NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
XM12 ROCKET CATAPULT FOR DOUGLAS RB66 AIRPLANE

by

A. Benditt

OMS 5110, 22, 011
DA Project 5802-06-001

January 1963

PHILADELPHIA 37, PA.
Qualified requesters may obtain copies of this report from ASTIA.

The findings in this report are not to be construed as an official Department of the Army position.
XM12 ROCKET CATAPULT FOR DOUGLAS RB66 AIRPLANE

Prepared by: A. BENDITT
Mechanical Engineer, Ordnance

Reviewed by: J. A. SCHNEIDER
Chief
Development Engineering Branch

Approved by: ROBERT F. LEVINO
Deputy Chief
Propellant Actuated Devices Division
ABSTRACT

This report describes the testing of nine Frankford Arsenal XM12 rocket catapults with the Douglas Aircraft RB66 airplane. The results show that the performance of the XM12 catapult was satisfactory and that it will safely eject the designated seat-man system throughout the operational speeds and altitude range of the B-RB66 series aircraft.
INTRODUCTION

Frankford Arsenal furnished Douglas Aircraft Company with nine XM12 rocket catapults for testing with the RB66 airplane. This plane carries a crew of three with the pilot and gunner in tandem and the navigator adjacent to the gunner.

TESTING

The first group of three units was fired from a single sled at Edwards Air Force Base on 21 May 1959 at a speed of mach 0.92 and was described in Douglas Aviation Engineering Report No. LB-30197. The units were triggered at 0.35-second intervals. Two of the units functioned satisfactorily, while the rocket grain in the other failed to ignite following catapult function. With reference to the successful firings, the trajectory heights were approximately 90 feet. Six additional units were fired as described in Douglas Aviation Report No. LB-30315. A brief summary of their test history and test data in tabular form follows.

One unit was fired statically and attained a height of approximately 140 feet. Two units were fired together from a sled at approximately 115 knots and attained heights of approximately 75 ft. Three units were fired from a sled at a target speed of mach 0.92, one of which had a poor trajectory due to the sled supporting structure failing upon firing. There was no failure of the catapult.

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Seat</th>
<th>Speed (knots)</th>
<th>Trajectory Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Pilot</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>II</td>
<td>Pilot</td>
<td>118</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Navigator</td>
<td>111</td>
<td>77</td>
</tr>
<tr>
<td>III</td>
<td>Pilot</td>
<td>610</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Navigator</td>
<td>606</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Gunner</td>
<td>555</td>
<td>48</td>
</tr>
</tbody>
</table>

Sled support structure failure.
DISCUSSION

The XM12 rocket catapults reported herein are identical to the qualified M8 rocket catapult with the exception of the head which was modified to permit the thrust line of the 45° nozzle to align with the center of gravity of the seat-man mass.

The XM12 rocket catapult, as designed and tested, meets the requirements of the work statement (Appendix A) submitted by Aeronautical Systems Division and the design requirements (Appendix B) established by the Propellant Actuated Devices Division of Frankford Arsenal.

CONCLUSIONS

Report No. LB-30315 states that the performance of the catapults was satisfactory for all tests despite the failure of the sled support structure and concluded that the XM12 catapult will safely eject the designated seat-man system throughout the operational speeds and altitude range of the B-RB66 series aircraft.

RECOMMENDATION

It was recommended by Douglas Aircraft that the XM12 rocket catapult be retrofitted on all upward ejection seats on the B-RB66 series airplanes.
APPENDIX A

WORK STATEMENT
MODIFICATION OF RAPEC UNIT

19 October 1959
WS-60-5

1. The Ordnance Corps shall modify the Bureau of Ordnance RAPEC Rocket Catapult and fabricate, test, and furnish to WADC a rocket catapult in accordance with Specification MIL-C-25918 and the requirements specified herein.

1.1 MODEL DESIGNATION

The catapult shall be designated: Catapult, Aircraft Personnel, XM12.

