>
<tr>
<td></td>
<td>Attn.: ASRCEM-1, Library</td>
</tr>
</tbody>
</table>