2. GENERAL REQUIREMENTS

2.1 LOCKING REQUIREMENTS

The fastenings used to secure external and internal parts shall withstand a breakaway torque of 400 to 200 inch pounds min., respectively.

2.2 ASSEMBLY AND DISASSEMBLY

2.2.1 The catapult shall be designed so that complete disassembly may be made without part destruction.

2.2.2 The catapult shall be designed so that no part shall be capable of being assembled in such a way as to produce malfunction.

2.3 MECHANICAL COMPONENTS

2.3.1 The gas inlet port shall be in accordance with AND-10050-4.

2.3.2 Screw threads shall conform to the requirements of the 1950 Supplement to Screw Threads Standards for Federal Services, No. H28.
2.3.3 Workmanship on all parts shall conform to high grade aeronautical practice.

3. DETAIL REQUIREMENTS

3.1 MECHANICAL DESIGN

3.1.1 Catapult stroke 40 inches
3.1.2 Overall length 50;1/8 inches
3.1.3 Diameter 3-1/8 inches
3.1.4 Strength in tension 4000 lbs min
3.1.5 Strength in compression 8000 lbs min
3.1.6 Pressure required to actuate firing mechanism (propellant gas actuated) 1000 psi
3.1.7 Catapult weight 30 lbs. max.

3.2 BALLISTIC REQUIREMENTS

3.2.1 Operating temperature range -65° F to +200° F
3.2.2 Exit velocity
 a. at end of catapult stroke 40 fps min
 b. at rocket burnout 110 fps min
3.2.3Acceleration 20g max
3.2.4 Rate of change in acceleration 300g/sec max
3.2.5 Ignition delay .150 sec max
3.2.6 Weight propelled vertically 350 lbs

4. A final report, in WADC Technical Report format, covering the development of the catapult, including assumptions, sample calculations (ballistic and mechanical), performance data, other test data, photographs, technical data, disassembly and assembly procedures and drawing numbers shall be submitted to the WADC upon completion of development. This report shall be in reproducible form and submitted to WCLSJ for reproduction and distribution.

5. REMARKS

5.1 Reference

5.1.1 Specification MIL-C-25918 (USAF).
APPENDIX B

DESIGN REQUIREMENTS FOR CATAPULT,
AIRCRAFT PERSONNEL, XM12

ABenditt/aab/22126
Ordnance Corps Project TS1-15
Pitman-Dunn Laboratories
Frankford Arsenal
12 May 1959
Catapult, Aircraft Personnel, XM12
Design Requirements No. FA-1421-DR-C-223-1

1. Scope and Classification

1.1 Scope

This specification covers the requirements for an aircraft personnel catapult designed to be used in aircraft emergency escape systems. The device is intended for upward ejection of a crewman with ejection seat and related equipment, and shall be powered by propellant gases generated by firing cartridges contained in the unit.

1.2 Model Designation

The catapult shall be designated: Catapult, Aircraft Personnel, XM12.

2. Applicable Specifications, Drawings, and Publications

2.1 Specifications

MIL-E-5272A - "Environmental Testing, Aeronautical and Associated Equipment"

MIL-P-12011 - "Painting and Finishes of Fire Control Instruments"
MIL-S-5626 - "Steel; Chrome Molybdenum (4104) Bars, Rods, and Forging Stock (for Aircraft Applications)"

MIL-T-20155 - "Seamless Tubing, Molybdenum Alloy Steel"

2.2 Drawings

Should be prepared using FA-LXP-3 manual as a guide.

2.3 Publications

Engineering manual, cartridge actuated devices for aircraft use, Frankford Arsenal.

3. General Requirements

3.1 Locking requirements

The fastenings used to secure external and internal parts shall withstand a breakaway torque of 400 and 200 inch pounds min., respectively.

3.2 Assembly and Disassembly

3.2.1 The catapult shall be designed so that complete disassembly may be made without part destruction.

3.2.2 The catapult shall be designed so that no part shall be capable of being assembled in such a way as to produce malfunction.

3.2.3 The catapult shall be fitted with a distinctive ordnance seal which must be destroyed in order to disassemble the device.

3.3 Environmental

3.3.1 Sufficient protection shall be provided to insure satisfactory operation after tests prescribed by Specification MIL-E-5272A, Procedure 1, under the following conditions:
3.3.2 The catapult shall be capable of withstanding the following vibration tests:

3.3.2.1 Total time 150 hours min., acceleration $\pm 3g$.

3.3.2.2 The item shall be vibrated 50 hours min. at -65°, $+70^\circ$, and $+160^\circ$ F, respectively.

3.3.2.3 The item shall be vibrated a min. of 50 hours in each of three planes and a min. of 16-2/3 hours at -65°, $+70^\circ$, and $+160^\circ$ F, respectively, in each of these planes. The three planes of vibration are:

3.3.2.3.1 Catapult mounted vertically; motion of the item shall be vertical.

3.3.2.3.2 Catapult mounted horizontally; motion of the item shall be vertical.

3.3.2.3.3 Catapult mounted horizontally; motion of the item shall be horizontal.

3.3.2.4 The catapult shall be vibrated to determine resonant frequency of the item.

3.3.2.5 The catapult shall be vibrated at the frequency corresponding to the resonant frequency, or 200 cycles per second if the resonant frequency is above 200 cycles per second, for the total time of the test.
3. 3. 3 The cartridge seals shall be adequate to withstand 14 psi pressure differential cycling tests.

3.4 Mechanical Components

3.4.1 The gas inlet part shall be 1/8-27 N.P.T. as requested by Douglas Aircraft.

3.4.2 Screw threads shall conform to the requirements of the 1950 Supplement to Screw Threads Standards for Federal Service, No. H28.

3.4.3 Workmanship on all parts shall conform to high grade aeronautical practice.

3.5 Reliability

The catapult shall be designed to have a reliability factor such that not more than one failure to function will occur in 10,000 firings. A statistical evaluation of firing tests shall be made to show that performance reliability of the unit over the temperature range -65° to +160° F equals or exceeds three sigma limits.

4. Detail Requirements

4.1 Mechanical Design

4.1.1 Catapult stroke 40 inches
4.1.2 Overall length 50-1/8 inches
4.1.3 Diameter 3-1/8 inches
4.1.4 Strength in tension 4000 lbs. min.
4.1.5 Strength in compression 8000 lbs. min.
4.1.6 Pressure required to actuate firing mechanism (propellant gas actuated) 1000 psi.
4.1.7 Catapult weight 30 lbs. max.

4.2 Ballistic Requirements

4.2.1 Operating temperature range -65° to +160° F.
4.2.2 Exit velocity
 a. at end of catapult stroke 40 fps min.
 b. at rocket burnout 110 fps min.

4.2.3 Acceleration 20g max.
4.2.4 Rate of acceleration 300g/sec max.
4.2.5 Ignition delay 150 m-sec max.

Weight propelled vertically 350 lbs.
DISTRIBUTION

30 - Frankford Arsenal
 Philadelphia 37, Pa.
 Attn: Chief Scientist, 0100/107-1. 1
 Chief, Propellant Actuated Devices Division. ... 1
 J. J. Grietus, 2200/107-2 1
 S. M. Lawrence, 1000/110-2. 1
 J. Schneider, 1450/64-3 1
 M. Long, 1410/64-3 1
 V. Haugh, 1400/64-3 1
 M. Silverstein 1330/64-3. 1
 P. J. Mahal, 5500/40-2 1
 G. Grew, 5500/40-2 1
 Patents Branch 1205/519 1
 Library 0270/40-B 1
 Commander's Reading File. 1
 Project File. 1
 A. Ben'ditti, 1450/64-3 1
 Chief, Development Engineering Br., 1450/64-3. 11
 Technical Writing Section, 1214/110-B 14

U. S. ARMY

1 - U. S. Army Materiel Command
 Attn: AMCRD-DE-W
 Mr. C. L. Thulin
 Washington 25, D. C.

1 - Commanding General
U. S. Army Missile Command
 Attn: Tech Library
 Redstone Arsenal, Ala.

1 - Attn: Office of Deputy CG for
 Ballistic Missiles

1 - Attn: Office of Deputy CG for
 Guided Missiles

1 - Commanding Officer
U. S. Army Test Activity
 Attn: Capt. J. M. Ramsay
 Yuma Test Station
 Yuma, Arizona

1 - President
CONARC Airborne & Electronics Board
 Attn: Maj. S. I. Polonski
 Equipment Branch
 Fort Bragg, N. C.

1 - Commanding General
U. S. Army Munitions Command
 Dover, New Jersey
DISTRIBUTION (Cont'd)

1 - Commanding General
U. S. Army Weapons
Command
Rock Island Arsenal, Ill.

2 - Commanding General
U. S. Army Test and
Evaluation Command
Attn: Technical Library
Aberdeen Proving Ground
Maryland

1 - Commanding Officer
Harry Diamond Labs
Attn: AMXDO-TIB
Washington 25, D. C.

U. S. AIR FORCE

3 - Commander
Aeronautical Systems Division
Attn: ASRMDD-13
Capt. D. R. Barron
Wright-Patterson Air Force
Base, Ohio

3 - Attn: ASNPSS, Mr. C. K. Hodell

1 - Attn: ASNPSP-1
Mr. A. E. Varble

1 - Attn: ASNSP-4
Capt. D. A. Jabusch

1 - Attn: ASAPT

1 - Attn: ASAPRL

1 - Attn: Mr. Vincent DiRito
ASZX

1 - Directorate of Aerospace
Safety
Attn: Chief, Life Sciences
Group (AFIAS-L)
Norton Air Force Base
California

1 - Commander
Ogden Air Materiel Area
Attn: OONEAA
Mr. T. Pretti
Hill Air Force Base
Utah

1 - Commander
2705th Airmunitions
Wing (AMC)
Attn: OOOTIT
Hill Air Force Base
Utah

1 - Commander
Edwards Air Force Base
Attn: DGSM (Mr. Richard
Maguire)
6593d Test Group
(Development)
Edwards, California

U. S. NAVY

1 - Chief, Bureau of Naval
Weapons
Dept. of the Navy
Attn: RMMO-3
Washington 25, D. C.

1 - Attn: RMMP-433

1 - Attn: RAAE-2312
1 - Commanding Officer
U. S. Naval Weapons Lab
Attn: Mr. R. I. Rossbacher
Code WC
Dahlgren, Virginia

1 - Commanding Officer
U. S. Naval Ordnance Test Station
Attn: D. H. Strietzel
Code 4574
China Lake, California

1 - Commander
U. S. Naval Ordnance Lab
Attn: Code WC
White Oak, Silver Spring
Maryland

1 - Commanding Officer
U. S. Naval Ordnance Plant
Attn: Code PD-Z70
Macon, Georgia

2 - NASA Manned Spacecraft Center
Attn: Mr. Chas. M. Grant, Jr.
Chief, Technical Information Division
Code ACI
Houston, Texas

1 - Scientific and Technical Information Facility
Attn: NASA Representative (S-AK/DL)
P. O. Box 5700
Bethesda, Maryland

OTHER

10 - Armed Services Technical Information Agency
Attn: TIPDR
Arlington Hall Station
Arlington 12, Virginia

1 - Chemical Propulsion Information Agency
Johns Hopkins University
Silver Spring, Maryland
This report describes the testing of nine Frankford Arsenal XM12 rocket catapults with the Douglas Aircraft RB66 airplanes. The results show that the performance of the XM12 catapult was satisfactory and that it will safely eject the designated seat-man system throughout the operational speeds and altitude range of the B-RB66 series aircraft.

DISTRIBUTION LIMITATIONS:
None, obtain copies from ASTIA.